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• Electrostatic accelerators
• Radio-frequency (RF) linear acceleratorsRadio frequency (RF) linear accelerators
• RF Cavities and their properties 

• Material is covered in Wangler, Chapter 1 
(and also in Wiedemann Chapter 15)



How do we accelerate particles?How do we accelerate particles?

• We can accelerate charged particles:
– electrons (e-) and positrons (e+)e ec o s (e ) a d pos o s (e )
– protons (p) and antiprotons (p)
– Ions (e g H1- Ne2+ Au92+ )Ions (e.g. H ,Ne , Au , …)

• These particles are typically “born” at low-
energyenergy
– e- : emission from thermionic gun at ~100 kV

p/ions: sources at 50 kV– p/ions: sources at ~50 kV
• The application usually requires that we 

l t th ti l t hi h iaccelerate these particles to higher energy, in 
order to make use of them



Electromagnetic Forces on Charged ParticlesElectromagnetic Forces on Charged Particles

• Lorentz force equation gives the force in response to electric 
and magnetic fields:

• The equation of motion becomes:

• The kinetic energy of a charged particle increases by an 
amount equal to the work done (Work-Energy Theorem)
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Electromagnetic Forces on Charged ParticlesElectromagnetic Forces on Charged Particles

• We therefore reach the important conclusion that
– Magnetic fields cannot be used to change the kinetic 

energy of a particleenergy of a particle
• We must rely on electric fields for particle 

acceleration
– Acceleration occurs along the direction of the electric 

field
Energy gain is independent of the particle velocity– Energy gain is independent of the particle velocity

• In accelerators:
– Longitudinal electric fields (along the direction ofLongitudinal electric fields (along the direction of 

particle motion) are used for acceleration
– Magnetic fields are used to bend particles for 

guidance and focusingguidance and focusing



Acceleration by Static Fields: Acceleration by Static Fields: 
Electrostatic AcceleratorsElectrostatic AcceleratorsElectrostatic AcceleratorsElectrostatic Accelerators



Acceleration by Static Electric FieldsAcceleration by Static Electric Fields
• We can produce an electric field by establishing a potential 

difference V0 between two parallel plate electrodes, 
separated by a distance L:
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The Simplest Electrostatic Accelerators: The Simplest Electrostatic Accelerators: 
Electron GunsElectron Guns



Electrostatic AcceleratorsElectrostatic Accelerators
• Some small accelerators, such 

as electron guns for TV picture 
tubes, use the parallel plate 
geometry just presented

• Electrostatic particle 
accelerators generally use a 
slightly modified geometry in 
which a constant electric field is 
produced across an 

l tiaccelerating gap
• Energy gain:

Accelerating 
column in

• Limited by the generator

∑= nVnqW
column in 
electrostatic 
accelerator

Limited by the generator

∑= ngenerator VV



Cascade Generators, aka CockroftCascade Generators, aka Cockroft--Walton Walton 
AcceleratorsAccelerators

Cockroft and Waltons 800 kV 
accelerator, Cavendish Laboratory, 
Cambridge, 1932

They accelerated protons to 800 kV 

Modern Cockroft-
Waltons are still 
used as proton 

and observed the first artificially 
produced nuclear reaction:

p+Li →2 He

injectors for linear 
accelerators

This work earned them the Nobel Prize 
in 1951



Van de Van de GraaffGraaff AcceleratorsAccelerators

Van de Graafs twin-column electrostatic accelerator (Connecticut, 1932)

Electrostatic accelerators are limited to about 25 MV terminal voltage due to g
voltage breakdown



Two Charging methods: Van de Graaff and Two Charging methods: Van de Graaff and 
Pelletron AcceleratorsPelletron Accelerators



Highest Voltage Electrostatic Accelerator: 24 Highest Voltage Electrostatic Accelerator: 24 
MV (Holifield Heavy Ion Accelerator, ORNL)MV (Holifield Heavy Ion Accelerator, ORNL)



Acceleration to Higher EnergiesAcceleration to Higher Energies
• While terminal voltages of 20 MV provide sufficient beam energy for nuclear 

structure research, most applications nowadays require beam energies > 1 GeV
• How do we attain higher beam energies?
• Analogy: How to swing a child?

– Pull up to maximum height and let go: difficult and tiring (electrostatic 
accelerator)

– Repeatedly push in synchronism with the period of the motion



Acceleration by TimeAcceleration by Time--VaryingVaryingAcceleration by TimeAcceleration by Time Varying Varying 
Fields: RadioFields: Radio--Frequency Frequency 

A l tA l tAcceleratorsAccelerators



Acceleration by Repeated Application of TimeAcceleration by Repeated Application of Time--
Varying FieldsVarying Fields

T h f l ti ith ti i fi ld• Two approaches for accelerating with time-varying fields
• Make an electric field along the direction of particle motion with Radio-

Frequency (RF) Cavities 
vv

E
E v

E
E

Circular Accelerators

Use one or a small number of RF

Linear Accelerators

Use many cavities throughUse one or a small number of RF 
cavities and make use of repeated 
passage through them: This approach 
leads to circular accelerators:

Use many cavities through 
which the particle passes 
only once:

These are linear
Cyclotrons, synchrotrons and their 
variants

These are linear 
accelerators



RF AcceleratorsRF Accelerators
• In the earliest RF Accelerator, 

Rolf Wideroe took the 
electrostatic geometry we 
considered earlier, but 
attached alternating 
conductors to a time-varying, 
i id l ltsinusoidal voltage source

• The electric field is no longer 
static but sinusoidal alternating 
h lf i d f l tihalf periods of acceleration 
and deceleration. 
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RF AcceleratorsRF Accelerators
Electric FieldElectric Field 
in Cavity

Time

L

• This example points out three very important aspects of an

L

This example points out three very important aspects of an 
RF linear accelerator
– Particles must arrive bunched in time in order for efficient 

accelerationacceleration
– Accelerating gaps must be spaced so that the particle “bunches” 

arrive at the accelerating phase: 
2/12/ βλλβ === cvTL

– The accelerating field is varying while the particle is in the gap; 
energy gain is more complicated than in the static case
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How Do We Make EM Fields Suitable for Do We Make EM Fields Suitable for 
Particle Acceleration?Particle Acceleration?

• Waves in Free Space
– E field is perpendicular to 

direction of wavedirection of wave 
propagation

• Waves confined to a 
GuideGuide
– “Phase velocity” is greater 

than speed of light

• Resonant Cavity
– Standing waves possible 

with E-field along direction g
of particle motion

• Disk-loaded Waveguide
Traveling waves possible– Traveling waves possible 
with “phase velocity” equal 
to speed of light



Electromagnetic Waves in Free SpaceElectromagnetic Waves in Free Space

• The wave equation is a consequence of Maxwell’s equations 
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• Plane electromagnetic waves are solutions to the wave equation

)cos(),( 00 txnkEtxE ω−⋅=
rr

rrrrr

)cos(),( 00 txnkBtxB ω−⋅=
rrrrr

• Each component of E and B satisfies the wave equation provided 
that ck /0 ω=

• That is, the E and B fields are perpendicular to the direction of wave 
ti d th d h th h

• Maxwell’s equations give 
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propagation and one another, and have the same phase.
• A plane wave propagating in the +z direction can be described:
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• To accelerate particles we need to i) confine the EM waves to a 
specified region, and ii) generate an electric field along the direction 
of particle motion



Standing WavesStanding Waves
• Suppose we add two waves of equal amplitude, one moving in the 

+z direction, and another moving in the –z direction:
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• The time and spatial dependence are separated in the resulting 
electric-field: )()( tTzFEz =

Thi i ll d t di ( d t t li )• This is called a standing-wave (as opposed to a traveling-wave), 
since the field profile depends on position but not time

• Such is the case in a radio-frequency cavity, in which the fields are 
confined, and not allowed to propagate.  , p p g

• A simple cavity can be constructed by adding end walls to a 
cylindrical waveguide

• The end-walls make reflections that add to the forward going wave



RadioRadio--frequency (RF) Cavitiesfrequency (RF) Cavities



Radio Frequency Cavities: The Pillbox CavityRadio Frequency Cavities: The Pillbox Cavity

• Large electromagnetic (EM) fields can be built up by resonant excitation 
of a radio-frequency (RF) cavity

• These resonant cavities form the “building blocks” of RF particle g p
accelerators

• Many RF cavities and structures are based on the simple pillbox cavity 
shape

• We can make one by taking a 
cylindrical waveguide, and 
placing conducting caps at z=0 

R

and z=L
• We seek solutions to the wave 

equation (in cylindrical 
l

E

coordinates), subject to the 
boundary conditions for perfect 
conductors



Conducting WallsConducting Walls
B d diti t th f t d t i t f• Boundary conditions at the vacuum-perfect conductor interface are 
derived from Maxwell’s equations:
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– Electric fields parallel to a metallic surface vanish at the surface
– Magnetic fields perpendicular to a metallic surface vanish at the surface

• In the pillbox-cavity case: lzzEEr ====    and   0for      0θp y

• For a real conductor (meaning finite conductivity) fields and currents 
are not exactly zero inside the conductor, but are confined to a small

RrEEz === for      0θ
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are not exactly zero inside the conductor, but are confined to a small 
finite layer at the surface called the skin depth
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Wave Equation in Cylindrical CoordinatesWave Equation in Cylindrical Coordinates
• We are looking for a non zero longitudinal electric field• We are looking for a non-zero longitudinal electric field 

component Ez so we will start with that component.
• The wave equation in cylindrical coordinates for Ez is:
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We will begin with the simplest case assuming an

trREtzrEz ωcos)(),,( 0=

• We will begin with the simplest case, assuming an 
azimuthally symmetric, standing wave,  trial solution

• This gives the following equation for R(r) (with x=ωr/c)

012

RdRRd 02 =++ R
dxxdx

• The solution is the Bessel function of order zero, J0(ωr/c), 0( )



Bessel Functions Bessel Functions 

Note that J0(2 405)=0Note that J0(2.405)=0

ωr/c



Longitudinal Electric Field  Longitudinal Electric Field  
• The solution for the longitudinal electric field is

tcrJEEz ωω cos)/(00=
• To satisfy the boundary conditions, Ez must vanish at the 

cavity radius:  
0)( == RrEz )(z

• Which is only possible if the Bessel function equals zero 

0)()/( == RkJcRJ ω 0)()/( 00 == RkJcRJ rcω
• Using the first zero, J0(2.405)=0, gives

Rcc /405.2=ω
• That is, for a given radius, there is only a single frequencyThat is, for a given radius, there is only a single frequency 

which satisfies the boundary conditions
• The cavity is resonant at that frequency 



Magnetic Field ComponentMagnetic Field Component
• The electric field is

• A time varying electric field gives rise to a magnetic field

trkJEE rz ωcos)(00=
A time varying electric field gives rise to a magnetic field 
(Ampere’s law)
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The Pillbox Cavity FieldsThe Pillbox Cavity Fields
• The non zero field components of the complete solution are:

trkJEE rz ωcos)(00=
k /

• The non-zero field components of the complete solution are:
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Note thatNote that 
boundary 

conditions are 
satisfied!



The Pillbox Cavity FieldsThe Pillbox Cavity Fields

• We have found the solution for one particular 
normal mode of the pillbox cavity

• This is a Transverse Magnetic (TM) mode, 
because the axial magnetic field is zero (Bz=0)

• For reasons explained in a moment, this particular 
mode is called the TM010 mode

• It is the most frequently used mode in RF cavities 
for accelerating a beam 
W h ld t b i d th t th illb it• We should not be surprised that the pillbox cavity 
has an infinite number of normal modes of 
oscillationoscillation



Normal Modes of OscillationNormal Modes of Oscillation



Mechanical Normal ModesMechanical Normal Modes

Drumhead modes



Transverse Magnetic ModesTransverse Magnetic Modes
• But, we selected one solution out of an infinite number 

of solutions to the wave equation with cylindrical 
boundary conditionsboundary conditions

• Our trial solution had no azimuthal dependence, and no 
z-dependence 
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Transverse Magnetic ModesTransverse Magnetic Modes

• Which results in the following differential equation 
for R(r) (with x=kcr)
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• With solutions Jm(kcr), Bessel functions of order m
• The solution is:

• The boundary conditions require that
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Transverse Magnetic ModesTransverse Magnetic Modes
• Label the n th zero of J :• Label the n-th zero of Jm: 

• Boundary conditions of other field components requires
0)( =mnm xJ

Boundary conditions of other field components requires

• A mode labeled TMmnp has
m full period variations in θ

lpkz /π=

– m full-period variations in θ
– n zeros of the axial field component in the radial direction
– p half-period variations in z

Pillbox cavity has a discrete spectrum of frequencies which• Pillbox cavity has a discrete spectrum of frequencies, which 
depends on the mode.  The dispersion relation is 
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Mode Frequencies of a Pillbox CavityMode Frequencies of a Pillbox Cavity
E h d h it t f d fi d b thEach mode has its resonant frequency defined by the 

geometry of the pillbox cavity



Dispersion Curve Dispersion Curve 
• A plot of frequency versus wavenumber, ω(k), is called the dispersion curve 
• One finds that there is a minimum frequency, the cutoff frequency, below 

which no modes exist
• The dispersion relation is the same as for a cylindrical waveguide, except 

that the longitudinal wavenumber is restricted to discrete values, as required 
by the boundary conditions



Cavity ParametersCavity Parameters

• Stored energy:
∫ += dVBEU )/(

2
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– The electric and magnetic stored energy oscillate in time 90 
degrees out of phase. In practice, we can use either the electric or 

∫2

magnetic energy using the peak value.

• Power dissipation:Power dissipation:
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– where Rs is the surface resistance, σ is the dc conductivity and δ is 
the skin depth

2 0ωσμσδ

the skin depth
– Power dissipation always requires external cooling to remove heat; 

Superconducting cavities have very small power dissipation 



Cavity Parameters, cont’dCavity Parameters, cont’d
Q li f

U

Quality factor:
The quality factor is defined as 2π times the stored energy divided by the 

energy dissipated per cycle

P
UQ ω=

The quality factor is related to the damping of the electromagnetic 

Q
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dU ω
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q y p g g
oscillation:

Rate of change of stored energy = - power dissipation
tQeUtU )/(

0
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Rate of change of stored energy  power dissipation

Since U is proportional to the square of the electric field:
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Thus the electric field decays with a time constant also called the fillingThus, the electric field decays with a time constant, also called the filling 
time
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Resonant Behavior of Electrical OscillatorsResonant Behavior of Electrical Oscillators

The frequency dependence of the electric field can be obtained by Fourier 
Transform:
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The Pillbox Cavity ParametersThe Pillbox Cavity Parameters
Stored energy:
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Pictures of Pillbox RF CavitiesPictures of Pillbox RF Cavities



Superconducting CavitiesSuperconducting Cavities
• RF Surface resistance for a normal• RF Surface resistance for a normal 

conductor:
– copper has 1/σ=1.7x10-8 Ω-m
– At 500 MHz, Rs=5.8mΩ σ

ωμ
2

0=sR
, s

• RF Surface resistance for 
superconducting niobium, with 
Tc=9.2K, Rres=10-9-10-8 Ω
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– At 500 MHz, with Rres= 10-8 Ω, T=4.2K, 
Rs= 9x10-8 Ω

• Superconducting RF structures 
have RF surface resistance ~5

[ ]KT

have RF surface resistance 5 
orders of magnitude smaller than 
for copper

• Removal of heat from a high- duty-
f l d i i ifactor normal-conducting cavity is a 
major engineering challenge

– Gradients are limited to a few MeV/m as 
a result

• RF power systems are a 
substantial fraction of the cost of a 
linac



RecapRecap
• We found a solution to the wave equation with cylindrical boundary 

conditions appropriate for a pillbox-cavity
• This solution has two non-zero field components p

– Longitudinal Electric field (yeah! We can accelerate particles with 
this) that depends on radius

– Azimuthal magnetic field (uh-oh wait and see) that depends onAzimuthal magnetic field (uh oh….wait and see) that depends on 
radius

• This cavity has a resonant frequency that depends on the 
geometrical dimensions (radius only!)geometrical dimensions (radius only!) 

• Because of finite conductivity, the cavity has a finite quality factor, 
and therefore the cavity resonates over a narrow range of 
frequencies determined by Qfrequencies, determined by Q.  

• An infinite number of modes can be excited in a pillbox cavity; their 
frequencies are determined by their mode numbers

• The TM mode is the most commonly used mode for acceleration• The TM010 mode is the most commonly used mode for acceleration



ExampleExample
• Design a copper (1/σ = 1.7x10-8 Ωm) pillbox cavity with 

TM010 resonant frequency of 1 GHz, field of 1.5 MV/m 
and length of 2 cm:and length of 2 cm:
a) What are the RF surface resistance and skin depth? 
b) What is the cavity radius?b) What is the cavity radius?
c) What is the power dissipation?
d) What is the quality factor?
e) If instead of copper, the cavity was made with 

superconducting niobium at 4K (assume Rres = 10-8), 
what would the quality factor be?what would the quality factor be?

f) Calculate the frequencies of the TM01p modes for p= 
0, 1, 2



Additional MaterialAdditional Material



Guided Electromagnetic Waves in a Cylindrical Guided Electromagnetic Waves in a Cylindrical 
Waveguide Waveguide 

• We can accomplish each of these by transporting EM waves in a 
waveguide

• Take a cylindrical geometry.  The wave equation in cylindrical 
coordinates for the z field component iscoordinates for the z field component is
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• Assume the EM wave propagates in the Z direction.  Let’s look for 
a solution that has a finite electric field in that same direction:
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Cylindrical WaveguidesCylindrical Waveguides
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• Which results in the following differential equation for R(r) (with 
x=kcr)

• The solutions to this equation are Bessel functions of order n,  Jn(kcr), 
which look like this:



Cylindrical WaveguidesCylindrical Waveguides

• The solution is:
)cos()cos()( tzknrkJE cn ωφ −=

• The boundary conditions require that
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• Label the n-th zero of J :

n allfor  0)( =akJ cn

0)( =mnm xJLabel the n th zero of Jm: 
• For m=0, x01 = 2.405 

)( mnm

22 ⎞⎛ 2
2

22
2

2 405.2
zzc k

a
kk

c
+⎟

⎠
⎞

⎜
⎝
⎛=+=

ω



Cutoff Frequency and Dispersion CurveCutoff Frequency and Dispersion Curve

222
0 zc kkk +=

• The cylindrically symmetric waveguide has

222 )( ckzc +=ωω0 zc zc

• A plot of ω vs. k is a hyperbola, 
called the Dispersion Curvep

Two cases:
• ω > ωc: kz is a real number and 

the wave propagates
• ω < ωc: kz is an imaginary 

number and the wave decays 
exponentially with distance
O l EM ith f• Only EM waves with frequency 
above cutoff are transported!



Phase Velocity and Group VelocityPhase Velocity and Group Velocity
• The propagating wave solution has

tzkz ωφ −=)cos(),(0 φzrEEz =

A point of constant φ propagates ith a elocit called the phase
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• A point of constant φ propagates with a velocity, called the phase 
velocity, 
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• The electromagnetic wave in cylindrical waveguide has phase 
velocity that is faster than the speed of light:  

• This won’t work to accelerate particles.  We need to modify the phase 
velocity to something smaller than the speed of light to accelerate 
particlesparticles 

• The group velocity is the velocity of energy flow:

UvP gRF =
A d i i b• And is given by:

dk
dvg
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