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2.1 Hamiltonian of particle motion in transport channel

Hamiltonian of charged particle

H=cN m2e2 + (Py- gAyY + (Py- gAyY + (P;- gAY + qU

Vector potential A =A_>magn + Xb

is a combination of that of magnetic lenses, X)magn, and of that of the beam, 45,

Scalar potential U=Ue+ Up

is a combination of the scalar potential of the electrostatic focusing field, U,,, and of

the space charge potential of the beam, U,.



(a) Magnetic quadrupole and (b) electric quadrupole.

Vector - potential of an ideal magnetic quadrupole lens with gradient G,,.,, inside the
lens is given by

G
Az magn = mzagn (X2 _y2)

Electrostatic quadrupole with gradient G, creates the field with electrostatic potential

Uer = -Gzel(x2 -y%)

Transversal components of mechanical momentum are equal to that of canonical
momentum, p, = P,, p, = P,, and Hamiltonian can be written as:

K= c‘W/rnzcz+p)%+p)2,+(PZ-qAZ)2 +qU
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Focusing properties of combination of quadrupole lenses (from Humphries, 1999).



In the moving system of coordinates, particles are static, therefore, vector potential of

the beam equals to zero, Xl;zo. According to Lorentz transformations, components
of vector potential of the beam are converted into laboratory system of coordinates

as follow

A =0 Aw=0,  Aw=p

Total vector-potential of the structure is therefore

A=A

Z Z magn

U,

o |

Kinetic energy of the beam is typically much larger than the potential energy of
focusing elements and than the potential energy of the beam. Therefore, P, >> ¢A.,
and we can substitute canonical momentum by the mechanical momentum:

(Pz'qu)zzPZQ"ZPZqAZzpzz'zpquZ

It corresponds to the case when longitudinal particle motion is not affected by the
transverse motion, which is typical for beam transport.



Hamiltonian can be rewritten as

2 2+ 2
V(1+ Pi_y PETPY 24Pz 4 gyt quy
m-c m-c

The term in brackets is close to square of reduced particle energy: 1+ P ~ 7/2

Taking that term out of square root gives for Hamiltonian:

K=mc2y\/1+p py 2quA2Z + qUet + qUp
(yme)  (yme)

After expansion of small terms V1+x~1+ x/ 2, the Hamiltonian becomes:

2epd 2P (s magn+ P UY)
K=m:2)/+px by T e + qUer + qUp
2mcy 2mcy

Removing the constant mczyresults in the general form of Hamiltonian in a focusing
channel:

p py + Q(Uel - ﬁCAz magn) +4qg Ub

2my y?

H =

Both U,; and 4. ,.,.,» can be a combination of that of multipole lenses of an arbitrary
order.

2.



2.2 Single particle dynamics in a quadrupole focusing channel

Hamiltonian in quadrupole channel without space charge forces, is given by

_pitpy
2my

o (2 -y?)

+qG(2)

focusing field gradient is G(z) = G,(z) for electrostatic quadrupoles,

G(z) = BcGuagn(z) for magnetic quadrupoles.
Hamiltonian H = H, + H,:

2

H,=—Px +qG(Z)ﬁ
2my 2
2
)% 2
Hy=—"—-qG@)>-
2my
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Equations of motion in x - and y - directions are decoupled:

d—2x+ k(z) x=0
dz?

dzy

dz?

-k(z)y=0

where focusing function k(z) = ‘IG(Zz)
my B c?

Integration of equation of motion along the lens gives:

@ :(@)O -X k(Z) dZ

dz dz

J-o0

In the analogy with light optics, we can introduce the focal length of the lens f:
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Effect of a thin lens (focal length f) on a particle trajectory initially
parallel to the axis (from Humphries, 1999).
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Variation of gradient along the axis of a
quadrupole lens.

We will assume step function approximation of the field inside the lens, where actual
dependence of field gradient G(z) is substituted by an equivalent lens with constant
gradient G=G(0), equal to that in the center of lens. Length of the equivalent lens:

D=D,+R,

where D, is the length o the real lens, and R, is the distance from axis to pole tips

(radius of the aperture). For step function approximation of field gradient inside the
lens, the focal length is

1__49GD
f my(Be)



Differential equations with periodic coefficients are called Mathieu - Hill equations.
We will be looking for a solution in the form:

x(z) = \/; 0:(2) cosD(2)

where V3. is a constant, o,(z) is the z - dependent amplitude, and @,(z) is the z -
dependent phase of the solution. Substitution of the expected solution gives:

12 " Co
(O-x - O-x qjx + ko-x) COS@X ‘(Gx@x + zo-xd)x) Slnd)x =O

To solve this equation, we can put independently to zero both 'cosine' and 'sine'
parts:

n

2
Ox - Ox @x +k0-x=0

0D, + 20D, =0

Multiplying the second equation by g, it can be written as ((Déof)vz(), which gives
@02 = const. Selecting arbitrary value of constant as 1, finally get for second
equation:
o, =L
o7

With that condition, 'cosine' part of equation is written as

|
o,——+k(z)0,=0 (2.43)

X
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If function k(z) is a periodic function of z k(z+ D=k(2)

there is a unique periodic solution o(z+ D=0(2)

which can be found adjusting o(z) in the way that solution after one period, oz + L),
coincides with o(z).

Let us determine the physical meaning of the constant >,. Differentiation of
x(z) = Vs, 0(2) cosD(z) gives:

x=Va (O, cosDy - Oy Dy sin®y) = Vo, (Ox cosDy - M} : (2.46)

Ox

On the other hand, from the same equation it follows, that:

cos®y=—* | (2.47)
3y Ox
Substitution gives: X =0, X 3, SinPx (2.48)
Ox Ox
Rearranging of the equation (2.48) results in: 3, sin’®, =(x' Ox - Ox x)z_ (2.49)

Taking into account Eq. (2.47), let us express the left side of the equation (2.49),
3y Sinz@x=3x(1—C052€Dx), as ,
e sin Dy =3, - X (2.50)

2. o2
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Finally, the following equation is valid: (x'0x - Oy X)° + xi =3J. (2.51)
Ox

Equation describes ellipe with constant area, which is called Courant-Snyder invariant.

Transformation of Courant-Snyder invariant along the channel and subsequent positions of a
particle in phase space.



General form of Mathieu - Hill equation

Mathieu - Hill equation

d? |
d—f+ 7 (a—2qsin27)x =0
T

describes particle trajectories in alternative-focusing channel if focusing gradients are
sinusoidal functions of coordinate. Unstable solutions are around a = n?, or when average
frequency of oscillator is close to half-integer value of that of driving force.
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(Shaded) stable regions ot the solutions of the
Mathieu equation (McLachlan, 1947).



Beam envelopes

Envelope of the beam, R,(z), corresponds to the maximum value of cos®,(z) = 1 in Eq.(2.47)
within the beam:

R(z) = max {x(2)} = \ 3, 0(2)- (2.52)

Slope of the beam envelope is, therefore, given by

R (2) =13 0:2) (2.53)
Taking into account previously introduced notations
o=Vp
oc'=-«&

B

beam envelope and slope of beam envelope are given by

R)C = 3)6 ﬁx
dR, NN
dz N B,



Substitution of expression for gy(z)
Ry (2)

0x(2) = (2.54)
(BN
into Eq. (2.43) gives us the equation for beam envelope:
2
R: -2 + K2) R: =0, (2.55)
R}
Beam envelope equations without space charge forces are:
2
R_x - 3)( + kx(Z)Rx =0
{ "
32 (2.56)
Ry - +ky(z)Ry =0
R3
)7



2.3. Averaged particle trajectories

G(7)

b | -

>Bam
]

Field gradient G(7), particle trajectory x(z), and beam envelope R.(7)

as functions of longitudinal coordinate 7 = z/L in an alternating-
gradient focusing structure.
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Consider one-dimensional particle motion in the combination of constant field

U(x) and fast oscillating field
f(x,t)= f(x)coswt + f,(x)sin wt

Fast oscillations means that frequency @ >>l, where T is the time period for

particle motion in the constant field U only. Equation of particle motion:

d’x v + f, cost + f, sin wt
m =—
> dx ’

Let us express expected solution is a combination of slow variable X(?) and fast

oscillation &@):
x(t)= X(1)+&()

where  |&E(1)| << | X (2)]

dU

Fields can be expressed as: Ux)=U(X)+ d_X S

F)= FOO)+ %6

19



Substitution of the expected solution into equation of motion gives:

. dU L dU
mX+m‘g':—dX—§d .

+ f(X, t)+<§

For fast oscillating term: mﬁ = f(X,t)

After integration: &= / .
ma
Let us average all terms over time, where averaging means mean value over period T = %r
17
<g(t)>=—[ gyt

Iy

dU d’U df

<mX>+<méE>=—<—>-< >S+< (X, H)>+<E—>
B <> - BT < fX) >+ < B
Average value of &(t) at the period of T _2T g zero, while function X(?) is changing slowly

during that time. Taking into account that

<X>=X <E>=0



dU d dU 1 d
If 3 _f>

dX dX dX mo dX
df 1 df ?
Taking into account that <f d_X >= 5 < d_X >

df’ 1 df? df?
<L>:_(f1 N If,
dX 2 dX dX

)

: : o . du
equation for slow particle motion is mX = —
dX
1
where effective potential is U,=U+ —( P+ £
ma



Let us apply averaging method to quadrupole channel. Single particle equations of
motion in quadrupole channel is

d?x = 9_G(z)x, (2.64)
ez MY ©

where z = fct, focusing gradient G(z) = G,(z) for electrostatic quadrupole, and
G(z) = BcG,uen(z) for magnetic quadrupole.
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(Solid line) typical particle trajectory and (dashed line) the sine approximation to
that trajectory.
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Consider periodic FD structure of quadrupole lenses with length of D = L/2, and field
gradient in each lens G,. In FD structure, focusing-defocusing lenses follow each other
without any gap. Let us expand focusing function G(z) in Fourier series:

4G . mz. 1 . 3mz. 1 . Srz
G(z)=—~ —)+ —sin(—— )+ —sin(——) + ...
(2) . [sin( D) 3Sln( 5 ) 5Sln( 5 )+ ..
x direction I I l
| | NIVA A A
F D F D F /
&
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FD focusing structure and approximation of field gradient.



Let us keep only first term:

Equation of particle motion in fast oscillating field

can be substituted by slow motion in an effective potential

Equation for slow particle motion

Let us introduce new variable

2.

tBc

T=—"—
L

d’ 4G
m—f = xg 2 sin(ﬁﬁc 1)
dt Yy T D
dZ
m;f: £ (x)sinor
- ﬁz — 1 g 4G0D 2X2
eﬂ_4mw2_4m( 5.
Yy ©°Bc
mX = — Wy
7). 4
d’X 1 q4G,D_,
= () X
dt 2m” 'y wPc
d’X
e +Q2X =0
where for FD structure L =2D
24



Equation of motion in new variables 17 + U, X=0
Frequency of smoothed transverse oscillations q 4\/§G0 D?
in the scale of the period of focusing structure M, = ym 12 (Be)

N

N )
"= 1 g GD’
* I3 ym (Be)

Taking into account, that

Frequency can be written as

Hamiltonian of averaged particle motion o X2 4+Y? o2 X2 4+Y?
= +
2 r
_, Be
Frequency of smoothed transverse oscillations Q =u, 7



Averaged equations of motion can be written as

X 4k x=0, (2.86)
dz?
d’Y 4k y=0, (2.87)
dz?
where & is the square of averaged frequency of transverse oscillations in z-scale:
_ 2
k=(Moy - (2.88)
L

G, denotes gradient of the field of electrostatic quadrupole. As far as gradient of magnetic
quadrupole 1s equivalent to that of electrostatic quadrupole via G, =fc G, the frequency of
smoothed particle oscillations in magnetostatic quadrupole structure is

2
=4/ L 46n D" (2.89)
3 my Be



Let us estimate amplitude of small fast oscillations & . From averaging method it follows
that f

where f=x=

' - =—X 2 sin t
Solution for FD structure: i 7 (o) ( D )
Amplitude of small fast oscillations in FD structure: Cimas _ 4‘/§ u
X o

For typical values of y,=7/3...7/2 in transport channels, this ratio is of the order of Enar | X =

0.2....0.3. In FODO structure, quadrupole lenses are separated by drift spaces, and the
frequency of smoothed oscillations is given by

>
to=L 4/1-4D qGm D™ (2.95)
2D 3L mypfc

For D= L/2 Eq.(2.95) coincides with Eq. (2.89).
2. 27



2.4. Kapckinsky-Vladimirsky (KV) beam envelope equations

Consider now dynamics of the beam in focusing quadrupole channel including space

charge forces of the beam. All particles move with the same longitudinal velocity Bc, and
the longitudinal space charge forces are equal to zero. Hamiltonian of particle motion in

qudrupole channel with space charge is given by

2+ 2
H=PETEY G0 2y g U (2.96)
2mvy 2 4

Assume that transverse space charge forces are linear functions of coordinates.
Correctness of this assumption will be checked later. Linear equation of motion are

A 4 (z) y=0

x(2) Y=V, 2.97
dz? (297
dzy !

ky(z) y=0
12 +ky(z) y=0 (2.98)

where ky(z), ky(z) are modified focusing strengths including space charge. Equations of
motion (2.97), (2.98) are linear, therefore, invariant of Courant-Snyder, is valid in both
planes (x, x'), (v, y') for space charge regime as well.

28



Self-consistent solution can be obtained when distribution function is expressed as a function
of integrals of motion. Due to equations of motion in linear field are uncoupled, Courant-
Snyder invariants are conserved at every phase plane:

' ' 2
(x'or- oy x) + A =3,

2

(o

>
—p <

(x'0x- Ox )* + xoy (2.99)
o7
| ) y2
0003+ 2y =5, (2.100)
;

2

o)

Courant-Snyder invariants.

| D2
(yoy-0yy) y—2=3}

29



Values of 3x, 3y are areas of ellipses at phase planes (beam emittances), which are the
constants of motion during beam transport. Let us express beam distribution function as a

function of values 3x, 3y:
f:f(,5(3x+3y-F0) (2.101)

where f,, F,, v are constants defined below and 6 (&) is the Dirac delta -function:

0’

5 ={ go’ 5;% , (2.102)
b 0, X<a, X>b,
(&0 (E-X) dE = { 12f(X), X=a or X=0b, (2.103)
Ja AX), a<X<b

In the selected distribution, Eq. (2.101), particles are placed at the surface of four-
dimensional ellipsoid:

: , P22 D2 y?
F(x,x,y,y )=(X0x- 0xx) +)C_2+ (y'o-y - O-)y) +y—2 -F, =0, (2104)
Ox Oy



Projections of beam distribution on (x,y)

Let us find boundary of projection of the surface F(x,x,y,y)=0 on the plane (x, y).
Boundary of projection of the four-dimensional surface F(x,x,y,y )=0 on arbitrary two-
dimensional plane is obtained by equating to zero the partial derivatives of function
F(x,x,y,y) over the rest of variables:

oF(x, X, y, y) 0 oF (x, X, y, y) _

0, 2.105
ox' dy’ ( )

and substitution of the solutions of equations (2.105) into equation F(x, x ,y,y)=0. Actually,
for every fixed value of x, the point at the boundary of projection corresponds to maximum
possible value of y:

N _yg, W o, (2.106)
0x dy

or, according to differentiation of implicit functions,

IF IF
dy __9x dy __dy (2.107)
xl a_F’ yl a_F’

dy dy

which coincides with Eq. (2.105).
2.
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Partial derivatives over variables x', y' in equation of four-dimensional ellipsoid are:

oF

=2 (x0x- owx)0ox =0, (2.108)
ox'
jF =2 (y'0y - G)y) 0y =0 . (2.109)
y

Substitution of solution of equations dF/0x =0, dF/dy'=0 into equation F(x, x ,y,y ) =0 gives
the expression for the boundary of particle projection on plane (x, y):

-%+%:m (2.110)
or Oy

Therefore, particles of beam distribution, Eq. (2.101), are surrounded by ellipse, Eq.
(2.110),with semi-axes R, = o\ F, , R, =0,VF, and the area of ellipse S=7 0x OyFo,.

y
A

N
N

Boundary of projection of KV beam on (x,y).




Space charge density of the beam

Space charge density of the beam is an integral of distribution function over the rest variables
x', y"

' ' 2 '
P(x,y)zfol I H{(x Oy - O'xx)2+ % +(y oy - O'yy)2+ y_2 -F,Ydx'dy'. (2.111)
J-o ) -0 Ox Gy

To find particle density, Eq.(2.111), let us make substitution of the new variables, ¢, €2, for
old variables, x', y', according to transformation:

(XOx - Ox D=0 cosQ2 , (2.112)

('oy - 0')" Y=o sin2 (2.113)

Inverse transformation is

x' = O_L (o cosQ + x0y) » (2.114)
y':L(a sinQ + y()')‘,). (2115)
Oy
o o
- : | dor 082 o do dQ
Phase-space element is transformed according to: dx dy = dodQ =*x4dss () 116)
9y Iy oo
da 912




With introduced transformation, Egs. (2.112), (2.113), the space charge density of the beam is

2w [
2
p(x, y)=Jv_I I @2 +*+ 2" _F,)odadQ=
- O-y Jo JOo O-xz O-}? f oo 2 )
T 0 2 X Yy _ 2
— T(jy-!é(a +G—£+? Fo) dOC (2117)

Y

Let us use one more transformation: o’ =u, (2.118)

2
x> Y F=-u, (2.119)

o: oy

With new transformation, space charge density is  p(x, y=fo |  S@-uo)du. (2.120)
O: Oy

J O

As far as the value of u, is always positive inside the ellipse, Eq. (2.110), the integral over
delta function in Eq. (2.120) is equal to unity and space charge density is equal to constant:

p(x, y)%”(; =po- (2.121)
X Yy

KV distribution gives projection on plane (x, y) as uniformly populated ellipse, Eq. (2.110).

2.
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Space charge density of elliptical beam with current /, semi-axis R,, R, and longitudinal
velocity Bis

e ;R (2.122)
cRR,y

Projection of KV beam on (x,y).
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Projections of beam distribution on (x,x’)

Consider particle distribution at phase plane (x, x'). Follow the method described above and
put the following derivatives over variables y, y' to zero

OF(x,x',y,y) _ 0 OF(x, X, y, ) _

0. (2.123)
dy dy’

Substitution of the solution of Egs. (2.123) into Eq. (2.101) gives us the boundary of particle
distribution at phase plane (x, x'):

2 2
(XOx - Ox X) + x—2=F0 , (2.124)
Ox

which is also the ellipse. To find an area of ellipse, let us change the variables:

X =rycos 0

{ ox (2.125)

XOyp-X Oy=rysinG
Transformation, Eq. (2.125), in explicit form is

X=ry Oy cOS O

, . (2.126)
X =ryOxcosO -T2 s5in

2. Ox 36



Phase space element is transformed analogously to Eq. (2.116) as
ddelzrx dry db . (2127)

With the new variables, equation for the ellipse boundary, Eq. (2.124), is 7Z =F,. Area of the
ellipse, occupied by the particles, is:
2r
2

10O

.FO
rx drx d6=7TF0' (2.128)

JO

Therefore, parameter F, =3, is equal to beam emittance at phase plane (x, x').

Boundary of KV beam projection on (x,x°).



Distribution of particles at phase plane, px (x,x), is obtained via integration of distribution
function, Eq. (2.101), over remaining variables y, y"

P (xx)=fo

. 1 1 2 1
I S((X 0, - o) + % L0y -Cy) y—2 Fo\ddy', (2.129)
-0 -0 o.x O-y

Let us make transformation from variables y, y' to new variables 7, y in Eq. (2.129):

, .2
(yoy-0yy) =T cosy (2.130)
y? .
= T siny (2.131)
Oy

Phase space element dy dy ' is transformed analogously to (2.116):

dydy' =TdT dy . (2.132)

Integration of Eq. (2.129) gives distribution in phase plane py(x, X) =py(?):

ro 271
] S@2+T?-F,) TdT dy =nf,. (2.133)
o

Jo

prd)=mfo

Integral, Eq. (2.133), is evaluated in the same way as that in Eq. (2.117). Therefore,
distribution of particles at phase plane (x, x') is uniform inside the ellipse, Eq. (2.124).

2.
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Analogously, distribution of particles in phase plane (y, y') is uniform inside the ellipse
: C 2 y?
(v 0y -6yy) +_2=Fo. (2.134)
Oy

Finally, KV distribution provides two-dimensional elliptical projections at every pair of
phase-space coordinates with uniform particle distribution within each ellipse.

21073

21073

410-3
11073 110

~ >
< 0 0
103 -1-1078
0103 . -2:1078 _
X y
Projection of KV beam on (x, x) Projection of KV beam on (y, y)
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Potential of the beam, U,, is to be found from Poisson’s equation:

iU , ©°Up __p(2)

o2 ay e, (2.136)
where space charge density
2
I x>, <y
MBeRRy R R}
pR) = o (2.137)
0, x4 Y5
R? R}

Solution of Eq. (2.136) for potential of elliptical charged cylinder with current / and beam
envelopes R, R, is:

R: -R,
Us(x, y, 9)=- I W2 4+y2- 2 (32 y )] (2.138)
Areo BcRiRy R +R,
and field components E = -gradU, are:
Ey = L x 2.139
e, fcRy(Re + Ry) ( )
Ey = [ v (2.140)

~ e,BcRy(R +Ry)

Uniformly populated beam with elliptical cross section provides linear space charge forces.
Therefore, initial suggestion about linearity of particle equations of motion in presence of
space charge forces is correct.

2. 40



Hamiltonian of particle motion within the beam with elliptical cross section is:

24 p2 2_y2 -R,
H="T L G BT a! [y? - (2y2y)

2my 2 4re,y > BeRyR, Ry + Ry

Equations of particle motion in presence of space charge forces are:

d’x 1 [,(2) - 41 1x=0
dz? 1. B’ 7 Re(R: +Ry) ’
dZ

2t k() ——4 1y=0
dz 1. B°7°Ry(R: + Ry)

(2.141)

(2.142)

(2.143)

Egs. (2.142), (2.143) are similar to that \githout space charge forces, where instead of

functions kx(z), ky(2) the modified functions kx(z), 1?) (z) are used:

k2 = k@) - ———H ,
I B’7’R(R: + Ry)

@) =k@) - 4 .
I By Ry(Rx + Ry)

(2.144)

(2.145)
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Substitution of expressions (2.144), (2.145) instead of k.(z), ky(z) into envelope equations
(2.56), (2.57) gives us the KV envelope equations for the beam with space charge forces:

2 2
CRe vy @R =0 (2.146)
d*R, >:
- @R -4 =0, (2.147)

Equations (2.146), (2.147) are non-linear differential equations of the second order. They
can be formally derived from Hamiltonian:

2 V2
: ) 2 2 2
H=B) LB R @R s opun L2 (g 14
2 2 2 2 R:+Ry  2R? 2R?

where parameter P’ is called the generalized perveance

p? = 27§ . (2.149)
I B 73
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In general case, solution of the set of envelope equations, Eqgs. (2.146), (2.147) are non-
periodic functions, which corresponds to envelopes of unmatched beam. However, if
functions k..(z), k,(z) are periodic, there is a periodic solution of envelope equations.
Envelope equations can be solved numerically at the p eriod of structure via varying the initial

conditions R.(0),Ry(0),R,(0),Ry(0) unless the solution at the end of period coinsides with
initial conditions R,(L)=Ry(0), Rx(L)=Ry(0), Ry(L)=Ry(0), Ry(L)=Ry(0). Again, as in case of
beam with negligible current, this beam is called the matched beam. It occupies the smallest
fraction of aperture of the channel.

xAF|D|F |D|F|D|F|D|F]|D
e \\_\_‘ ' ‘
' ~N
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The envelope Of an unmatched Effective beam emittance_
beam 1n a quadrupole channel.
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Transport of a matched beam in a quadrupole channel. The elliptical cross sections are those of
the beam in the center of focusing and defocusing lenses (from FOM-MEQUALAC Report,

1986).
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Averaged beam envelopes

For focusing channels, where phase advance per period is small, u,/27x <<1I, one can use
smooth approximation to beam envelopes. Analogously to particle trajectories in smoothed
approximation, solution for beam envelopes can be represented as:

R(2)=R: () + &), (2.150)
Ry =R, () + &), (2.151)

where R. (z), Ry (z) are smoothed envelopes, and &.(z), ¢(z) are small fast oscillating
functions. The following approximations can be used:

1ol 38y (2.152)
R R’ R;
I~ 1 1 g1 ¢
=~ — — — — X _ _ Y. (2153)
Ry + Ry R, + Ry (Rx + Ry)z (Rx + Ry)2



Egs. (2.146), (2.147) formally can be considered as single body oscillations in the alternating-

gradient field with addition of potential function describing “emittance” and “current” terms.
Averaged values of that terms in the envelope equations are

2 2
3_x(1_3§_X)=9_x, (2.154)

- 2)=— (2.155)
R)? Ry Rj
2P? 2P? 2P? _ 2pP?
- Cx - Sy (2.156)

Re+R R.+R) (Re+RY  Re+R

The resulting field is a combination of effective field and potential field. Finally, envelope

equations in smoothed approximation are

2D 2 2
de_Bx +('LL0)RX' 4_] — =0
dz* IE? L I /3373(Rx +Ry)
d2l€)’ 33 Ho 2 4]
, T Ry =0, (2.158)
2. dz= Ry I B7 R+ Ry)

(2.157)



Each of equations (2.157), (2.158) contain two defocusing terms: one is proportional to
square of beam emittance and another one is proportional to beam current. Consider beam

with the values of envelopes close to each other, Ry =R, = R, and with equal emittances in

both planes 3, =3, =¢/(By). Ratio of that two terms gives us estimation, which factor
dominates in beam transport:

b=2 IR*
(By) Ic £2°

Transport with & >> 1 corresponds to space-charge dominated regime, while b << 1
corresponds to emittance- dominated regime. The value of b is the ratio of beam brightness,

(2.159)

B=1/¢€?, to normalization value of I./R?>. It is reasonable to call parameter b the
dimensionless beam brightness. Additional factor of 2/ (By) indicates that significance of the

space charge forces drops with increasing of beam energy. Beam with high value of beam
brightness, B, can be both in space charge dominated regime, and in emittance-dominated

regime, depending on particles energy.



2.5. Acceptance of the channel

In the limit of negligible current, I = 0, KV envelope equations are decoupled. Consider

matched beam, R, =R, =0, with equal emittances in both planes 3, =3, =3:

2 2
_37 4 (Mo -
=+ )R =0, (2.190)
R:
237 4 HoyR =
=+ Ry =0 (2.191)
Ry

Equations (2.190), (2.191) have the common solution:

R:=3L (2.192)
Mo



It defines the averaged beam radius in quadrupole channel for the beam with negligible

space charge forces. Acceptance of the channel, A, 1s the maximum emittance of the
beam, which could be transported through the channel without beam losses. In a

quadrupole channel, beam envelopes are oscillating functions, Egs. (2.150), (2.151).

Aperture, a, is reached by particles with R, + Enax =a. From Eq. (2.192), acceptance of

the channel in smooth approximation is

A= az,uo
L (1+ Snax )

where 6, = £,../R,. The value of §,

max

in FD channel was estimated as

Smax = 4@ Ho

T

Normalized acceptance of the channels: €, = PBrA

For a matched beam, the maximum and minimum beam envelopes are

Rmax = R() (1 + 6max)

R,.,=R(1-0,.)

(2.193)

(2.194)

(2.195)

49



2.6.a. Beam radius in space-charge dominated regime

When space charge forces are not negligible, smoothed KV equations for matched beam,
R, =R, =0,are

2 2
2R AL <0 (2.196)
R: I. By’ R +Ry)

2 2
_3_+(&) Ry _ 4] =0

~ — 2.197
RS L L B3R+ Ry) (2.197)

Egs. (2.196), (2.197), have common solution R« =§y = R defined by:

2 2
37 4 Moy R _Lz().

Ry L LB y°R (2.198)
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Combination of Eq. (2.192) and Eq. (2.198) gives:

4 4
R_R()_ 21R() =O.

2.199
R’ I.By3R>* ( )

From the last equation, the averaged beam radius in space — charge regime is expressed via
beam radius with negligible space charge forces as

R:R(A/b0+ V1+b2 . (2.200)

where b, 1s the space charge parameter:

2
byp=-1 1Ro (2.201)
(By) I g’

Equation (2.201) indicates that matched beam radius increases with beam current.

In averaging method, small function ¢ is defined by fast oscillating term only. Function
Omax = Emax / R dO€s not depend on beam current and beam emittance, therefore

Rmax = R (1 + 5max)

R =R (1-0,,)



2.6.b. Transverse oscillation frequency in space-charge dominated regime

Eqgs. (2.142), (2.143) define particle trajectory in quadrupole channel in presence of space
charge field of the uniformly populated beam with elliptical cross-section. Taking

Ry =Ry = R, equation for single particle trajectory in smoothed approximation is

2
d’X +[(.u0) 21 1X=0

(2.202)
d 72 L B’y3R?
and similar for y - direction. Expression (2.202) can be re-written as
d’X +* 2X =0
2 (L) : (2.203)

where U is the averaged betatron frequency in presence of space charge forces, which is also

called the depressed betaron tune:
21 L,

1.(By)’ ®

Eq. (2.204) indicates that space charge forces result in depression of transverse oscillations.
Substitution of expression for beam radius in space charge dominated regime, Eq. (2.200),

and expression for space charge parameter, Eq. (2.201), into Eq. (2.204) gives for u

w=u,V1+ bo2 - by) - (2.205)



Transverse oscillation frequency drops with increase of beam current, but remains non-zero.
Therefore, beam stability can be provided at any value of beam current. However, increase of
beam current requires increase of aperture of the channel, and stability of transverse

oscillations can be provided at arbitrary high value of beam current, but in the channel with
infinitely large aperture.

R/R, /

win,

Averaged beam radius and transverse oscillation frequency as functions of

space charge parameter b,



Connection between

Let us rewrite equation (2.204):

Substitute beam emittance:

Connection between phase advance

per period M., U, and dimensionless
space charge parameter b

M, Hy, D

o =U*+

L.,
L. R

2_ 21 2
BRI+ o ()

21 R,
13y (e

g =P+
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2.7. Beam current limit

Maximum beam current corresponds to the beam, which fills in all available aperture,
a=R(1 + Onax), or, taking into account Egs. (2.192), (2.200):

a=1 l—LVbﬁ V1452 (1+ Gax) - (2.206)

For b,= 0, equation (2.206) describes the beam with maximum possible emittance in the
channel, equal to acceptance of the channel, > = A:

a=1AL 1+ ) (2.207)

0

Ratio of last two equations gives us the relationship between acceptance of the channel and
the maximum emittance of the beam with non-zero current, which fills in all aperture of the
channel:

5= A or 3=A(1+b-b). (2.208)

bo + V1+b3,

Substitution of the expression for space charge parameter b,, Eq. (2.201), into Eq. (2.208)
gives for maximum transported beam current:

Inar =1 (ByYeanto (1- €2 (2.209)
2 L £
Approximation of the value of limited beam current by Eq. (2.209) becomes better with

increase of beam current, because in this case the transverse oscillation frequency u/2mw <<1
drops and smooth approximation is improved.

2.
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2.8. Dynamics in longitudinal magnetic field

Consider the beam propagating in a focusing channel with longitudinal magnetic field B, =
B(z). This field can be created by solenoids or permanent magnets. Like in quadrupole
channel, we assume that all particles have the same value of longitudinal velocity S, which is
not affected by variation of magnetic field. Vector potential has only azimuthal field

component:
"r

Ag magn=1— an'l”'d}"=B—r. (2.210)
2rr 2
JO
Components of vector potential in Cartesian coordinates are:
Ax magn ='A9 magn Sin9 ='B';—}, (2211)
Ay magn =Ag magn cosO0= ng . (2212)

Hamiltonian of particle motion in presence of longitudinal magnetic field is given by

K=c \/ m2e2+ (Py + qB;)Z +(Py- qB;)Z (P, gy +qU). (2213)

Taking into account that, P,>>¢q BU, /c and repeating all derivations, resulted in Eq. (2.27),
the Hamiltonian becomes
Y2 - gB X)?
(e a2 Py,
H= + + : (2.214)
2. 56




Typical particle trajectories in magnetic field with beam space charge
(from G. Brewer, 1967).
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Phase space trajectories of particles in

magnetic field (Kapchinsky, 1966).
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In longitudinal magnetic field, the canonical - conjugate variables are position and canonical
momentum (x, P,), (y, P,), where

P, :px—qB)—), (2.215)
2

Py=py+¢qB*. (2.216)
2

Emittances of the beam have to be defined at the phase planes of canonical variables (x, P,),
(y, P,), in contrast with quadrupole channel, where canonical variables are (x, p,), (v, p,).
Hamiltonian, Eq. (2.214), contains cross term (xP, - yP,). Equations of motion in
longitudinal magnetic field are coupled: equation in x -direction depends on P, and that in y -
direction depend on P,. To avoid coupling, let us make a canonical transformation to new

variables ;x, 3;, }/;y according to generating function
F2 (X,Px,y,Py 1) =(xPx +y Py)coswrt+ (xPy -y Px) sinwrt (2.217)

where @; is the Larmor frequency, Eq. (1.94). Transformation from old variables to new
variables are given by

X= xcos WLt-ysin @t , (2.218)
?:xsin WLt+ ycos OLT (2.219)
i;x =Py cos wLt-Py sinoLt (2.220)
, }/’\y =Py cos WpLt+ Pxsin Lt (2,225}3)



oF

New Hamiltonian, H = H + °~ 2, is given by
ot
P. +P. 22452
~ Iy y 2(x +y)
H= oy}t Yy g U (2.222)
2m}/ ,)/2

Hamiltonian, Eq. (2.222), 1s simil

ar to that for quadrupole channel, Eq. (2.96). Analysis

resulted in KV envelope equations, can be applied here as well. Because of the axial
symmetry of the beam propagating in magnetic field, there will be only one envelope
equation instead of two in quadrupole channel. Repeating the same derivations, which
resulted in Egs. (2.146), (2.147), we can obtain KV envelope equation for round beam in

Larmor frame:

R

where

~2
> +k@R-—2L =0 2223
R I.B7°R (2229
2
ko) = (4B (2.224)

2me By
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In KV distribution, particles occupy surface of four-dimensional ellipsoid:

A AAA! ~2 AN /\'2 ~2 AN /\'2
F,x,y,y )=YoX +200xX X +Yoy + 200y y +By -Fo=0. (2.225)

Here parameters 3, and §, are ellipse parameters, not the particle velocity and energy.
Projections of the distribution at every phase plane are uniformly populated ellipses:

A AN /\'2 A
yoxz +200xx +Bx =3 (2.226)
/\2 A AN /\'2 N
Yoy +20a0yy +By =3 (2.227)
where Y= _Px (2.228)
my B.c
A ﬁy
y = (2.229)
myf: ¢



Substitution of Egs. (2.218) - (2.221) into Eq. (2.225) gives for the boundary of the four-
dimensional ellipsoid occupied by the beam in laboratory frame:

Ft,x'y,y") = Yox®+ 200x X' +Bo X 470y 2+ 200y y +Bo v - F, =0 (2.230)

Boundaries of projections of the four-dimensional beam ellipsoid and of their projections at
phase planes are the same both in laboratory frame, and in Larmor frame. From Eqgs. (2.218) -

(2.221), transformation of phase space elements and area element in real space are

dxdP.=dxdP; (2.231)
dy d Py =dy dPy, (2.232)
dxdy =dxdy. (2.233)

Therefore, distribution of particles within projections in both frames are also the same, and
uniformly populated ellipses in Larmor frame remain the uniformly populated in laboratory

frame. Finally, beam emittance and beam radius are the same in both frames, 3=3, R= R.
Therefore, we can write KV envelope equation in the laboratory frame as well:

' 2
R -2 +k@R-—21L -0, (2.234)
R’ I.B’yR



Beam equilibrium in magnetic field

Important case is the beam transport in a constant magnetic field B(z) = B, which is a uniform
focusing structure. Matched beam corresponds to transport with constant envelope, R* =0:

2
)R -—2L =0 (2.235)

where R, is the equilibrium beam radius. Acceptance of the channel, 4, and normalized
acceptance, &, are obtained from Eq. (2.235) taking the value of beam current 7 = 0, and
equilibrium beam radius equal to aperture of the channel, R, = a:

A =a)L6[§C_2, (2.236)
g, =1Ba’ (2.237)
2mc

Let us note, that normalize acceptance of the channel with constant longitudinal magnetic
field is energy - independent. In the equilibrium, beam envelope does not perform any
oscillations and beam occupies the smallest possible area. From Eq. (2.235), the required
magnetic field to keep in equilibrium the beam with radius R,, emittance 3, and current /, is

2
p=2meBy | [ 5y, 21 (2.238)
qRe Re IC B3,}/3




Maximum transport beam current in uniform magnetic field

Taking R, = a, and expressing explicitly the value of beam current from the last equation
gives for maximum transported beam current:

2
b =2 B) <§B—“> (1-2—22» (2.239)
mc

Equation (2.239) can be re-written as

Inas =5 (By) ERY’(1- £ (2.240)
2 Ech

[£0,3< A

Matched beam in uniform magnetic field for zero current

mode, and for space charge dominated mode. 64



Brillouin flow

Another important specific case is the equilibrium of the beam with negligible emittance > =

0, which 1s called the Brillouin flow:
BR.=2y2mc |/ I (2.241)
q By I.

As far as beam with zero emittance cannot be achieved when particle source is inserted in
magnetic field, Brillouin flow is realized for the beam born outside magnetic field. If particles
are born with zero beam emittance, the transverse mechanical momentum of all particles at

the source are equal to zero. Due to conservation of azimuthal canonical particle momentum,
all particles obtain azimuthal rotation after entering magnetic field

po=-gBT . or 0=-wr . (2.242)

Realistic beams usually are not in equilibrium with focusing magnetic field. Consider small
deviation of beam radius from equilibrium condition, R = R, + &, where £<< R,. In this case

1.1(.5), (2.243)
R R. R

LzLa-:sﬁ . (2.244)
R R} R,
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Then, envelope equation becomes

d*é  ? &\ or? 21 &\ _
€5 135+ (@Y (R+&)-— 2L (1->)=0
P PR ¢ LByR R . (2.245)

Taking into account equilibrium condition, Eq (2.235), the equation for small deviation of the
beam from equilibrium is

2 2 2
46 33" gy @ye s 21 o (2.246)
dz> R} e 1. B y3R2

Beam equilibrium condition, Eq. (2.235), can be written as

2 2
=@y 1 (2.247)
R} PBc 140
where b is the dimensionless beam brightness, Eq. (2.159)
RZ
b =%IL—2 : (2.248)
(Byy >
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Last term in Eq. (2.246) can be also expressed through parameter b:

21 §=ib§
LByR? R}

Substitution of Egs. (2.247), (2.249) into Eq. (2.246) gives for small derivation:

e 2@ 24y £ 20

dz? Bc 1+b

Solution of Eq. (2.250) can be written as

=Go 2 M ﬂ '}/o-
S 56‘08(’\/ (1+b)ﬁc 7+ W)

(2.249)

(2.250)

(2.251)

From Eq. (2.251) it follows that in emittance-dominated regime, b — 0, envelope oscillates

with double Larmor frequency:

E=&,cosQOL 7+ 9,
Be

(2.252)

while in space-charge dominated regime, b — %, frequency of oscillation is V2 smaller:

E=¢&, cos (2@L ;4 ),
Bec

(2.253)
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2.9. Beam transport in periodic structure of axial-symmetric lenses

Many low energy beam transport lines utilize short axial-symmetric focusing lenses (both
magnetic and electrostatic), separated by drift distance. They can be considered as a
combination of thin lenses with long drift spaces. Consider such a system where lenses are
placed by the distance S from each other.

Particle trajectory and matched beam envelope
in a periodic thin lens array (Reiser, 1994).
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Let us assume, that P,= 0, which corresponds to initial particle trajectory, parallel to the
axis. Paraxial equation is then given by

. B. 2
Fr (2822 =0. (2.254)
2my

In analogy with quadrupole lenses, we can introduce the focal length of short magnetic lens
by integration of Eq. (2.254):

el
Lo 2 " | B
o= c@dz 2.255
f2meBy |, ( )
Magnetic field of a short lens at the axis can be approximated by the Glazer model:
Bmax
B_ = (2.256)
2
1+(2—)
D
Integration of expression, Eq. (2.255), assuming field distribution, Eq. (2.256), gives for focal
length:
1 /4 qg 5 5
—=—(—")B_D (2.257)
f 16 mcPy

In contrast with quadrupole lens, the short magnetic lens always focuses particles.
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Between focusing elements, beam dynamics 1s described by KV equation in drift space:

2 2 2
‘2’5 2 - Ln=0, (2.258)
Z R
ax
! ! i Adz
I | | |
| S
\4]_/
: |
| »
; l |
| : ] z T
’ |
|
I (
! |
’ | 7 2 51' \ |
a b

Drift of the beam with finite value of phase space (a)
beam envelope, (b) phase space deformation.
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Envelope Hamiltonian, Eq. (2.148) without external focusing is a constant of motion,
therefore:

2
@Ry = @Ry’ 1 (2y'(1-Roy 4 pYp(Ry (2.259)
& & o R, R’ R,

Let us put in equation (2.259) the value of parameter P =0 and consider the beam with
negligible current, but with finite value of beam emittance. Evolution of beam radius R along

drift space z as a function of initial radius R, and slope of the envelope R, is given by
integration of Eq. (2.259):

R,/ (q+Re .y 4 (322
R \/ (+522) (R(?) 2 (2.260)

From the symmetry point of view it is clear, that matched beam has a minimum size, or waist,
R,.;, = R, in the middle point of the drift space between lenses, and maximum size R,,,, inside

focusing elements. At the waist point, R, =0. Therefore from Eq. (2.260),

Bmax 2 =1 4 (%)2 (%)2 , (2.261)

min R:.
min



Let us define acceptance of the channel under given constraint values R,,,,, S. From Eq.
(2.261) the value of beam emittance as a function of other parameters is:

3=2 RmTinV R2u -R:.. . (2.262)

To find the maximum transported beam emittance, let us put the emittance derivative on R,,;,
equal to zero:

2
B 2 (\RZu- R Ruin - (2.263)
aRmin S VRr%lax - Rr%zin

Solving equation (2.263), the maximum beam emittance is achieved, if

R
Rpin = Rmax (2.264)
V2

Ronin = RJ;_(M

1 2 3 4 5
z/S

Matched beam with zero current in periodic structure of axial-symmetric lenses.
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Substitution it into Eq. (2.262) gives the value of the maximum transported beam emittance,
or channel acceptance:

2
A= ’% . (2.265)

Strength of focusing lenses has to be adjusted to provide required slope of beam envelope.
From Eq. (2.259), the slope of beam envelope at R = R,,,, 1s:

dRmax =Rmax . (2266)
dz S

Total change of slope of the envelope at the lens is

AR :2Rmax _ 2.267
(dz ) S ( )

Assuming the lens is thin, the required focal length of the lens is:

f=— (2.268)

74



Let us define now the maximum beam current, which can be transported through the

structure. Equation of beam envelope for space charge dominated beam transport is achieved
from Eq. (2.259) assuming beam emittance > = 0:

(i—f)z = (ff)% + P2 zn(ﬁf (2.269)

o

Following the preceding derivations, we will analyze the beam spread in drift space starting
with the waist point, where beam has minimum size R,,;, = R, and zero divergence. Rewriting

equation (2.269), one can write for R, =0:

(dTEZf = In(R) (2.270)

where the following notations are used:

R= RL (2.271)
Z=1\2 R—LP (2.272)



Equation (2.270) has the approximate solution for 0 <Z<3.2and 1 <R<3

RZ)=1+0252%7-00172Z°

ar

—IR
dz -

i e
(dR/dZ), h2f6 TITER

Ro

N Y

a6

L ZHHH

04}

0241

Envelope of an axial-symmetric beam in drift space
(Molokovsky, Sushkov, 2005).

(2.273)
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Let us rewrite Eq. (2.270) as

" Rimax _
dR =\/§P(Z'Zmin)
11 \/ lnI_Q Rmin ’

Dividing left and right parts of Eq. (2.274) by R,,.., one gets

" Rimax _
1 dR 7 p Z-Zmin)
Rmax /1 \/ ln1_€ Rmax '

Left part has a maximum value of 1.082 for Romax = 2.35

" §max _
(- _dR ) ~1.082 .
Rmax . 1 lnR | §max=2 .35

Maximum radius 1s achieved 1n the channel for (7 - z,,;,) = S/2:

Pmax = 1082 .

V2R max

(2.274)

(2.275)

(2.276)

(2.277)

77



From Eq. (2.277) the maximum limited transported current in the channel for negligible beam
emittance is

Tim =1.17 L (By)° (1%)2 . (2.278)

Let us define divergence of the beam at the lens. From Eq. (2.270)

AR max - 4'Imax3 In (Rmax) ~?2 Iw . (2279)
dz 1. (By) Rmin

Total slope of particle trajectory at the lens has to be equal to double value of that give by Eq.
(2.279). Therefore, required focal length is
f=5

S (2.280)
4

1

min __

¢ R 2.35

max

z/S

Matched beam with maximum current in periodic structure of axial-symmetric lenses.
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2.10. Stationary beam equilibrium in linear focusing channel

In general case, the Hamiltonian is not a constant of motion, because
potentials can depend on time, A A(t) U= U(#). Note that even if the
potentials of the external field, Aext, Uex, are time-independent, the beam field

potentials, A», Us, might still depend on time, and the Hamiltonian remains
time-dependent. If an additional condition of matching the beam with the
channel (where the beam distribution remains stationary) is applied, explicit
dependence on time disappears from the beam potentials. In this case, the
Hamiltonian becomes time-independent, and therefore, 1s an integral of
motion. The Hamiltonian, can then be used to find the unknown distribution
function of the beam via the expression /= f (H) and the subsequent solution
of equation for space charge potential (Kapchinsky, 1985).

Hamiltonian corresponding to the motion in averaged linear focusing
field is given by

H=

2 2 2

pE+p QF
TS L MYESr (24 y2) 4 g Ul (4.26)
2m]/ 2 }/2

where €. 1s the frequency of smoothed particle oscillations. If the

beam is matched with the continuous channel, space charge potential
U, is constant, and Hamiltonian is a constant of motion.

2.
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Let us transform Hamiltonian, Eq. (4.26), to another one,
multiplying Eq. (4.26) by a constant:

K=—L" g 4.39
my (Bc)’ (439

It corresponds to changing of independent time variable ¢ for
dimensionless time 7 =¢fBc¢/ L. New Hamiltonian is given by

K=x2+y'2

2 2
-+“0(x2+y2y+_ﬁ£;fﬁL_

: (4.40)
2 2 me? y3 B

where X=dx/dt, y=dy/dtr. Let us use particle radius

R*=x2+y? and total transverse momentum P> = %> + y*, where

x=P cos 9,j7=P sin@ (4.41)

Hamiltonian, Eq. (4.40), is now

2
K=ﬁ+'u—3R2+—qL Us

> 5 Ry (4.42)
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Consider the following distribution:

0 KS K()
f ={ J ) (4.43)
0, K>K,

According to transformation, Eq. (4.41), space charge density of the
beam is expressed as

* Pmax(R)
PR =27 q fo PdP =1 q fy Prax(R), (4.44)

For each value of R, the maximum value of transverse momentum
P, (R) 1s achieved for K = K,. From Eq. (4.40)

2qL*U
Piax (R)=2K, - 15 R* - q—bz : (4.45)
mc?y’p
Therefore, space charge density, Eq. (4.44), is
2¢qL*U
pR=1qfy 2Ko- iR - === (4.46)
mc2y3p

Poisson’s equation for unknown space charge potential of the beam
Ub 1S

2qL* U
— ). (4.47)

1d (gdUs)= TS0 ok, . 1i2R? .
R dR dR Eo m e Y3ﬁ2
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Let us introduce notation:

gomc2f*y3
Ro= p 7/2 , s=R (4.48)
2nq?f, L R,
Then, Poisson’s equation, Eq. (4.47) is
2
Li(s&)_Ub :mczﬁ )/3 (.Lt(%SZR(% 'K()) (4 49)

Sds ds gL? 2

Solution of differential equation (4.49) is a combination of general
(u)
solution of the homogeneous equation Up = =Co lo($) and of a

. . . (n)
particular solution of non-homogeneous equation U,  =C1 5%+ C2

232 3 2.2p2
Up =" V" (2 3RE - Ko)ltols)- - M5 Rey s

qL? 2

Space charge density profile
Io(s, &)
pioy By=— P 1. Ko
Sp Lo(Sp)

where the following notation is used: sy —Rp (4.60)
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Density profile, Eq. (4.74), for different values of parameter s,
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Projection of the volume at the phase plane (x, x):

2
S Py b g, Xy =1
o\Sp , 4.65
4[.13R13 Io(sb) R ( )

Eq. (4.65) describes the boundary of phase space of the beam at the
plane (x, x).

| ot

Boundary phase space trajectories of particles, Eq.
(4.65), for different values of parameter s,,.
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Similar results can be obtained for another distribution function

H
f=71,exp(- Fo)

ﬁ/ Pa

R/Rg

Space charge density for different distributions:
(solid) f=f,H<H,
(dotted) = f exp(—H /H,)
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Performed anlysis shows, that for small values of space charge
forces, particle phase space trajectories are close to elliptical, and
beam profile density is essentially nonlinear. With increase of space
charge forces, boundary particle trajectories become more close to
rectangular, and density beam profile becomes more uniform. In
space charge dominated regime, stationary beam profile tend to be

uniform, and space charge field of the beam compensates for external
field.



