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Collective Effects 

Beam-self: beam 
interacts with itself 
through space charge. 

Beam-beam: colliding 
beams in colliders or 
ambient electron clouds 
(e-p instability). 

e- 

p+ 

Beam-environment: beam 
interacts with machine 
(impedance-related 
instabilities). 

So far, we have treated only the forces of external magnets and fields 
on a particle. Collective effects take into account the effects of the 
beam’s own Coulomb force field on itself and on it’s environment.  

In a very general sense, we can break collective effects down into three 
catagories: Beam-self, beam-beam, and beam-environment.   

Collective effects and their instabilities constitute an active and 
extensive field of research. Here we only briefly review some of the 
more common effects.  



Space Charge Fields 
One of the most studied collective effects is that of the beam’s 
own Coulomb field on particles in the beam (beam-self interaction). 
In accelerator jargon, this is called the “space charge” field, or the 
“space charge” effect.  

A simple model treats the beam as a long cylinder. Consider the 
total force (E + B fields) felt on a “test particle” within this beam: 
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a = radius of the beam 
n = Number particles / length 

(**Derivation**) 
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Space Charge Force 

It is a straightforward matter to plug this force in to our Hill’s 
equation of motion, and to assess the effect:  
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Notice that the space charge term is defocusing!  

Also,the more we focus the beam, the higher the particle density and 
the larger the Coulomb field repulsion, i.e., the term a2 in the 
denominator decreases. 



Space Charge Effect 

Since the space charge term scales as x, we can treat it as a quadrupole 
error term. 
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where  

Example:  R=75m,  
E=200 MeV,  
εN=3  mm mrad,  
N=6×109 proton/m 

Δν=-0.4 
The design lattice tune is 
shifted down by this amount! 
“Space charge tune 
depression” 

For a constant density cylindrical beam, we get 
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while for a Gaussian beam of RMS width σ 
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εN =
a2(γβ)
β twiss

where  



Space Charge Effect 

A real beam has a variation in particle density, and therefore, the space 
charge tune shift varies across the bunch (both in the transverse and in 
the longitudinal directions). 

x,y 

number of particles / volume 
Beam Density Profile 

Very little space charge 
tune shift in the tails. 

Large space charge tune 
shift at the peak 



Space Charge Tune Shift 
A real beam is neither round nor uniform in particle density.  Particles in 
high density regions will be “tune-depressed” more than particles in low-
density regions, giving rise to a distribution of particle tunes. 

The overall effect is a tune spread, leading to a “tune-footprint” in the 
tune diagram: 
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Nominal tune point 
Tune spread due to space 
charge.  
Max tune spread here is, 
Δνmax ≅ 0.1 

Now it becomes much 
harder to avoid resonance! 



Beam-Beam Tune Shift 

In a colliding beam accelerator, two beams are circulating in opposite 
directions and pass through each other at certain interaction points.    

During this time, the particles in one beam feel the electric and magnet 
forces of the particles in the other beam.  

In this case, the force vectors on a test particle in one beam, due to 
the fields in the other beam, are in the same direction. Both the E and 
B forces are defocusing. 
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Beam-Beam Tune Shift 

Using the same procedure as in the space charge case, we find that 
the beam-beam tune shift of beam 2 due to beam 1 is given by: 
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 (when γ1 = γ 2 and β1 = β2)
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Because the beams only overlap and “feel” each other for a short 
time, this tune shift is much smaller than the space charge tune 
shift.   

where, 

and N1 is the total number of particles in beam 1. 



e-P Instability 

Proton Beam 

An “electron-Proton” instability can be generated when the proton 
beam interacts with ambient electrons in the vacuum chamber.  

1)  Ambient electron is accelerated through beam potential 
2)  Electron strikes the wall on the opposite side and ejects more 

electrons 
3)  These electrons are accelerated through the beam and strike the 

opposite side wall, ejecting more electrons. 
4)  If electrons live until the beam returns on the next pass, the 

“electron cloud” grows until it causes an instability in the proton 
beam. 

Scenario (simplified): 

v Beam Pipe e- 



Observed e-P Instability at SNS 

•  Instability was fast: 20 – 200 turns. 
•  Instability was observed in both planes – vertical plane was stronger.  

Stable beam signal 

e-P instability   



Wakefields and Impedances 
Since particles travel in the accelerator environment, with beam pipes and 
magnets, etc, they induce fields in the accelerator structures. These 
fields can act back on a trailing particle.  

v 

Wakefields are also 
generated in a conducting 
pipe near the intersection 
of a geometry change.  

Wakefields are generated 
in a smooth pipe of 
constant radius if it has 
finite resistance: 
“Resistive Wall Impedance” 



Wakefields: The Force from an Annulus of Charge 
Multipolar charge annulus Qm. Trailing test particle 

v 

We can write down the radial force, Fr , on the test particle from the 
upstream annulus of charge: 

Qm is the multipole factor for the charge distribution, and Wm(s), is  
the wakefield of the annulus, it represents the response of the vacuum 
chamber to the beam, and is found by solving Maxwell’s equations, with 
boundary conditions matched for the particular environment. 
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The m’s represent different 
possible charge distributions in 
the annulus.   



Example:  Macroparticle Model 
Consider a simplified example where we approximate a beam as two 
macroparticles, each with half of the beam charge, Ne/2, and 
separated by a distance, s, equal to the length of the beam: 

eN Ne/2 
Ne/2 

We let the particles have different offsets from the axis, and we 
assume that they propagate in a uniform focusing channel (also known 
as the smooth approximation),  which leads to equal betatron 
frequencies.  

The equation of motion in the absence of wakefields, and in the time 
domain is given by:  

x2 x1 

approximate to… 



The leading particle is a small chunk of a uniform annulus of charge 
and, as such it induces moments of all m. We consider the case m=1, at 
the radius r = x1, here.   

Our leading particle is 
like a little chunk of the 
annulus, at r=x1  
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Q1= ρ∫ δ(x − x1)δ(y)δ(z − z0)x dxdydz

Translating this into Cartesian coordinates, x=rcosθ, and using the δ 
function operator to identify the location of the macroparticle, we have:  

This charge is upstream a distance of 
zo=ct0 ahead of the second particle, 
where we have the force. 

Example (continued)…: Macroparticle Multipole 



Example (continued)…: The Force 

Using the m=1 term and our charge multipole, we can write down the 
force on the second particle due to the wake fields generated by the 
first particle.  
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Fr = eQmmr
m−1 cos(mθ)Wm (s)→ Fr = eQ1W1 cos(θ)θ = 0

Fx = eQ1W1 =
Ne2

2
W1x1

But x1 obeys the betatron equation of motion with constant frequency: 
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x1 = a1 cos(ωβ t)
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Fx
γm

=
Ne2

2γm
W1a1 cos(ωβ t)

And finally, the force on the trailing particle is: 



Example (continued)…: The Eq. of Motion  
The second particle obeys the betatron equation of motion with 
frequency ωβ, but it also experiences the force from the leading particle.   

Combining both of these into one equation, we arrive at the equation of 
motion for the second particle:  
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˙ ̇ x 2 +ωβ
2 x2 =

Ne2W1a1

2γm
cos(ωβ t)

This is the equation for a driven harmonic oscillator. And 
we are driving right on the resonance frequency!! 



Example (continued)…: The Instability 

Solving the driven harmonic oscillator equation of motion, we finally 
arrive at: 
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x2 = a2 cos(ωβ t) + a1
Ne2W1(s)
4ωβγm

t sin(ωβ t)

Linear growth with 
time! 

x2 

time 

Though many approximations were used in this example, the basic 
principles carry over to a real machine and lead to a phenomenon called 
”Beam break up”.   



Wakefields  Impedances  
In practice, in can be very difficult to calculate the wakefield for real 
accelerator beams and vacuum chamber geometries. 

It’s often easier to work with the Fourier transform of the wakefield, 
namely the Impedance, which we can separate into pieces that are 
transverse and parallel to beam motion. The impedance per unit length 
is written:    

The impedance is the frequency domain representation of the wakefield. 
Once we  have calculated or measured one quantity (wakefield or 
impedance) we get the other almost for free (just a Fourier transform). 



More on Impedance 
The impedance is a complex resistance, so a beam with current Ibeam will 
induce a voltage proportional to the impedance: 

Because of this, we are often able to measure the impedance of an 
accelerator structure in the lab, using a probe and a network analyzer. 
In some cases we can derive analytic formulas for the impedance; 
calculations of wakefields in the time domain can be a more laborious 
task.    

One step in the design of any accelerator involves the creation of an 
“impedance budget”, in which the sum of the impedances of the individual 
machine components is compared to the threshold value for instability. If 
the impedance budget yields instability, the machine design must be 
modified accordingly.  



Horizontal 

Vertical 

This was an observed transverse impedance instability in the SNS 
ring. This is caused by a high transverse impedance in the ring 
extraction kickers.  

SNS Extraction Kicker Instability  


