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Overview 

•  The Michelson Interferometer 
•  Martin Puplett configuration 
•  Grating spectrometers 
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The Michelson Interferometer 

Fringes (in delay): 
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DL = 2(L2 – L1) 

The Michelson Interferometer splits a 
beam into two and then recombines them 
at the same beam splitter. 

Suppose the input beam is a plane wave: 

Iout where: DL = 2(L2 – L1) 
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The Michelson Interferometer 

The most obvious application of the 
Michelson Interferometer is to 
measure the wavelength of 
monochromatic light. 
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Huge Michelson Interferometers may someday detect 
gravity waves. 
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Mirror"
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Gravity waves (emitted by all massive objects) ever so slightly warp 
space-time. Relativity predicts them, but they’ve never been detected. 

Supernovae and colliding black holes emit gravity waves that may be 
detectable. 

Gravity waves are “quadrupole” 
waves, which stretch space in 
one direction and shrink it in 
another. They should cause one 
arm of a Michelson 
interferometer to stretch and 
the other to shrink. 

Unfortunately, the relative distance (L1-L2 ~ 10-16 cm) is less than the 
width of a nucleus!  So such measurements are very very difficult! 

L1 and L2 = 4 km! 
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The LIGO project 

A small fraction of 
one arm of the 
CalTech LIGO 
interferometer… 

The building 
containing an arm 

The control center 

Hanford LIGO 
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Interference of white beams 

For perfect sine waves, the two beams are either in phase or 
they’re not. What about a beam with a short coherence time???? 

The beams could be in phase some of the time and out of phase 
at other times, varying rapidly. 

Remember that most optical measurements take a long time, so 
these variations will get averaged. 
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Adding a non-
monochro-matic 

wave to a delayed  
replica of itself 

Delay = 
½ 

period 
(<< tc): 

Delay > tc: 

Constructive 
interference 
for all times 
(coherent) 
“Bright fringe” 

Destructive 
interference 
for all times 
(coherent) 
“Dark fringe”) 

Incoherent 
addition No 
fringes. 

Delay = 0: 
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Suppose the input beam is not monochromatic 
(but is perfectly spatially coherent): 

          Þ     Iout   =    2I   +   c e Re{E(t+2L1 /c) E*(t+2L2 /c)} 

Now, Iout will vary rapidly in time, and most detectors will 
simply integrate over a relatively long time, T : 
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The Michelson Interferometer is a  
Fourier Transform Spectrometer 

The Field Autocorrelation! 
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The Fourier Transform of the Field Autocorrelation is the spectrum!! 

Changing variables:  t' = t + 2L1 /c  and letting  t = 2(L2 - L1)/c   and  T ® ¥ 
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Fourier Transform Spectrometer Interferogram 

The Michelson interferometer output—the interferogram—Fourier 
transforms to the spectrum.  

The spectral phase plays no role! (The temporal phase does, however.) 
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A Fourier Transform Spectrometer's detected light energy vs. delay 
is called an interferogram. 
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Fourier Transform Spectrometer Data 

Interferogram 

This interferogram 
is very narrow, so 
the spectrum  
is very broad. 

Fourier Transform Spectrometers are most commonly used in the 
infrared where the fringes in delay are most easily generated.  As 
a result, they are often called FTIR's. 

Actual interferogram from a Fourier Transform Spectrometer 
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Fourier Transform Spectrometers 

Maximum path difference: 1 m 
Minimum resolution: 0.005 /cm 
Spectral range: 2.2 to 18 mm 
Accuracy: 10-3 /cm to 10-4 /cm  
Dynamic range: 19 bits (5 x 105)  

A compact commercial 
FT spectrometer from 
Nicolet 

Fourier-transform 
spectrometers are now 
available for wave-
lengths even in the UV! 
Strangely, they’re still 
called FTIR’s. 
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Irradiance vs. position for crossed beams 

Irradiance fringes occur where the beams overlap in space and time. 
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Big angle: small fringes. 
Small angle: big fringes. 

2 /(2 sin )
/(2sin )

kπ θ
λ θ

Λ =
=

The fringe spacing, L: 

As the angle decreases to 
zero, the fringes become  
larger and larger, until finally, at 
q = 0, the intensity pattern 
becomes constant. 

Large angle: 

Small angle: 
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Spatial fringes and spatial 
coherence 

Interference is incoherent (no 
fringes) far off the axis, where 
very different regions of the 
wave interfere. 
Interference is coherent (sharp 
fringes) along the center line, 
where same regions of the 
wave interfere. 

Suppose that a beam is temporally, 
but not spatially, coherent. 
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The Michelson Interferometer 
and Spatial Fringes 

Suppose we misalign the mirrors  
so the beams cross at an angle  
when they recombine at the beam  
splitter.  And we won't scan the delay. 

If the input beam is a plane wave, the cross term becomes: 
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Effect of  intensity variations 

•  Variations in the detector signal are assumed 
to result from interference. 

•  Periodic variations in the input intensity can 
give an apparent additional interference term.  

•  Beam signals are susceptible to intensity 
variations from changes in  
–  bunch charge 
–  beam motion via an aperture 
–  bunch length (with CSR)  
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Effect of beam noise 

ALS IR beamline observed unwanted peaks in FTIR spectra. 
Effective spectrogram frequency changes with mirror speed.  
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Reduced beam noise 

Noise identified as synchrotron 
motion (Robinson mode). New 
master oscillator reduces motion 
and solves problem.   
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Example ALS FTIR Measurements 
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• Operates much like 
the M-I 
• Horizontally polarized 
input light is split into 
two orthogonal 45 deg 
polarizations.  
• Polarization is 
mirrored by roof 
mirrors, allowing 
transmission/reflection 
through splitter.  
• Analyzer recombines 
horz and vert 
polarizations and 
detects each signal.  



Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010 

FLASH Configuration 
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Example measurement 
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Comparison of M-P-I  and M-I 

•  Differential detection of two 
polarizations gives better S/N  

•  Detected intensity is equal to input 
intensity (past first polarizer) and 
provides good input signal 
normalization 
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Bunch Reconstruction 
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Time and Frequency domain 
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A THz beamline: BESSY 
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Martin-Puplett: Bessy 
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Bunch length via interferometer 
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Background subtraction 
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Anke Examples 
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Effect of beam splitter 
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Bunch length from Spectrum 
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Commercial bunch length monitors 

Radiabeam 
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Laboratory models 
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Grating spectrometers 

Use dispersion to 
separate wavelength 
components 
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Rotating grating spectrometer 

Flat mirrors 

Crystalline 
quartz 

T
G 

Off-axis 
Paraboloid 

Pyroelectric 
crystal 
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Rotation reflection grating 
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Some results (short wavelengths in vacuum) 
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Single shot spectrograph 

Reflection grating 

PD array 
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Correlations SASE - short wavelengths - I 
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Correlations SASE - short wavelengths - II 
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Direct grating spectrometer; Smith-
Purcell radiation 

Smith-Purcell radiation is interference of multiple diffraction 
radiators  



Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010 

Smith-Purcell spectrometer 


