Pulsed Power Engineering Diagnostics

January 12-16, 2009

Craig Burkhart, PhD
Power Conversion Department
SLAC National Accelerator Laboratory
Diagnostic Techniques and Considerations in Pulsed Power Systems

- Grounding
 - Proper grounding
 - Ground loops
- Voltage measurement
 - Voltage divider
 - Resistive
 - Capacitive
 - Balanced
 - Commercial voltage probes
- Current measurements
 - CVR
 - Rogowski
 - Self-integrating Rogowski
Grounding

- Proper grounding is the single most important factor in making accurate experimental measurements in pulsed power systems: design it in
- \(\text{kA/\mu s} \times nH = V \), no two points in a high \(dI/dt \) system ever have the same potential which will induce “ground loop” currents
- Solid “earth” ground when possible
- “Single point” ground systems when possible
 - Almost anything with an AC plug has a ground lead
 - Safety requirements often result in additional grounds
- Use tri-axial cables instead of co-ax, outer shield can be non-current carrying connection required for grounding/bonding
Ground Loop

DC coupled

\[V_{CM} = 2\pi f \times B \times l \times h \text{ (Sine Wave)} \]

or \[-\frac{\Delta B}{\Delta t} \times l \times h \text{ (Pulsed Field)} \]

Capacitively coupled

\[V_s \]

AMPLIFIER

STRAIGHT CAPACITANCE
Isolation Techniques for Ground Loops

Ground loop from multiple-point grounding

Interrupting ground loop current flow using transformer isolation

Additional isolation techniques
Common Mode Choke for Signal Cables
Measuring High Voltage

- High voltage resistor strings are used to make HV measurements
 - Resistive shunts
 - Resistive dividers
- Parasitic effects (illustrated in Fig 9.51) can introduce waveform distortion at higher frequencies as illustrated in Fig 9.52
- Impact of parasitic elements is reduced as resistance of string is reduced, but dissipation and loss increases
High Frequency Voltage Dividers

• Most common alternatives
 – Capacitive divider
 – Balanced divider
 • Add capacitance to “swap” strays
 • Can be done with discrete components
 • Alt: physically divide resistive medium
 – Water
 – Thin film
 • Typical design of commercial HV probes
 – Inductive dividers used for dI/dt

Figure 9.53 Voltage dividers. (a) Capacitive. (b) Inductive. (c) Balanced voltage divider.

Figure 9.54 Balanced voltage divider with water solution resistor.

VD6-DH VD15-A VD80-B VD75-C
Scope Probes

- Balanced probes
 - Input impedance is frequency dependent
 - Scope impedance impacts response
- Bandwidth is limited
 - May be substantially less than rating, depending on ground connection
- HV versions require tuning to scope
- Pulsed power workhorses
 - P5100: 100X, 2.5 kV, 250 MHz
 - P6015: 1000X, 20 kV, 75 MHz
 - P5210 (differential): 5 kV, 50 MHz, 2 kV common-mode
Current Measurement

• Current viewing resistor
 – \(V = IR \)

• Time changing induced magnetic field, dB/dt
 – B-dot loop
 • \(V = NA \frac{dB}{dt} \)
 – Coil of area, A, with N turns
 • \(V = NAB/RC \)
 – Passive RC integrator
 • Calibration difficult, function of source and loop
 – Location
 – Size
 – Orientation
 – Rogowski coil
 • Encloses current source
 • Eliminates location/orientation calibration factors
Rogowski Coil

- Usual “air core” approximation, diamagnetic field of loop is negligible
 - \(B_i = B \)
- \(B(r) = \mu I/2\pi\rho \)
- \(V = NA \frac{dB}{dt} \)
 - \(= \mu A(N/2\pi\rho) \frac{dI}{dt} \)
 - \(= \mu A(N/\ell) \frac{dI}{dt} \)
 - \(= \mu A(N/\ell) I/RC \) (with RC integrator)
 - \(\ell \) is coil length
 - \(N/\ell \) is number of turns/meter
- Can be built in the lab
 - Calibration challenges: accurately measuring \(A \) and \(N/\ell \)
 - Signal attenuation from passive RC integrator yields small signals unless \(I \) very large or time constant short
- Commercially available
Self-integrating Rogowski

- More rigorously, the field \(B_i \), in Fig 9.58
 \[B_i = B - \mu i \left(\frac{N}{2\pi \rho} \right) \]
 where \(i \) is the current flowing in the coil
 \[i = NA \frac{(dB_i/dt)}{R} \]
- Combining the above and solving for \(B \)
 \[B = B_i + \frac{(dB_i/dt)}{R} \left(\frac{\mu N^2 A}{2\pi \rho R} \right) \]
 \[= B_i + \frac{(dB_i/dt)}{R} \left(\frac{L}{R} \right) \]
 inserting the identity for a solenoid inductor
- When the time constant \(L/R \) is large compared to the time scale of current variations: \((d/dt) (L/R) \gg 1 \), then the left term above can be neglected and:
 \[B \approx \frac{(dB_i/dt)}{R} \left(\frac{\mu N^2 A}{2\pi \rho R} \right) \]
- Recognizing \(B = \frac{\mu I}{2\pi \rho} \) and solving for \(dB_i/dt \) as a function of coil current
 \[i = \frac{I}{N} \]
- Typically, \(L \) is made large by using a ferrite core
- Commercial current transformer