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The objectives of this lecture are to define the basic electron
emission statistics, describe the electrical potentials at the cathode
surface, define the thermal emittance and derive the cathode
emittance for thermal, photo-electric and field emission.

This lecture begins with definitions of Maxwell-Boltzmann and
Fermi-Dirac statistics, and discusses the electric fields at the
cathode surface which the electron needs to overcome to escape.
Then the physics of each of the three emission processes Iis
described and their cathode emittances are derived.
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electrons for metals 1s 1044 to 104 electrons/cm3. Whereas the

density of electrons in a 6 ps long, 200 micron diameter cylindrical
bunch with 1 nC of charge is ~10* electrons/cm3. Thus the
transition from bound to free reduces the electron density by eight to
nine orders of magnitude. In addition, the energy spread, or thermal
energy of the electrons inside the cathode material is low. For
example, in copper the energy spread near the Fermi energy IS ~kgT
or 0.02 eV at room temperature (300 degK). However, in order to
release these cold, bound electrons, one needs to heat the cathode
to approximately 2500 degK, resulting in a beam with a thermal
energy of 0.20 eV.
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dlstrlbutlon of thermlonlc emltters Strlctly speaking, the term
'‘thermal emittance’ should only be applied to thermionic emission,
but the concept of thermal emittance or the intrinsic emittance of the
cathode can be applied to the three forms of electron emission:

« 1. thermionic emission,
« 2. photo-electric emission

« 3. field emission.
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statistics, while fermions follow Dirac-Fermi statistics. These
statistics define the probability a particle occupies an given energy
state based on the distribution of particles into energy intervals for
the two particle types:

1. particles any number of which can share the same energy state,
follow the Maxwell-Boltzmann distribution.

2. particles which cannot share the same energy state having only
one particle per energy state, following the Fermi-Dirac distribution.

High Brightness Electron Injectors for
Light Sources — June 14-18, 2010



(¥0

states given by,

fap = e B/keT

For the second particle type, of which electrons are a
member being one-half spin fermions, the energy
distribution of occupied states (DOS) is given by the
Fermi-Dirac (F-D) function,

B 1
JrD = 1 &+ e(E—Ep)/kpT
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Maxwell-Boltzman

Comparison of the particle energy distributions in the high-energy

talls of the classical Maxwell-Boltzmann and

mechanical Fermi-Dirac functions.
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density for a cathode at temperature,
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Performing these simple integrals gives the thermionic
current density,

. 2
QkBT E_(ﬁworkszT
T
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(]_ — -T)Tge_ﬁi'wm*k,/kBT

Jthermionic — A

Here A is 120 amp/cm?/degK?, and (1-r) accounts for
the reflection of electrons at the metal surface. The
reflection and refraction of electrons as they transit the
surface Is discussed In a later section. In terms of
fundamental quantities, the wuniversal constant A s
["'Solid State Physics", by Ashcroft and Mermin, p. 363]
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Maxwell-Boltzmann electron
energy distributions at 300 degK
where the rms electron energy
spread is 0.049 eV, and at 2500
degK corresponding to an rms
energy spread of 0.41 eV. The
Initial spread in transverse
velocity due to the electron
temperature gives the beam
angular divergence and hence its
thermionic emittance.
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The root-mean-square (rms) beam size, c,, iS given by the
transverse beam distribution which for a uniform radial distribution
with radius R is R/2. The rms divergence is given by

(p=) _ 1 (v37)

Ptotal - 6/7 &

Opr =

The normalized, rms thermal emittance is then

(v2)

C

€n = Oy Reiser, p56-66
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 Therefore the thermionic emittance of a Maxwell-Boltzmann
distribution at temperature, T, is

kplT

me?
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traces out the angular distribution to form the transverse phase
space distribution as illustrated.

Distribution in

Distribution in Phase Space

Coordinate Space
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guantity called the normalized divergence, which for thermionic

emission is
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2. Electron transport to the surface
3. Escape through the barrier

Metal Vacuum
A
g move tO su I’face EScape to vacuum
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1)Photon
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Potential barrier
due to spillout electrons
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_ Optical depth
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Fig. 1: Electron energy distnbution function vs. energy with 120 w/em? absorbed laser fluence at 5
ume delays, The dashed line is the best Fermi-Dirac fit and the corresponding electron temperature,
T,. is shown. The vertical scale is in units of density of states.

Fann et al., “Observation of the thermalization of electrons in a metal excited by
femtosecond optical pulses,” in Ultrafast Phenomenona, ed. J.-L. Martin, A. Meigus,
G.A. Mourou and A.H. Zewail, Springer Verlag 1993, p331-334.
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The optical skin depth depends upon
wavelength and is given by,

A
Yo

where k is the imaginary part of the complex
index of refraction,

n=n+Ik

and A is the free space photon wavelength.
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The reflectivity is given by the Fresnel relation
in terms of the real part of the index of refraction,

Reflectivity = R(n, (@), n,(®),6,)
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While photoemission is regarded quantum mechanical effect due to
guantization of photons, emission itself is classical. l.e., electrons do not
tunnel through barrier, but classically escape over it.
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(-p2 ) = IIIQ(E,Q,QO)pE.dEd(msQ)d@
ot T [ T g(E,0,p)dEd(cosf)dy

» The g-function and the integration limits depend upon the emission
processes. We assume for the three-step photo-emission model that
g depends only on energy,

Jphoto = (1 — frp(E + Iw)) frp(F)
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pr = +/2m(E + hw)sinficosy

 The mean square of the x-momentum becomes,

E L or o s )
(P2 ) = 2m E;+¢'=eff—ﬁw dE f\/% d(cost) f[;. dp(E + hw)sin“fcos=y
\Piot/ [ dE [ d(cosh) [ dg
« Performing these integrals gives the photo-electric normalized
emittance
i — ey

Ephoto — Tz

P
” ] High Brightness Electron Injectors for
’ Light Sources — June 14-18, 2010
E 71 A i

Imec?



TaT;
” ] High Brightness Electron Injectors for
Light Sources — June 14-18, 2010

Photoelectric Normalized Divergence (m

4 45 5 55 6

Photon Energy (eV)
0 MV/m
50 MV/m
100 MV/m



(W0

1.5 .

9
106 v B
8§ 5E
=2 .2
EAE
= N B
E=G
04 & 5E
' e

Quantum Efficiency Thermal Emittance
g 1
-
-
— ;
& 0.50 microns/mm(rms)
E 6.68x10°>
:
& 0.5
v
4518 eV
2 1 | ! 1 0‘
4 4.45 4.5 4.6 4.65 4.7
Effective Work Function (eV)

0.8




(¥0

barrier enough for useful emission.

.j — /R(EQHT)D(Emﬁ EU)dEE

where the supply function, n(E,,T), is the flux of electrons incident
upon the barrier with energies between E, and E, + dE,. The barrier
IS same as that shown earlier and is determined by the work
function, the image charge and the applied electric field, E,. The
transmission of electrons through this barrier is given by the
transparency function, D(E,,E,).
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* dy) is the Nordheim function which to a good approximation is
given by

O(y) =1 — 0.142y — 0.855y"
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strong dependence of yield and shape upon applied field.
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A collated representation of the field enhancement factors [} associated with
various idealised microprotrusion geometries. (From Rohrbach [31], with
permission. )

“High Voltage Vacuum Insulation, Basic Concepts and Technological Practice,”
Ed. Rod Latham, Academic Press 1995
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pecial Topics:
*Refraction of electrons at the cathode-vacuum boundary
Effect of surface roughness on emittance
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than using the term, thermal emittance, we prefer to use the general
term of cathode or intrinsic emittance for any emission process. And
instead define the intrinsic emittance for each of the three emission
processes. The intrinsic emittance for thermionic emission is
approximately 0.3 microns/mm for a cathode temperature of 2500
degK. The photo-electric emittance for a copper cathode ranges
between 0.5 to 1 micron/mm depending upon the photon
wavelength, and the emittance was shown to be proportional to the
guantum efficiency. The field-emission emittance is found to vary
between 0.5 to 2 microns/mm for fields from 10° to 101° V/m, and
hence has larger emittance for the same source size than the other
two processes.

Homework problems
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