Basic properties of dividers and couplers
- Three-port network (T-junction), four-port network (directional coupler), directivity measurement

The T-junction power divider
- Lossless divider, lossy divider

The Wilkinson power divider
- Even-odd mode analysis, unequal power division divider,
- N-way Wilkinson divider

The quadrature (90°) hybrid branch-line coupler

Coupled line directional couplers
- Even- and odd-mode Z_0, single-section and multisection coupled line couplers
• N-port network

\[
S_{ij} = \frac{V_i^-}{V_j^+} \bigg|_{V_k^+ = 0, k \neq j}
\]

\[
\sum_{i=1}^{N} \left| S_{ij} \right|^2 = 1 \quad \forall j, \quad \sum_{i=1}^{N} S_{ik} S_{kj}^* = 0 \quad k \neq j
\]
Discussion
1. Three-port network cannot be lossless, reciprocal and matched at all ports.
2. Lossless and matched three-port network is nonreciprocal
 circulator
3. Matched and reciprocal three-port network is lossy resistive divider

4. Lossless and perfect isolation three-port network cannot be matched at all ports.
Four-port network (directional coupler)

- **Input port 1**
- **Isolated port 4**
- **Through port 2**
- **Coupled port 3**

Coupling:
\[C(dB) \equiv 10 \log \frac{P_1}{P_3} \]

Directivity:
\[D(dB) \equiv 10 \log \frac{P_3}{P_4} \]

Isolation:
\[I(dB) \equiv 10 \log \frac{P_1}{P_4} = C + D \]
1. Matched, reciprocal and lossless four-network \(\rightarrow\) symmetrical (90°) directional coupler or antisymmetrical (180°) directional coupler.

\[
\begin{bmatrix}
0 & \alpha & j\beta & 0 \\
\alpha & 0 & 0 & j\beta \\
j\beta & 0 & 0 & \alpha \\
0 & j\beta & \alpha & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & \alpha & \beta & 0 \\
\alpha & 0 & 0 & -\beta \\
\beta & 0 & 0 & \alpha \\
0 & -\beta & \alpha & 0 \\
\end{bmatrix}
\]

2. \(C = 3\text{dB} \rightarrow\) 90° hybrid (quadrature hybrid, symmetrical coupler), 180° hybrid (magic-T hybrid, rate-race hybrid)

\[
\frac{1}{\sqrt{2}}
\begin{bmatrix}
0 & 1 & j & 0 \\
1 & 0 & 0 & j \\
j & 0 & 0 & 1 \\
0 & j & 1 & 0 \\
\end{bmatrix}
\]

\[
\frac{1}{\sqrt{2}}
\begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & -1 \\
1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 \\
\end{bmatrix}
\]
• Lossless divider

\[Y_{in} = jB + \frac{1}{Z_2} + \frac{1}{Z_3} = \frac{1}{Z_o} \rightarrow B = 0 \]

“not practical”

Lossless divider has mismatched ports
Resistive (lossy) divider

\[R = \frac{Z_o}{3} \]
Wilkinson power divider

- **Basic concept**

Input port 1 matched, port 2 and port 3 have equal potential

\[\Rightarrow \sqrt{2}Z_0, \lambda/4 \]

Input port 2, port 1 and port 3 have perfect isolation

lossy, matched and good isolation (equal phase) three-port divider

\[
\begin{bmatrix}
0 & -j & -j \\
-j & 0 & 0 \\
-j & 0 & 0 \\
\end{bmatrix}
\]
The Wilkinson power divider has these advantages:
1. It is lossless when output ports are matched.
2. Output ports are isolated.
3. It can be designed to produce arbitrary power division.
If we inject a TEM mode signal at port 1, equal in-phase signals reach points a and b. Thus, no current flows through the resistor, and equal signals emerge from port 2 and port 3. The device is thus a 3dB power divider. Port 1 will be matched if the $\lambda/4$ sections have a characteristic impedance $\sqrt{2}Z_0$.

If we now inject a TEM mode signal at port 2, with matched loads placed on port 1 and on port 3, the resistor is effectively grounded at point b. Equal signals flow toward port 1, and down into the resistor, with port 2 seeing a match. Half the incident power emerges from port 1 and half is dissipated in the resistor film.

Similar performance occurs when port 1 and port 2 are terminated in matched loads, and a TEM mode signal is injected at port 3.

If we choose the terminal planes at 1.0 wavelengths from the three Tee junctions, the scattering matrix is

$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -j & -j \\ -j & 0 & 0 \\ -j & 0 & 0 \end{bmatrix}$$
Wilkinson power divider for unequal power splits

\[R_2 = KZ_0 \]

\[R_3 = Z_0/K \]
Design a Wilkinson power divider with a power division ratio of 3 dB and a source impedance of 50 Ω.

Solution:

\[
\frac{P_3}{P_2} = 0.5(3\text{dB})
\]

\[
K^2 = \frac{P_3}{P_2} = \frac{1}{2} \Rightarrow K = 0.707
\]

\[
Z_{03} = Z_0\sqrt{\frac{1+K^2}{K^3}} = 50\sqrt{\frac{1+0.5}{(0.5)(0.707)}} = 103.0 \Omega
\]

\[
Z_{02} = K^2 Z_{03} = (0.5)(103\Omega) = 51.5\Omega
\]

\[
R = Z_0\left(K + \frac{1}{K}\right) = 50\left(0.707 + \frac{1}{0.707}\right) = 106.1\Omega
\]
The output impedances are

\[R_2 = Z_0 K = 50 \times 0.707 = 35.35 \Omega \]
\[R_3 = \frac{Z_0}{K} = 50 \div 0.707 = 70.72 \Omega \]
This is the simplest form of a waveguide directional coupler. A small hole in the common broad wall between two rectangular guides provides 2 wave components that add in phase at the coupler port, and are cancelled at the isolation port.

Diagram:
- **INPUT:** Port 1
- **COUPLED:** Port 3
- **ISOLATED:** Port 4
- **THROUGH:** Port 2
- **Coupling hole:** Hole through which the wave components interact.
- **x, y, z:** Coordinate axes.
Let the incident wave at Port 1 be the dominant \(TE_{10} \) mode:

\[
\begin{align*}
E_y &= A \sin \frac{\pi x}{a} e^{-j\beta z} \\
H_x &= -\frac{A}{Z_{10}} \sin \frac{\pi x}{a} e^{-j\beta z} \\
H_z &= \frac{j\pi A}{\beta a Z_{10}} \cos \frac{\pi x}{a} e^{-j\beta z}
\end{align*}
\]

\(A \) = amplitude of electric field (V m\(^{-1}\))

\[Z_0 = \frac{\eta_0}{\sqrt{1 - (\lambda_0/2a)^2}}\]

= wave impedance, dominate mode, \(\Omega \)

\[\beta = \kappa_0 \sqrt{1 - (\lambda_0/2a)^2}\]

= phase constant rad/m

\[\kappa_0 = \frac{2\pi}{\lambda_0}\]
In the bottom guide the amplitude of the forward scattered wave is given by

\[A_{10}^+ = -\frac{j\omega A}{P_{10}} \left[\varepsilon_0 \alpha_e \sin^2 \frac{\pi s}{a} - \frac{\mu_0 \alpha_m}{Z_{10}^2} \left(\sin^2 \frac{\pi s}{a} + \frac{\pi^2}{\beta^2 a^2} \cos^2 \frac{\pi s}{a} \right) \right] \]

while the amplitude of the reversed scattered wave is given by

\[A_{10}^- = -\frac{\omega A}{P_{10}} \left[\varepsilon_0 \alpha_e \sin^2 \frac{\pi s}{a} + \frac{\mu_0 \alpha_m}{Z_{10}^2} \left(\sin^2 \frac{\pi s}{a} - \frac{\pi^2}{\beta^2 a^2} \cos^2 \frac{\pi s}{a} \right) \right] \]

where

\[P_{10} = \frac{ab}{Z_{10}} \]

For round coupling hole or radius \(r_0 \), we have

\[\alpha_e = \frac{2}{3} r_0^2 \quad \text{electric polarizability} \]

\[\alpha_m = \frac{4}{3} r_0^2 \quad \text{magnetic polarizability} \]
Let $s = \text{offset distance to hole}$

We can then show that

$$\sin \frac{\pi s}{a} = \frac{\lambda_0}{\sqrt{2(\lambda_0^2 - a^2)}}$$

The coupling factor for a single-hole Bethe Coupler is

$$C = 20 \log \left| \frac{A}{A_{10}^-} \right| (dB)$$

and its directivity is

$$D = 20 \log \left| \frac{A_{10}^-}{A_{10}^+} \right| (dB)$$
Design procedure:

1. Use

\[\sin \frac{\pi s}{a} = \frac{\lambda_0}{\sqrt{2\left(\lambda_0^2 - a^2\right)}} \]

to find position of hole.

2. Use

\[C = 20 \log \left| \frac{A}{A_{10}} \right| \ (dB) \]

to determine the hole radius \(r_0 \) to give the required coupling factor.
Typical x-Band -20 dB coupler

Note: Coupling very broad band, directivity is very narrow band (for single-hole coupler)

We can achieve improved directivity bandwidth by using an array of equispaced holes.
Let a wave of value $1 \angle 0$ be injected at Port 1. If the holes are small, there is only a small fraction of the power coupled through to the upper guide so that we can assume that the wave amplitude incident on all holes is essentially unity. The hole n causes a scattered wave F_n to propagate in the forward direction, and another scattered wave B_n to propagate in the backward direction. Thus the output signals are:
Bethe-Hole Directional Coupler

Port 1 (input) and Port 4 (isolated)

\[B^{(1)} = B^{(4)} = \sum_{n=0}^{N} B_n e^{-j2\beta d} \]

Port 2 (through)

\[F^{(2)}_{Total} = e^{-jN\beta d} + e^{-jN\beta d} \sum_{n=0}^{N} F_n \]

Port 3 (coupled)

\[F^{(3)} = e^{-j2N\beta d} \sum_{n=0}^{N} F_n \]

All of these waves are phase referenced to the \(n = 0 \) hole.

\[C = -20 \log \left| F^{(3)} \right| = -20 \log \left| \sum_{n=0}^{N} F_n \right| \text{ (dB)} \]

\[D = -20 \log \left| \frac{B^{(4)}}{F^{(2)}} \right| = -20 \log \left| \frac{\sum_{n=0}^{N} B_n e^{-j2\beta nd}}{\sum_{n=0}^{N} F_n} \right| \text{ (dB)} \]
We can rewrite this as

\[D = -20 \log \left| \sum_{n=0}^{N} B_n e^{-j2\beta nd} \right| + 20 \log \left| \sum_{n=0}^{N} F_n \right| \]

\[= -C - 20 \log \left| \sum_{n=0}^{N} B_n e^{-j2\beta nd} \right| \]

The coupling coefficients are proportional to the polarizability \(\alpha_e \) and \(\alpha_m \) of the coupling holes. Let \(r_n = \) radius of the \(n^{th} \) hole. Then the forward scattering coefficient from the \(n^{th} \) hole is

\[F_n = A_{10}^+ (n) \]

And the backward scattering from the hole is

\[B_n = A_{10}^- (n) \]
Now let us assume the coupling holes are located at the midpoint across common broad wall, i.e. \(s = a/2 \). Then for circular holed, we have

\[
F_n = A_{10}^+ = -j \frac{2 \omega \varepsilon_0 A}{3 P_{10}} \left[1 - \frac{2 \mu_0}{\varepsilon_0 Z_{10}^2} \right] r_n^3
\]

But
\[
\omega \varepsilon_0 = \frac{k_0}{\eta_0} \quad \text{and} \quad Z_{10}^2 = \frac{\eta_0^2}{\left(\sqrt{1 - (\lambda_0/2a)^2} \right)} = \frac{\eta_0^2}{1 - \left(\frac{f_c}{f} \right)^2}
\]

\[
\therefore F_n = K_f r_n^3 \quad \text{where} \quad K_f = -\frac{j 2 k_0 A}{3 \eta_0 P_{10}} \left[1 - 2 \left(1 - \left(\frac{f_c}{f} \right)^2 \right) \right]
\]

Let \(A = 1 \text{ v/m} \). Then
\[
K_f = -\frac{j 2 k_0}{3 \eta_0 P_{10}} \left[2 \left(\frac{f_c}{f} \right)^2 - 1 \right]
\]
Likewise the backward scattering coefficient is

\[
K_b = \frac{2k_0}{3\eta_0 P_{10}} \left[2 \left(\frac{f_c}{f} \right)^2 - 3 \right]
\]

and \[\beta_n = K_b r_n^3 \]

Note that \(K_f \) and \(K_b \) are frequency-dependent constants that are the same for all aperture. Thus,

\[
C = -20 \log |K_f| - 20 \log \sum_{n=0}^{N} r_n^3 \quad (dB)
\]

\[
D = -C - 20 \log |K_b| - 20 \log \left| \sum_{n=0}^{N} r_n^3 e^{-j2\beta_n d} \right| \quad (dB)
\]
Consider the following design problem:

Given a desired coupling level C, how do we design the coupler so that the directivity D is above a value D_{min} over a specified frequency band?

Note that if the coupling C is specified, then

$$\sum_{n=0}^{N} F_n$$

is known.

We now assume that either (1) the holes scatter symmetrically (e.g. they are on the common narrow wall between two identical rectangular guides) or (2) holes scatter asymmetrically (e.g. they are on the centerline of the common broad wall, i.e. $s=a/2$). Thus:

$$B_n = F_n$$

or

$$B_n = -F_n$$

In either case, we have

$$D = 20 \log \left| \frac{\sum_{n=0}^{N} F_n}{\sum_{n=0}^{N} F_n e^{-j2\beta nd}} \right|$$
Thus, keeping the directivity $D > D_{\text{min}}$ is equivalent to keeping below a related minimum value. Let

$$\varphi = -2\beta d \quad \text{and} \quad w = e^{j\varphi} = e^{-j2\beta d}$$

We also introduce the function

$$g(\beta d) = \sum_{n=0}^{N} F_n e^{-j2\beta nd} \quad \Rightarrow \quad g(\phi) = \sum_{n=0}^{N} F_n e^{jn\phi}$$

$$\therefore \quad g(w) = \sum_{n=0}^{N} F_n w^n = F_N \sum_{n=0}^{N} \frac{F_n}{F_N} w^n = F_N \prod_{n=1}^{N} (w - w_n)$$

Thus we have

$$D = 20 \log \left| \frac{g(1)}{g(w)} \right|$$

$$\left| g(1) \right| = \sum_{n=0}^{N} F_n = 10^{-C/20}$$
From the previous two equations we can deduce that

\[|g|_{max} = |g(1)| \times 10^{-D_{min}/20} \]

The multi-hole coupler design problem thus reduces to finding a set of roots \(w_n \) that will produce a satisfactory \(g(w) \), and thus a satisfactory \(D(f) \) in the desired frequency band under the constraint that \(g(w) \leq g|_{max} \).

Example: Design a 7-hole directional coupler in C-band waveguide with a binomial directivity response to provide 15 dB coupling and with \(D_{min} = 30 \) dB. Assume an operating center frequency of 6.45 GHz and a hole spacing \(d = \lambda_{g}/4 \) (or \(\lambda_{g} + \lambda_{g}/4 \)). Also assume broad-wall coupling with \(s = a/2 \).

Solution:
From \(g(w) = F_N \prod_{n=1}^{N} (w - w_n) \), we have

\[g(w) = F_6 (w - w_n)^6 \text{ where } w_n = e^{-j2\beta d} = -1 \]

\[\therefore g(w) = F_6 (w + 1)^6 = F_6 \left(w^6 + 6w^5 + 15w^4 + 20w^3 + 15w^2 + 6w + 1 \right) \]
Thus,

\[|g(1)| = |F_6|(1 + 1)^6 = 64|F_6| = 10^{-15/20} = 0.1778 \quad \therefore |F_6| = 0.00278 = |F_0| \]

By the binomial expansion we have

\[(w + 1)^6 = \sum_{n=0}^{6} C_n^{(6)} w^n \]

where, \(C_n^{(6)} = \frac{N!}{(N - n)! \cdot n!} = \frac{6!}{(6 - n)! \cdot n!} \) is the set of binomial coefficients

Thus

\[|F_5| = |F_1| = 6|F_6| = 0.01667 \]
\[|F_4| = |F_2| = 15|F_6| = 0.04168 \]
\[|F_3| = 20|F_6| = 0.05557 \]
We now can compute the radii of the coupling holed from

\[F_n = K_f r_n^3 \quad \text{where} \quad K_f = \frac{-j 2 k_0 A}{3 \eta_0 P_{10}} \left[1 - 2 \left(1 - \left(\frac{f_c}{f} \right)^2 \right) \right] \]

and

\[K_f = \frac{-j 2 k_0}{3 \eta_0 P_{10}} \left[2 \left(\frac{f_c}{f} \right)^2 - 1 \right] \]

We have – with \(f_c = 4.30 \text{ GHz} \) for C-Band guide, \(f = 6.45 \text{ GHz}, k_0 = \frac{2 \pi}{\lambda_0} = 135.1 \text{ m}^{-1}, \eta_0 = 376.7 \Omega, P_{10} = ab/Z_{10}, \)

\[Z_{10} = \eta_0 \left/ \sqrt{1 - \left(\frac{f_c}{f} \right)^2} \right. = 505.4 \Omega, \quad P_{10} = 1.08 \times 10^{-6} \text{ m}^2/\Omega \]

\[|K_f| = \frac{2 \times 135.1}{3 \times 376.7 \times 1.08 \times 10^{-6}} \left| 2\left(\frac{4.30}{6.45} \right)^2 - 1 \right| = 24598 \]
The hole radii are:

\[
 r_0 = \left(\frac{0.00278}{|K_f|} \right)^{1/3} = 0.00483 \text{ m} = r_6 \iff 0.483 \text{ cm}
\]

\[
 r_1 = \left(\frac{0.01667}{|K_f|} \right)^{1/3} = 0.00878 \text{ m} = r_5 \iff 0.878 \text{ cm}
\]

\[
 r_2 = \left(\frac{0.04168}{|K_f|} \right)^{1/3} = 0.011921 \text{ m} = r_4 \iff 1.192 \text{ cm}
\]

\[
 r_3 = \left(\frac{0.05557}{|K_f|} \right)^{1/3} = 0.0131 \text{ m} \iff 1.31 \text{ cm}
\]
Top view of C-Band guide common broad wall with coupling holes

The guide wavelength is

$$\lambda_g = \frac{\lambda_0}{\sqrt{1 - \left(\frac{4.3}{6.45}\right)^2}} = 0.624\,m$$

The nominal hole spacing is $$d = \frac{\lambda_g}{4} = 1.56\,cm$$. However, the center hole has a diameter of 2.62 cm, so it would overlap with adjacent holes. We can increase the hole spacing to $$d = \frac{3\lambda_g}{4} = 4.68\,cm$$ with no effect on electrical performance.

The total length of the common broad wall section with coupling holes is ~ 30 cm, which is fairly large WG section.
We now plot the coupling and directivity vs. frequency

\[
g(w) = F_6(w+1)^6 = F_6(e^{j\phi}+1)^6 = F_6 \left\{ e^{j\frac{\phi}{2}} \left(e^{j\frac{\phi}{2}} + e^{-j\frac{\phi}{2}} \right) \right\}^6 = F_6 \left[2e^{j\frac{\phi}{2}} \cos\frac{\phi}{2} \right]^6
\]

\[
\therefore |g(w)| = 2^6 |F_6| \left| \cos\frac{\phi}{2} \right|^6 = 0.1778 \left| \cos\frac{\phi}{2} \right|^6
\]

We then have

\[
D(dB) = -20 \log \left| \frac{g(w)}{g(1)} \right| = -120 \log \left| \cos \frac{2\pi d}{\lambda_g} \right|
\]

where \(d = 4.68 \text{ cm} \)

\[
\lambda_g = \frac{\lambda_0}{\sqrt{1-(\lambda_0/2a)^2}} = \frac{\left(3 \times 10^8/f\right)}{\sqrt{1-(f_c/f)^2}}
\]
Note that the directivity is better than $D_{\text{min}} = -30$ dB over a bandwidth of 900 MHz centered about 6.45 GHz.
Even-odd mode analysis
Even-mode

\[V_{2e} = V \rightarrow S_{22e} = 0 \]

\[\tilde{A} = \frac{2 - \sqrt{2}}{2 + \sqrt{2}} \rightarrow V_{1e} = jV \frac{\tilde{A} + 1}{\tilde{A} - 1} = -j\sqrt{2}V \rightarrow S_{12e} = -j\sqrt{2} \]

Symmetry of port 2 and 3

\[V_{3e} = V \rightarrow S_{33e} = 0, S_{13e} = -j\sqrt{2} \]
Odd-mode

\[
\frac{R}{2} = Z_o \rightarrow R = 2Z_o \rightarrow S_{22o} = 0 \Rightarrow S_{22} = \frac{1}{2}(S_{22e} + S_{22o}) = 0
\]

\[
\begin{align*}
V_{1o} = 0, V_{2o} = V \rightarrow S_{12o} = 0 \Rightarrow S_{12} &= \frac{1}{2}(S_{12e} + S_{12o}) = -j\frac{1}{\sqrt{2}} = S_{21} \\
V_{3o} = -V \Rightarrow S_{13} &= \frac{1}{2}(S_{12e} - S_{12o}) = -j\frac{1}{\sqrt{2}} = S_{31},
\end{align*}
\]

\[
S_{33} = 0
\]

\[
\Rightarrow S_{32} = S_{23}
\]

\[
\Rightarrow S_{11} = 0
\]

symmetry of port 2 and 3, open, short at bisection port 1 matched
3dB Wilkinson power divider has equal amplitude and phase outputs at port 2 and port 3.

3dB Wilkinson power combiner

\[
\begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3
\end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix}
 0 & -j & -j \\
 -j & 0 & 0 \\
 -j & 0 & 0
\end{bmatrix} \begin{bmatrix}
 0 \\
 a_2 \\
 a_3
\end{bmatrix} = \begin{bmatrix}
 -j \frac{1}{\sqrt{2}} (a_2 + a_3) \\
 0 \\
 0
\end{bmatrix}
\]

\[a_2 = a_3 \rightarrow P_1 = 2P_2\]
Unequal power division Wilkinson power divider

\[Z_{m2} = (1 + K^2)Z_o, \quad Z_{in3} = \frac{1 + K^2}{K^2}Z_o \]

\[R_2 = K^2R_3, \quad R_2 = KZ_o \Rightarrow R_3 = \frac{Z_o}{K}, \quad Z_{o4} = \sqrt{KZ_o}, \quad Z_{o5} = \frac{Z_o}{\sqrt{K}} \]

\[Z_{o2} = \sqrt{Z_{in2}R_2} = \sqrt{K(1 + K^2)Z_o}, \quad Z_{o3} = \sqrt{Z_{in3}R_3} = \sqrt{\frac{1 + K^2}{K^3}Z_o} \]
\[V_1 = jI_1Z_{o3} \rightarrow I_1 = \frac{V_1}{jZ_{o3}} \]

\[V_a = jZ_{o2}I_2, I_R = \frac{V_a}{R}, I_R + I_1 = 0 \rightarrow R = \frac{Z_{o2}Z_{o3}}{Z_o} = \frac{1+K^2}{K}Z_o \]
N-way Wilkinson power divider
• Branch-line coupler
Port 2 and port 3 have equal amplitude, but 90° phase different

\[
\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

The quadrature (90°) hybrid
We can analyze this circuit by using superposition of even-modes and odd-modes. We add the even-mode excitation to the odd-mode excitation to produce the original excitation of $A_1=1$ volt at port 1 (and no excitation at the other ports.)
We now have a set of two decoupled 2-port networks. Let Γ_e and T_e be the reflection and transmission coefficients of the even-mode excitation. Similarly Γ_o and T_e for the odd-mode excitation.

Superposition:

\[
\begin{align*}
\text{Input} & : & B_1 = \frac{1}{2} \Gamma_e + \frac{1}{2} \Gamma_o \\
\text{Through} & : & B_2 = \frac{1}{2} T_e + \frac{1}{2} T_o \\
\text{Coupled} & : & B_3 = \frac{1}{2} T_e - \frac{1}{2} T_o \\
\text{Isolated} & : & B_4 = \frac{1}{2} \Gamma_e - \frac{1}{2} \Gamma_o
\end{align*}
\]

Reflection coefficients: Γ; Transmission coefficients: T.
Consider the even-mode 2-port circuit:

Port 1

\[\frac{\lambda}{4} \]

\[\frac{\lambda}{8} \quad \frac{1}{\sqrt{2}} \quad \frac{\lambda}{8} \]

input

open

Port 2

coupled

open

We can represent the two \(\frac{\lambda}{8} \) open circuit stubs by their admittance:

\[
y = \lim_{z_L \to \infty} \frac{1}{\frac{z_L}{1 + \frac{j}{z_L} \tan \frac{\pi}{4}}} = j
\]

The \(\frac{\lambda}{4} \) transmission line, with characteristic impedance \(\frac{1}{\sqrt{2}} \) has an ABCD matrix

\[
\begin{bmatrix}
0 & j/\sqrt{2} \\
\frac{j}{\sqrt{2}} & 0
\end{bmatrix}
\]
Thus, the ABCD matrix for the cascade is

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix}_c = \begin{pmatrix} 1 & 0 \\ j & 1 \end{pmatrix} \begin{pmatrix} 0 & j \sqrt{2} \\ \sqrt{j} 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ j & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & j \\ j & -1 \end{pmatrix}
\]

Using the conversion table (next slide) to convert [S] parameters (with \(Z_0=1\) as the reference characteristic impedance).

\[
\text{denominator} = A + \frac{B}{Z_0} + CZ_0 + D = -\frac{1}{\sqrt{2}} + \frac{j}{\sqrt{2}} + \frac{j}{\sqrt{2}} - \frac{1}{\sqrt{2}}
\]

\[
\Gamma_c = S_{11} = \frac{A + \frac{B}{Z_0} - CZ_0 - D}{A + \frac{B}{Z_0} + CZ_0 + D} = \frac{(-1 + j + j + 1)/\sqrt{2}}{(-1 + j + j - 1)/\sqrt{2}} = 0
\]

\[
T_c = S_{21} = \frac{2}{A + \frac{B}{Z_0} + CZ_0 + D} = \frac{2}{(-1 + j + j - 1)/\sqrt{2}} = -\frac{1}{\sqrt{2}} (1 + j)
\]

Similarly for odd mode we have: \(S_{11} = \Gamma_0 = 0\) and \(S_{12} = T_0 = \frac{1}{\sqrt{2}} (1 - j)\).
Conversion between two-port network parameters

<table>
<thead>
<tr>
<th></th>
<th>S_{11}</th>
<th>S_{12}</th>
<th>S_{21}</th>
<th>S_{22}</th>
<th>Z_{11}</th>
<th>Z_{12}</th>
<th>Z_{21}</th>
<th>Z_{22}</th>
<th>Y_{11}</th>
<th>Y_{12}</th>
<th>Y_{21}</th>
<th>Y_{22}</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{11}</td>
</tr>
<tr>
<td>S_{12}</td>
</tr>
<tr>
<td>S_{21}</td>
</tr>
<tr>
<td>S_{22}</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
S &= \frac{(Z_{11} - Z_0)(Z_{22} - Z_0) - Z_{12}Z_{21}}{\Delta Z} \\
Z &= \frac{(Y_0 - Y_{11})(Y_0 + Y_{22}) + Y_{12}Y_{21}}{\Delta Y} \\
Y &= \frac{A + B/Z_0 - C(Z_0 + D)}{2(AD - BC)} \\
ABCD &= \frac{A + B/Z_0 + C(Z_0 + D)}{2}
\end{align*}
\]

\[
\begin{align*}
Z_{11} &= \frac{Z_0(1 + S_{11})(1 - S_{22}) + S_{12}S_{21}}{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}} \\
Z_{12} &= \frac{2S_{12}}{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}} \\
Z_{21} &= \frac{2S_{21}}{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}} \\
Z_{22} &= \frac{Z_0(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}}{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}}
\end{align*}
\]

\[
\begin{align*}
Y_{11} &= \frac{Y_0(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}}{(1 + S_{11})(1 + S_{22}) - S_{12}S_{21}} \\
Y_{12} &= \frac{-2S_{12}}{(1 + S_{11})(1 + S_{22}) - S_{12}S_{21}} \\
Y_{21} &= \frac{-2S_{21}}{(1 + S_{11})(1 + S_{22}) - S_{12}S_{21}} \\
Y_{22} &= \frac{Y_0(1 + S_{11})(1 - S_{22}) + S_{12}S_{21}}{(1 + S_{11})(1 - S_{22}) - S_{12}S_{21}}
\end{align*}
\]

\[
\begin{align*}
A &= \frac{(1 + S_{11})(1 - S_{22}) + S_{12}S_{21}}{2S_{21}} \\
B &= \frac{Z_0(1 + S_{11})(1 + S_{22}) - S_{12}S_{21}}{2S_{21}} \\
C &= \frac{1}{Z_0} \frac{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}}{2S_{21}} \\
D &= \frac{(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}}{2S_{21}}
\end{align*}
\]

\[
\begin{align*}
|Z| &= Z_{11}Z_{22} - Z_{12}Z_{21} \\
|Y| &= Y_{11}Y_{22} - Y_{12}Y_{21} \\
\Delta Y &= (Y_{11} + Y_0)(Y_{22} + Y_0) - Y_{12}Y_{21} \\
\Delta Z &= (Z_{11} + Z_0)(Z_{22} + Z_0) - Z_{12}Z_{21} \\
Y_0 &= 1/Z_0
\end{align*}
\]

D. Pozar
Therefore we have

\[
\begin{align*}
B_1 &= 0 & \text{(port 1 is matched)} \\
B_2 &= -\frac{j}{\sqrt{2}} & \text{Through (half power, -90° phase shift port 1 to 2)} \\
B_3 &= -\frac{1}{\sqrt{2}} & \text{(half power, -180° phase shift port 1 to 3)} \\
B_4 &= 0 & \text{(no power to port 4)}
\end{align*}
\]

Scattered wave voltages

The bandwidth of a single branch-line hybrid is about 10% - 20%, due to the requirement that the top and bottom lines are $\lambda/4$ in length. We can obtain increased directivity bandwidth (with fairly constant coupling) by using three or more sections.
Next we consider a more general single section branch-line coupler:

We can show that if the condition

\[
\frac{Z_{02}}{Z_0} = \frac{Z_{01}/Z_0}{\sqrt{1-(Z_{01}/Z_0)^2}}
\]

is satisfied, then port 1 is matched; port 4 is decoupled from port 1.
Single section branch-line coupler

\[
\begin{aligned}
B_1 &= 0 & \text{matched } \angle 0^\circ \\
B_2 &= -j \frac{Z_{01}}{Z_0} & \angle -90^\circ \\
B_3 &= -\frac{Z_{01}/Z_0}{Z_{02}/Z_0} & \angle -180^\circ \\
B_4 &= 0 & \text{(matched)}
\end{aligned}
\]

Thus, the directivity is theoretically infinite at the design frequency. We can also show that the coupling is given by

\[
C = 10 \log \left[\frac{1}{1 - (Z_{01}/Z_0)^2} \right] \text{ (dB)}
\]

For stripline + microstrip, we control \(Z_{01}/Z_0\) by varying the strip width, in coax by adjusting the ratio \(b/a\), and in the rectangular guide by changing the \(b\) dimension.
Example:

Design a one-section branch-line directional coupler to provide a coupling of 6 dB. Assume the device is to be implemented in microstrip, with an 0.158 cm substrate thickness, a dielectric constant of 2.2, and that the operating frequency is 1.0 GHz.

Solution:

\[
C = 10 \log \left[\frac{1}{1 - \left(\frac{Z_{01}}{Z_0} \right)^2} \right] = 6 \text{ (dB)}
\]

\[
\therefore \frac{Z_{01}}{Z_0} = 0.8653 \Rightarrow Z_{01} = 43.27\Omega
\]

\[
\frac{Z_{02}}{Z_0} = \frac{Z_{01}/Z_0}{\sqrt{1 - \left(\frac{Z_{01}}{Z_0} \right)^2}} = 1.7263 \Rightarrow Z_{02} = 86.31\Omega
\]

\[
\lambda \approx \frac{\lambda_0}{\sqrt{\varepsilon_r}} = \frac{30}{\sqrt{2.2}} = 20.226 \text{ cm} \quad \ell = \frac{\lambda}{4} = 5.0565 \text{ cm}
\]

\[
\frac{w_\circ}{d} = \frac{2}{\pi} \left\{ B - 1 - \ln(2B - 1) + \frac{\varepsilon_r - 1}{2\varepsilon_r} \left[\ln \left(1B - 1 + .39 - \frac{0.61}{\varepsilon_r} \right) \right] \right\} = 3.081
\]

\[
\Rightarrow w_\circ = 0.487 \text{ cm}
\]
For $Z_{01} = 43.27\Omega$,

$w_1 = 0.601\text{cm}$

For $Z_{02} = 86.31\Omega$,

$\frac{w_2}{d} = \frac{8e^A}{e^{2A} - 1} = 1.1675$

$w_2 = 0.185\text{cm}$

With 0 dB power input at the upper left arm, the power delivered to a matched load at the through arm is

\[
P_2(dB) = -10\log \frac{P_1(in)}{P_2(out)} = -10\log \frac{1}{B_2B_2^*} = -10\log \left(\frac{Z_0}{Z_{01}} \right)^2 = -10\log \left(\frac{50}{43.27} \right)^2 = -1.26dB
\]
Coupled Line Directional Couplers

These are either stripline or microstrip 3-wire lines with close proximity of parallel lines providing the coupling.

- Co-planar stripline
- Broadside-stacked coupler stripline
- Co-planar microstrip
- Side-stacked coupled stripline

Open ckt

Even mode

Short ckt

Odd mode

0V
Three-wire coupled line

Equivalent network

C_{12} \quad \text{capacitance between two strip conductors in absence of the ground conductor.}

C_{11}, C_{22} \quad \text{capacitance between one conductor and ground}

In the even mode excitation, the currents in the strip conductors are equal in amplitude and in the same direction.

In the odd mode excitation, the currents in the strip conductors are equal in amplitude but are in opposite directions.
In the even mode, \vec{E} fields have even symmetry about centerline, and no current flows between strip conductors. Thus C_{12} is effectively open-circuited. The resulting capacitance of either line to ground is

$$C_e = C_{11} = C_{22}$$

The characteristic impedance of the even modes is

$$Z_{0e} = \sqrt{\frac{L}{C_e}} = \frac{1}{vC_e}$$

In the odd mode, \vec{E} fields have an odd symmetry about centerline, and a voltage null exists between the strip conductors.

The effective capacitance between either strip conductor and ground is

$$C_0 = C_{11} + 2C_{12} = C_{22} + 2C_{12}$$

$$Z_{0o} = \sqrt{\frac{L}{C_o}} = \frac{1}{vC_o}$$
Example: An edge-coupled stripline with \(\varepsilon_r = 2.8 \) and a ground plane spacing of 0.5 cm is required to have even- and odd-mode characteristic impedance of \(Z_{0e} = 100 \, \Omega \) and \(Z_{0o} = 50 \, \Omega \). Find the necessary strip widths and spacing.

Solution:

\[
\begin{align*}
 b &= 0.50 \, \text{cm}, \quad \varepsilon_r = 2.8, \quad Z_{0e} = 100 \, \Omega, \quad Z_{0o} = 50 \, \Omega \\
 \sqrt{\varepsilon_r Z_{0e}} &= 167.3 \quad \text{even} \\
 \sqrt{\varepsilon_r Z_{0o}} &= 83.66 \quad \text{odd}
\end{align*}
\]

from the graph, \(s/b \approx 0.095 \), \(W/b \approx 0.32 \)

\[
\begin{align*}
 S &= 0.95 \times 0.5 = 0.0425 \, \text{cm} \\
 W &= 0.32 \times 0.5 = 0.16 \, \text{cm}
\end{align*}
\]
Waveguide magic-T

Input at port 1
Port 4:0
Ports 2 and 3: equal amplitude and phase

Input at port 4
Port 1:0
Ports 2 and 3: 180° phase difference
Consider the equivalent circuit for the even mode:

\[\Gamma_e \]

At port 1, the admittance looking into the \(\lambda/8 \) o.c. stub is

\[y_{S1} = y_0 \left(j \tan \beta \ell \right) = \frac{1}{\sqrt{2}} \left(j \tan \frac{2\pi}{\lambda} \frac{\lambda}{8} \right) = \frac{j}{\sqrt{2}} \]

The ABCD matrix of a shunt admittance \(y_{S1} \) is

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
\frac{j}{\sqrt{2}} & 1
\end{bmatrix}
\]
At port 2, the admittance looking into the $3\lambda/8$ o.c. stub is

$$y_{s2} = y_0(j\tan\beta\ell) = \frac{1}{\sqrt{2}}\left(j\tan\frac{2\pi \cdot 3\lambda}{\lambda/8}\right) = -\frac{j}{\sqrt{2}}$$

The ABCD matrix of this shunt admittance is

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ -\frac{j}{\sqrt{2}} & 1 \end{bmatrix}$$

The ABCD matrix is

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_2 = \begin{bmatrix} \cos\beta\ell & jZ_o \sin\beta\ell \\ jy_o \sin\beta\ell & \cos\beta\ell \end{bmatrix}$$

where $\beta\ell = 2\pi/\lambda \cdot \pi/4 = \pi/2$

$$Z_o = \sqrt{2}, y_o = 1/\sqrt{2}$$

\[∴ \begin{bmatrix} A & B \\ C & D \end{bmatrix}_2 = \begin{bmatrix} 0 & j\sqrt{2} \\ \frac{j}{\sqrt{2}} & 0 \end{bmatrix}\]
We can now compute the ABCD matrix of the even mode cascade.

\[
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}_{\text{even}} =
\begin{pmatrix}
1 & 0 \\
\frac{j}{\sqrt{2}} & 1
\end{pmatrix}
\begin{pmatrix}
0 & j\sqrt{2} \\
\frac{j}{\sqrt{2}} & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\frac{j}{\sqrt{2}} & 1
\end{pmatrix}
\]

\[
=
\begin{pmatrix}
1 & 0 \\
\frac{j}{\sqrt{2}} & 1
\end{pmatrix}
\begin{pmatrix}
1 & j\sqrt{2} \\
\frac{j}{\sqrt{2}} & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & j\sqrt{2} \\
j\sqrt{2} & -1
\end{pmatrix}
\]
The input admittance to a short-circuited lossless stub is

\[y_{in} = y_0 \left(-j \cot \beta \ell \right) \]

Thus the input admittance to the s.c. \(\lambda/8 \) tub is

\[y_{s1} = \frac{1}{\sqrt{2}} \left(-j \cot \frac{2\pi \cdot \lambda}{\lambda/8} \right) = -\frac{j}{\sqrt{2}} \]

ABCD matrix:

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
-\frac{j}{\sqrt{2}} & 1
\end{bmatrix}
\]

\[y_{s2} = \frac{1}{\sqrt{2}} \left(-j \cot \frac{2\pi \cdot 3\lambda}{\lambda/8} \right) = +\frac{j}{\sqrt{2}} \]

(Input admittance to s.c. \(3\lambda/8 \) stub)
and

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_3 = \begin{bmatrix} 1 & 0 \\ \frac{j}{\sqrt{2}} & 1 \end{bmatrix}$$

So the ABCD matrix of the odd-mode cascade is

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_o = \begin{bmatrix} 1 & 0 \\ -\frac{j}{\sqrt{2}} & 1 \end{bmatrix} \begin{bmatrix} 0 & j\sqrt{2} \\ \frac{j}{\sqrt{2}} & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{j}{\sqrt{2}} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & j\sqrt{2} \\ j\sqrt{2} & 1 \end{bmatrix}$$

$$\Gamma_e = -\frac{j}{\sqrt{2}}, \quad T_e = -\frac{j}{\sqrt{2}}$$

$$\Gamma_o = \frac{j}{\sqrt{2}}, \quad T_o = -\frac{j}{\sqrt{2}}$$
Excitation at Port 4

We have derived the ABCD matrices for the Even (e) and Odd (o) modes:

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}_e = \begin{bmatrix}
1 & j\sqrt{2} \\
j\sqrt{2} & -1
\end{bmatrix} \quad \text{and} \quad \begin{bmatrix}
A & B \\
C & D
\end{bmatrix}_o = \begin{bmatrix}
-1 & j\sqrt{2} \\
j\sqrt{2} & 1
\end{bmatrix}
\]

For excitation at Port 4 instead of Port 1 the ABCD matrices remain the same. What changes are the definitions of \(\Gamma \) and \(T \) for each mode and their relations to \(B_1 - B_4 \).
Even mode:

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}_e = \begin{bmatrix}
1 & j\sqrt{2} \\
j\sqrt{2} & -1
\end{bmatrix}
\]

\[\Gamma_e = S_{22} = \frac{-A + B/Z_o - CZ_o + D}{A + B/Z_o + CZ_o + D}\]

\[T_e = S_{12} = \frac{2(AD - BC)}{A + B/Z_o + CZ_o + D}\]

Odd mode:

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}_o = \begin{bmatrix}
-1 & j\sqrt{2} \\
j\sqrt{2} & 1
\end{bmatrix}
\]

\[\Gamma_o = S_{22} = \frac{1 + j\sqrt{2} - j\sqrt{2} + 1}{2(-1 + 2)} = \frac{2}{2} = -j
\]

\[T_o = S_{12} = \frac{2(-1 + 2)}{-1 + j\sqrt{2} + j\sqrt{2} + 1} = \frac{2}{j2\sqrt{2}} = -\frac{j}{\sqrt{2}}
\]

Excitation at Port 4 is expressed as:

Even

\[V_2^+ = 1/2\]
\[V_4^+ = 1/2\]

Odd

\[V_2^+ = -1/2\]
\[V_4^+ = 1/2\]
Excitation at Port 4 of Rat-Race Coupler (cont.)

\[
\begin{align*}
\Gamma_e &= \frac{j}{\sqrt{2}} & \Theta_e &= -\frac{j}{\sqrt{2}} \\
\Gamma_o &= -\frac{j}{\sqrt{2}} & \Theta_o &= -\frac{j}{\sqrt{2}}
\end{align*}
\]

Output waves

\[
\begin{align*}
B_1 &= \frac{1}{2} \Theta_e - \frac{1}{2} \Theta_o \\
B_2 &= \frac{1}{2} \Gamma_e - \frac{1}{2} \Gamma_o \\
B_3 &= \frac{1}{2} \Theta_e + \frac{1}{2} \Theta_o \\
B_4 &= \frac{1}{2} \Gamma_e + \frac{1}{2} \Gamma_o
\end{align*}
\]

The resulting output vector for unit excitation at Port 4 is:

\[
[B_{i}]_4 = \begin{bmatrix} 0 & j/\sqrt{2} \\ -j/\sqrt{2} & 0 \end{bmatrix}
\]