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Laser Power Requirements

Average laser power vs. quantum efficiency to produce various
average beam currents. The QE ranges for the general cathode types
are shown along with their vacuum requirements.
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UV Wavelength good for high QE however:

*UV laser is difficult but possible
*Careful design mitigates optical damage

UV light decomposes hydrocarbons in vacuum which attach to cathode
*Electron beam also decomposes vacuum constituents



Estimating metal and semiconductor thermai emittances
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Due to electron-phonon scattering the excited electrons can thermalize with the
lattice, giving GaAs a thermal-like emission component:
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This gives rise to a slow thermionic-like emission and a fast prompt photoelectric emission
which is dependent upon wavelength band gap energy and affinity.




Inermionic Catnoaes
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Thermionic emittance:
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Some properties of the SCSS Thermionic Cathode

Typical Emission Surface Work Thermal
Thermionic Temperature, Radius Current Function, Emittance
Cathodes T (°K), (eV) (mm) Density oy (eV) (microns
(Alcm?) /mm(rms))
CeB, 1723K, 15 42 2.3 0.54
single crystal 0.15eV

For a desired bunch charge, Q, the required bunch length can be estimated
from the Richardson-Dushman eqn. for the thermionic current density,
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SCSS example: A 250 pC bunch requires a bunch length of 83 ps from the cathode
which is then compressed to ~10 degRF before accelerating in linac.



Vietal Cathodes

Metal photocathodes are commonly used in high gradient, high frequency RF guns and are the
mainstay of the BNL/SLAC/UCLA and the LCLS s-band guns. Due to the high work function UV
photons are needed for reasonable QE, which makes them impractical for high average current
applications such as ERLs. However, they are the most robust of all the photoemitters and can
survive for years at the high cathode fields required to produce a high brightness beam. The
current copper cathode in the LCLS gun has operated for the x-ray FEL for over a year.

Wavelength
& Quantum | Vacuum for Work Thermal
Metal Energy: Efficiency 1000 Hr Function, Emittance
Cathodes Agpt (NM), (electrons Operation d (eV) (microns/mm(rms))
hw(el) per (Torr)
photon) Theory Expt.
Bare Metal
Cu 250, 4.96 1.4x104 10° 4.6 [34] 0.5 1.0+0.1 [39]
1.2+0.2 [40]
0.9+0.05 [3]
Mg 266, 4.66 6.4x10* 1010 3.6 [41] 0.8 0.4+0.1 [41]
Pb 250, 4.96 6.9x10* 10° 4.0 [34] 0.8 ?
Nb 250, 4.96 ~2 10° g 4.38 [34] 0.6
Coated Metal
CsBr:Cu 250, 4.96 7x10°3 109 ~2.5
CsBr:Nb 250, 4.96 7x10°3 10° =5

The thermal emittances are computed using the listed photon and work function energies in eqn. on previous
slide and expresses the thermal emittance as the normalized rms emittance in microns per rms laser size in
mm. The known experimental emittances are given with references.
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Coated Metal Cathodes
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Semiconauctor Cathodes

The thermal emittances are computed using the listed photon, gap and electron affinity energies and expresses
the thermal emittance as the normalized rms emittance in microns per rms laser size in mm.

. - . Thermal
. antum a ner .
Typical Qu_ . . Vacuum for P 9y Emittance
Cathode Efficiency Electron :
T Cathode Wavelength, TR 1000 Hrs Affini (microns/mm(rms))
ype Aop(NM), (V) P (Torr) o
photon) EatEg (V) Theory Expt.
211,5.88 ~0.1 10 3.5[42] 1.2 0.5+0.1 [35]
Cs,Te| 264,4.70 . - « 0.9 0.7+0.1 [35]
262, 4.73 = = » 0.9 1.2 0.1 [43]
- Cs;Sb | 432,287 0.15 ? 1.6 +0.45 [42] 0.7 ?
Mono-alkall KiSb| 400, 3.10 0.07 ? 11+16[42] 05 ?
Na;Sh | 330,3.76 0.02 ? 1.1+ 2.44[42] 0.4 ?
Li;Sb | 295, 4.20 0.0001 ? ? ? ?
Na,KSb | 330,3.76 0.1 1010 1+1 [42] 1.1 ?
PEA. (Cs)Na;KSb | 390, 3.18 0.2 1010 1+0.55 [42] 15 ?
Multi-alkali K,CsSb| 543,2.28 0.1 1010 1+1.1[42] 0.4 ?
K,CsSh(O) | 543, 2.28 0.1 1010 1+<1.1[42] ~0.4 ?
532,2.33 ~0.1 ? 1.4+0.1 [42] 0.8 0.44+0.01 [44]
GaAs(Cs,F) [ 860, 1.44 - ? » 0.2 0.22+0.01 [44]
NEA GaN(Cs) | 260, 4.77 = ? 1.96 + ? [44] 1.35 1.35+0.1 [45]
GaAs(1-x)P
o 455( ( sz F))( 532, 2.33 - ? 1.96+2 [44] 0.49 0.44+0.1 [44]
S-1 Ag-O-Cs | 900, 1.38 0.01 ? 0.7 [42] 0.7 ?




Thermal Emittance and Response Time of GaAs
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Cathodes by Design
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Cathode Design and Engineering: Tunable Cathodes
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Cathode Surface

a

Roughness

'

Emittance Growth Due to Non-Uniform Emission & Field Enhancement
-Highest cathode field not necessary best emittance-

Emittance Growth Due to Field Enhancement
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Cathode Contamination
Three sources of cathode contamination

*Residual contaminants left by fabrication, handling and storage
eContamination by the gun vacuum

*Ambient vacuum

*Operating vacuum
eContamination during operation due to molecular cracking:

* By the laser

*By the electron beam

For LCLS contamination by molecular cracking (?) is problematic.

Electron beam emission image of the cathode
after >1 year of operation. The UV laser
beam has left a QE hole at its location.

Profile Monitor YAGS:IN20:241 17-Dec-2009 19:42:49




Estimates of the rate of molecular cracking can be done using the ideal gas law and the
cross sections for electron-impact bombardment and photoionization of molecules.

The ideal gas law gives the molecular density (molecules/unit volume) at temperature T and
pressure P.

For example, C,H, (benzene) at ambient temperature (300 degK) and P = 10 Torr,

2 3.2x10"molecules/ cm?

B

nmolecules -

The cross sections gives the number of ions produced per electron or UV photon
over some interaction length L;.......n- The interaction length for electrons is the
distance over which the cross section is large (see fig). In this case,

Linteraction = ! (eV) = 1KeV ~ 20microns
50MV /m
I\Iions,e = |\leGCBHﬁnmolecules I—interaction

=6.25x10%" x10™°cm? x 3.2 x10" molecules/ cm?® x 20microns
N ~0.4ions/nC

Electron-impact cross section e~ on C_H
vs. electron energy

ions,e

G

The calculation for photoionization
gives an even lower ion production rate.
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For LCLS operating at 120 nC/s the ion contamination due to electron-impact and
photoionization is too small to explain the QE hole. Thus it appears the monolayer of

adsorbed molecules is what is being photoionized into its constituents which then strongly
bind to the surface and increase the work function.

KT

27m
Where n is molecular volume density, m is the mass of the C;.H, molecule. At 10 Torr,

The molecular flux on the cathode surfaceis T =n

1.38x107%°J /deg K x300deg K
27 x78x1.67x107*"kg

' =3.2x10"molecules/ m3\/ = 2.3x10"molecules/(cm?s)

Monolayer formation time is then (assuming area occupied by each deposited molecule is
d,2~(10 angstroms)?

1 1

t

ml = = ~ 430seconds® monolayer has 10*4 molecules/cm?
| Tdi  2.3x10"x(@x107) ¢

The ion yield at the surface with 100 J (for ~1nC) of laser at 4.8 eV is then,
n,, =2x1.3x10"'s/1002J x10*°cm® x10" molecules/ cm?® = 260ions/100.4]

Since laser runs at 30 Hz and beam size is 1.2 mm dia, the time to decompose 10% of the

monolayer is 10™ /cm? x 7z x (0.06cm)? (0.1 coverage)

260ionsx30Hz

~1.5x10"s =174days

Thus in the LCLS case, it is more likely that the monolayer is being photo-dissociated rather
than the free molecules in the vacuum.



Summary . and Conclusions

*Reviewed Laser Requirements for cathodes at low and high average current
*Developed heuristic theory of thermal emittance for comparing metal and
semiconductor cathodes
Listed QE and thermal emittance properties for thermionic, metal and
semiconductor cathodes
*Described the impact of surface roughness on thermal emittance
*Argued contamination of LCLS cathode is due to dissociation of monolayer
rather than cracking vacuum constituents
*The lack of commercial interest forces us to do our own cathode R&D
*Cathode R&D should be directed into three basic aspects of cathode physics
and technology
*Fundamental Physics of cathodes and electron emission
*Electron Dynamics near the cathode
*Operational Testing in the gun and injector (two regimes)
*Low average current, ultra-low emittance beams
*High average current, low emittance beams
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