


•  Dispersion (Sections 2.5.4,5.4) 
•  Momentum Compaction (Section 5.4) 
•  Chromaticity (Section12.2) 
•  Longitudinal dynamics in rings (Chapter 6) 



•  Go back to full equation of motion for x: 

•  We solved the simplest case, the homogeneous differential equation, 
with all terms on the r.h.s equal to zero 

•  And found the solution 

•  We will now look at the highest-order energy (momentum)-
dependent perturbation term: 



•  The general solution of the equation of motion is the sum of the two 
principal solutions of the homogeneous part, and a particular solution 
for the inhomogeneous part, where we call the particular solution δD(s) 

•  The function D(s) is called the dispersion function 
•  We can write this solution as the sum of two parts: 

•  From which we conclude the the particle motion is the sum of the 
betatron motion (xβ) plus a displacement due to the energy error (xδ) 

•  where 

•  We can write the trajectory above in 
terms of a 3x3 matrix that includes the 
off-momentum term 



•  No betatron motion: xβ=0:  x(s)=xδ=δD(s) 

xδ=δD(s) x 

s 

x'
δ=δD'(s) 

•  with betatron motion: 

x=xβ + xδ x 

s 

x‘=x'
β+x'

δ 



•  Imagine a particle entering a sector bending magnet with an energy that 
is a little lower than the design energy:  
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•  Use the transport matrix for a sector bending magnet to calculate the 
dispersion 

•  Giving the 3x3 transport matrix for a sector bend: 



•  Dispersion is generated in bending magnets 
•  Quadrupoles and drifts are not sources of dispersion, although they 

influence the dispersion function because the off-momentum trajectory 
is bent by quadrupoles  



•  Suppose we set the starting betatron amplitude and slope equal to 
zero, that is, make xβ=0. 

•  We can write the coordinate vector as  

•  And dividing by δ we have 

•  This means that if we know the 3x3 transport matrices, and the starting 
dispersion functions, we can calculate the dispersion anywhere 
downstream 



•  What is the dispersion in a FODO lattice? 
•  Construct a simple FODO lattice from this sequence 

½Q-Bend- ½Q ½Q-Bend-½ Q 
Where for simplicity the “Bend” has θ << 1 

•  We look for a periodic solution to the dispersion function in a FODO, 
that is, a function η(s) that repeats itself  

•  With that constraint, the η(s) must reach a point of maximum or 
minimum at a quadrupole, that is η' =0. 

•  Which gives with 



•  Can solve the equation of motion: 

•  To arrive at the solution for η(s)  

•  Finally, the rms beamsize at a given location has two components, one 
from the betatron motion of the collection of particles, and another from 
the finite energy spread in the beam:  

•  Likewise for the angular beam divergence  



•  Suppose one location in a lattice has a 
horizontal beta-function = 20 meters, 
vertical beta-function = 10 meters, and 
peak dispersion = 8 meters with εx= εy = 1 
mm-mrad, and σδ = 0.0007,  
– calculate the horizontal and vertical rms 

beamsizes  



•  Suppose we want to arrange the lattice so that D=D‘=0 at some particular 
location in the beamline 

•  Having established D=D‘=0 at some location, the lattice has D=0 
everywhere downstream, up to the next bending magnet 

•  Such a lattice, or section of lattice is termed achromatic 
•  Start with the integral equation for D(s) 

•  The dispersion and dispersion derivative can be written 

•  In terms of the integrals 



•  The integrals can be made to vanish in a lattice segment with 360° 
horizontal phase advance through a FODO section with Bends 
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•  The path length is given by 

•  The deviation from the ideal path length is 

•  With the momentum compaction factor defined as  

•  The travel time around the accelerator is 

•  The momentum compaction is ηc and the transition-gamma is  



•  Three cases:  
–  γ > γt , ηc>0, and Δτ increases with energy, revolution 

frequency decreases with energy 
–  γ < γt , ηc<0, and Δτ decreases with energy, revolution 

frequency increases with energy 
–  γ = γt,, Δτ =0, independent of energy.  Such a ring is 

called isochronous 
•  This behaviour is a result of the fact that the dispersion 

function causes higher energy particles to follow an orbit 
with slightly larger radius than the ideal orbit 

•  All electron rings operate above transition 
•  Many proton/hadron synchrotrons must pass through 

transition as the beam is accelerated 



•  The focusing strength of a quadrupole is  

•  A beam particle with momentum error δ sees a focusing strength slightly 
different from that of a particle at the design energy   

•  In addition to dispersion, we 
would also expect some effect 
to the weaked or strengthened 
quadrupole focusing seen by 
off-momentum particles   

•  This is the particle-beam equivalent of the chromatic aberration from light 
optics, which arises from the dependence of the index of refraction of a glass 
lens on the wavelength of light. 

•  Special optical materials can be made in a telescope to make the image 
achromatic 



•  Go back to the equations of motion for x and y 

•  Plug in  

•  We arrive at the equations of motion for the betatron amplitude, 
neglecting terms proportional to δ2 or xβ2 or yβ2 

•  or 

Dipole 

Quad 

Sext 

Modified focusing 
strength due to 
momentum error δ 

Additional focusing 
from displaced 
closed orbit in 
sextupoles due to  
dispersion  



•  In the last lecture we studied gradient errors.  This new term is just 
another type of gradient error, as we anticipated, which will modify the 
beta-functions and therefore also the betatron tunes of a circular 
accelerator 

•  We calculated the betatron tune shift due to gradient errors: 

•  With the gradient error (k-mη), this gives 

•  In an accelerator without sextupoles, or with sextupoles turned off, the 
resulting chromaticity is that due solely to the slightly different focusing 
seen by off-energy particles.  This value of chromaticity is called the 
natural chromaticity, which always has a negative value! 



1.  Non-zero chromaticity means that each 
particle’s tune depends on energy.  If there is a 
range in energies, there will be a range in 
tunes. 

•  A beam with a large range in tunes, or tune-spread 
occupies a large area on the tune-plane.  This 
opens the possibility of a portion of the beam being 
placed on a resonance line. 

2.  The value of the chromaticity, as it turns out, is 
an important variable that determines whether 
certain intensity-dependent motion is stable or 
unstable. 



•  The field of a sextupole, in the horizontal plane is this: 

•  The vertical field gradient is: 

•  Where the coordinates for off-momentum particles (y=0, x=δη) has been 
taken.  

•  Therefore, the sextupole provides 
quadrupole focusing in the 
horizontal plane, with focusing 
strength proportional to δ 
–  particles with higher momentum are 

focused in the horizontal plane, and 
–  particles with lower momentum are 

defocusing in the horizontal plane.  

•  This is exactly what is needed to counteract the dependence of 
quadrupole focusing on energy. 



•  We can use this feature of the sextupole field to correct the 
chromaticity, that is, make ξx = ξy = 0 

•  Sextupoles placed at locations with large dispersion are more 
effective.  We also need βx >> βy at one location and βy >> βx at 
another. 

•  We need at least two sextupole magnets to simultaneously make both 
chromaticities zero.  Let’s place two sextupoles in the lattice, with 
strength m1, m2 and length l.   



•  The natural chromaticity in one-half FODO cell becomes: 

•  So a FODO channel with 90 degrees phase advance/cell has natural 
chromaticity -1/π 

•  Giving for a full FODO cell: 



•  The formulation of longitudinal motion in linacs holds also for rings. 
•  The synchronous phase is set according to the need to accelerate, and 

according to the sign of the momentum compaction so that phase 
stability is achieved 
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Acceleration 
in linac on-energy 

low-energy 

high-energy 

γ>γtr no accel, 
no energy loss 

γ<γtr , no accel, 
no energy loss 

γ>γtr with accel 
or energy loss 

γ<γtr , with accel 
or energy loss 



•  Electron storage rings and Synchrotrons:  π /2<φs<π 
•  Proton storage rings and synchrotrons below transition:  

0<φs<π/2 
•  Proton storage rings and synchrotrons above transition: 
π /2 <φs<π 

•  Proton synchrotrons may start with γ < γtr,but since the 
energy increases, eventually γ crosses the transition-
energy to reach γ > γtr 

•  This is called “transition-crossing”.  During this event, the 
synchronous phase of the RF system must jump by 180° 
so that the higher energy beam remains phase-stable.   

•  Proton accelerators often have a “gamma-t jump”system 
consisting of a set of pulsed-quadrupole magnets that 
momentarily varies the momentum compaction by 
perturbing the dispersion function so that the lattice γtr is 
pushed below the proton γ. 



•  Same analysis that we followed for the linac case can be repeated for 
the circular case 

•  Results in the equation of motion for the particle phase: 

•  With an oscillation frequency given by: 

•  Where  
–  h is the harmonic number, defined by  

–  The particle’s energy gain in one ring revolution is: 

•  The oscillation frequency is called the synchrotron frequency, and 
the ratio of synchrotron frequency to revolution frequency is the 
synchrotron tune 



•  This should equal the result we obtained                                                 
previously for a linac: 

•  We can see that these two are equal by noting that,  
–  The convention for linacs is 
–  Whereas that for rings is  

–   therefore, ϕs
ring = φs

linac + π/2, so  

–  The momentum compaction in the linac is just:  

–  Since αc=(ΔL/L)/(Δp/p)=0 since there are no bending magnets, and therefore 
no dispersion in a linac 

–  The energy gain in one ring revolution is: 
–  Putting all this together, we arrive at the same frequency that we calculated 

for the linac. 
–  The longitudinal dynamics that we learned in the linac applies directly to the 

ring case as well 
–  The various parameters expressed for the ring contain the momentum 

compaction factor, which is zero in a linac 


