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Lecture 5 
Beam Dynamics with Space Charge 

 
 
 

 
A. Compensation of space charge emittance in photocathode RF guns 

 Emittance compensation in RF gun was first explained by Carlsteni  using the concepts of 
slice and projected emittances.  This approach divides the electron bunch into thin temporal 
slices which are not mutually interacting.  Each slice’s emittance is assumed to be constant and 
nearly equal to the thermal emittance.  Their relative orientation in transverse phase space differs 
from slice-to-slice, i.e. the slices all have different Courant-Snyder parameters and betatron 
functions. 
 The projected emittance is the emittance of the sum of slices.  Clearly the smallest 
projected emittance is the slice emittance and it can increase and decrease depending upon the 
behavior of the slices.  The slice and projected emittance concept is illustrated in Figure 1. 
 It turns out that since the slices are all born aligned at the cathode and are very close in 
time, that they have a regular, correlated relationship.  It is the understanding and control of this 
correlated relationship that allows us to compensate for projected emittance growth due to linear 
space charge forces. 
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 Compensation of the linear space charge force is best explained by beginning with the 
beam envelope equation for a slice with peak current I in a uniform focusing channel, 
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discussed earlier, we associate the thermal emittance with the emittance for each thin slice of 
length δζ at longitudinal locations ζ along the bunch as shown in the figure. 

 
 
 

Figure 1 
 
To elucidate the physics and simplify the math, assume the thermal emittance is zero and the 
space charge defocusing force is exactly balanced by the external focusing field Kr producing a 
beam of constant laminar flow (Brillouin flow) [ref] of equilibrium size, σeq.   The envelope 
equation is then, 
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The focusing needed to counteract the space charge de-focusing is 
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Consider small perturbation of the equilibrium radius for each slice, 
( ) ( ) ( )ζδσζσζσ += eq                                        Eqn. 4 

with the envelope equation for these perturbations being, 
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The general solution for deviations from the equilibrium radius is, 
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Setting the initial slice angle to zero and defining the initial radial deviation as, 
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( ) ( )ζσσζδσ eq−= 00                                             Eqn. 7 

results in an oscillating slice rms size as they propagate along the channel 
[Rosenzweig&Serafini], 

( ) [ ] zKz reqeq 2cos)()(, 0 ζσσζσζσ −+= .                            Eqn. 8 

This solution results in an emittance which oscillates π/2 out of phase with the beam size, 
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where δIrms is the rms current along the ζ-coordinate. 
 This perturbative solution to the balanced envelope equation exhibits an oscillatory 

projected emittance where all the slices oscillate with the same frequency, eqrK ,2 , but with 

different amplitudes.  Therefore if the slices are initially aligned in transverse phase space, then 
there are periodic locations where they will re-align and the projected emittance is a local 
minimum, independent of their amplitude.  Full compensation of the linear space charge force 
occurs at these local minima.   
 It needs to be emphasized that emittance compensation is a small amplitude solution 
about the equilibrium between space charge defocusing and applied focusing forces.  It assumes 

the oscillation period, eqrK ,2 , is constant for all slices, but allows the amplitude to have a slice 

current dependence, σeq(Ip).  Therefore this form of emittance compensation works best for 
square bunches where the slice current is constant. 
 In summary, the assumptions made in the above derivation and the properties of 
emittance compensation are: 

1. The derivation begins with all slices of nearly equal peak current propagating with 
equilibrium radii in a laminar flow. 

2. The beam envelope equation is linearized and solved for small perturbations about 
this equilibrium. 

3. The solution obtained shows all slice radii and emittances oscillate with the same 
frequency, independent of amplitude. 

4. Assuming the slices are all born aligned, they will re-align at multiple locations as the 
beam propagates, with the projected emittance being a local minimum at each 
alignment.  The beam size will oscillate with the same frequency, but shifted in phase 
by π/2. 

 We note that this description of emittance compensation for linear space charge emittance 
makes no assumption about the nature of the focusing channel.  Therefore this analysis applies 
equally well to both RF and DC guns.  In fact, the same fundamental concept has been applied to 
the merger optics of a space charge dominated beams into energy recover linacs, as well as other 
beam conditioners, as discussed below. 
 

B. Matching to Booster using the Ferrario condition 
 In addition to compensating for the emittance from the gun, it is necessary to carefully 
match the beam into a high-gradient booster accelerator and damp the emittance oscillations.  
The required matching condition is referred to as the Ferrario working pointii and was initially 
formulated for the LCLS injector.  In this scheme the RF focusing of the linac is matched to the 
invariant envelope to damp the emittance to its final value at a relativistic energy.  The working 
point matching condition requires the emittance to be a local maximum and the envelope to be a 
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waist at the entrance to the booster.  The waist size is related by the strength of the RF fields.  RF 
focusing aligns and acceleration damps the emittance oscillations. 
 Matching the beam to the first accelerator is a natural continuation of the gun’s emittance 
compensation, and should obey the following conditions:  the beam is at a waist: 0=′σ  and the 
waist size at injection determined by a balancing of the rf transverse force with the space charge 
force.   
 For this example, we assume the RF-lens at the entrance to the booster is similar to that at 
the gun exit with an injection phase at crest for maximum acceleration, φe=π/2, so the angular 
kick is, 
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Taking the derivative gives the rf term needed for the envelope equation, 
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the waist at injection to the accelerator. The matched beam emittance decreases along the 
accelerator due the initial focus at the entrance and Landau damping.  This behavior has been 
verified using HOMDYN, an envelope code with slices, and the particle-pusher code Parmela.  
As an example, the Parmela results for a two RF frequency gun and its match into a booster is 
shown in Figure 2. 

 
Figure 2 

An emittance compensated and matched beam in a 2f rf gun and booster injector.  The emittance 
oscillates with multiple local minima between the gun and linac and is a local maximum at 
injection in accordance with the Ferrario operating point. 
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 The combination of emittance compensation and the Ferrario operating point produces 
the highest quality beam for an rf injector. 
 

C. RF/velocity bunching 
 The maximum peak brightness from an rf gun is less than the current needed for the 4th 
generation light sources.  The gun peak current is no more than 100 amperes, as shown in Figure 
3, whereas LCLS for example requires 3500 amperes to saturate at 15 angstroms in a 100 meters 
undulator.  The peak current in the new light sources is increased by compressing the bunch at 
high-energy with a non-isochronous chicane to boost the peak current a factor of 35 or more.  
The disadvantage of this technique is the significant increase in emittance due to coherent 
synchrotron radiation. 
 

 
Figure 3 

Bunch length vs charge for a 0.85 ps (rms) long drive laser pulse.  The cathode peak rf field is 
110MV/m and the launch phase 30 degrees, making the launch field 55MV/m.    
 
 A low-energy technique considered an improvement over ballistic compression is RF 
velocity bunching.  In RF velocity bunching the bunch is bunched while being accelerated in an 
RF field.  In thermionic injectors this approach was used after some initial ballistic compression 
in a final compression stage with a rf section called a tapered phase velocity (TPV) section. [D. 
Yeremian et al.]  The basis of the longitudinal dynamics was described in Slater’s classic book, 
Microwave Electronics, D. Van Nostrand Publisher, Princeton, N.J., 1950.  Figure 4 is a 
reproduction from this book showing the trajectories of constant Hamiltonian in phase-
momentum space.  Recent workiii  has made considerable progress in the contemporary 
formulation by applying the envelope equation to the problem of emittance growth. 
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Figure 4 

 
 RF velocity bunchingiv occurs when at injection phases where the electrons are moving 
slower than the accelerating wave, and gain energy as they fall behind the synchronous phase, 
ψo.  An advantage of RF compression over ballistic compression is the electrons gain energy 
while they’re being compressed.  This helps control of the emittance growth. 
 The emittance compensation for both ballistic and RF compression is best understood by 
returning to the envelope equation, 
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It’s interesting to describe in some detail each term in this equation.  The first is simply the 

acceleration, 
22cβ
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sometimes called Landau damping.  This is easy to understand since 
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divergence obviously decreases with increasing energy, 2
0

mc

eE=′γ .  For this discussion, this term 

is assumed to be small. 
 The third and fourth terms are particularly of interest for describing emittance 
compensation during bunch compression.  rKσ is an focusing acceleration usually provided by a 

solenoid lens, 
2
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, and fourth is the familiar space charge defocusing acceleration.  

Same as for the emittance compensation in the gun, the space charge force is balanced by the 
solenoid focusing, but now the magnetic field of the solenoid needs to be increased proportional 
to the peak current. 
 In ballistic compression the current increases as the bunch propagates so ( )zKII z+= 10 , 

where Kz is related to the velocity spread along the bunch, bunchβ ′ .  The setting the solenoid 

focusing equal to the space charge defocusing at the equilibrium beam size, σeq gives, 
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 For RF velocity bunching the current increases with energy, )1(0 zkII γγ ′+= , and a 

similar relation for the solenoid field to maintain the equilibrium radius, 
 

zkBBRF γγ ′+= 10 .                                                     Eqn. 14 

 These solutions need to be studied using a perturbation analysis for stability against beam 
breakup effects.  There is also a penalty paid for confining the beam using a solenoid magnetic 
field which is an increase in the potential minimum at the bunch centerv. 
 

D. Beam merging for ERL’s 
This is an example of the continuing refinement, expansion and application of the concepts of 
emittance compensation and the invariant envelope. 
 In Energy Recovery Linacs (ERLs) it is necessary to merge the injector beam with the 
high-energy re-circulated beam without compromising either’s emittance.  The reverse process is 
required to separate the decelerated spent beam from the freshly accelerated one.  It is desirable 
to merge and separate beams with the low-energy beam energy of no more than 10MeV, for 
system efficiency and to reduce the induced radioactivity of the low-energy beam dump.  It is 
challenging to maintain the brightness of a space-charge dominated beam in a bending system.  
The longitudinal space charge (LSC) forces change the beam’s energy distribution as it 
propagates along the beam line.  In a straight, dispersion less beam line, this increasing energy 
spread can result in chromatic aberrations, which generally are small compared to geometric 
distortions.  However in a system with bends, the varying beam energy ruins the system’s 
achromaticity and leads to residual spatial and angular dispersion, causing emittance growth in 
the plan of the bend. 
 This is a general problem for all bending transport lines, including chicane compressors 
for boosting the peak current and large angle bends for re-circulating the beam in an ERL.  In 
these cases the energy is usually high enough to suppress the LSC forces, however coherent 
synchrotron radiation (CSR) is present at all energies and also produces a changing energy 
distribution as the beam propagates. 
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 An early intuitive solution to this problem was to adjust the bend fields in order to 
compensate for the increased energy spread due to CSR.  The idea was illustrated by adjusting 
the last two dipoles in a three-dipole chicane compressorvi  and with sextupole fields in a 180 
degree bend for ERL applicationsvii  
 A more fundamental understanding of the problem and its solution has been given by 
Litvinenko and co-workersviii .  These authors introduce the concept of ‘generalized dispersion’ to 
analyze the problem.  Whereas normal dispersion results from the optical properties of the 
transport elements themselves, generalized dispersion includes the additional dispersive effects 
resulting from energy changes due to the beam’s self-energy due to phenomena like LSC and 
CSR. 
 The generalized spatial and angular dispersion is defined by, 
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The first term on the right is the normal dispersion for a beam with energy spread δ(s), where the 
spatial and angular dispersions are, 
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The beam curvature is )(/1)(0 ssK ρ= .  The two-dimensional M(s1|s)-matrix is the linear 

transformation through the bending system from location s1 to s for trajectory position and angle, 
(x, x’).  In a doubly-achromatic system, the normal dispersions are both zero, 0)( =sη  and 

0)( =′ sη at the end of the bend, s=sf. 
 The second term on the right of the generalized dispersion equation takes into account the 
changing energy of the beam, dsds /)( δδ =′ , which is integrated with the transport matrix, 
M(s1|s) and the normal dispersion along the bend path length.  The emittance growth is unrelated 
to the energy acceptance of the bend but instead is not only affected by the rate of increased 
energy spread, but also by the details of the optics.  Since the energy change is well-correlated, it 
is possible to adapt the optics of the transport to compensate for the varying energy distribution 
and limit the overall emittance growth in the bend.  This can be done by including the effects of 
the second term of the generalized dispersion while optimizing the bend design. 
 By use of a polynomial formulation for the energy spread )(sδ  based upon Parmela 
simulations, Litvinenko et al. demonstrate the symmetry of a “zigzag” bending system results in 
zero generalized dispersion.  For a bending system symmetric in it’s quadrupole focusing and 
asymmetric in the curvature (which makes it a “zigzag”), there are four conditions required for 
zero generalized dispersion of a bend extending from s= –L to s=+L with its symmetry point at 
s=0, 
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),()( 1111 smsm =−     ),()( 1212 smsm =−                            Eqn. 17 
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The resulting bend has no generalized dispersion and when combined with the above discussed 
emittance compensation, is an effective solution to the merger problem.   
 It’s useful to comment on an important aspect of this approach to bend design.  That is, 
the bend’s parameters are now dependent upon the beam’s peak current.  Hidden inside the 
above 4-conditions is the fact that the M-matrix elements are related to both the bend component 
focusing and the space charge defocusing.  Hence, similar to the emittance compensation of the 
gun, the correction of generalize dispersion in a bend is also charge dependent. 
 

 
Figure 5 
Illustration of how generalized dispersion produces emittance growth in a chicane.  Top:  The 
achromatic chicane with no change in beam energy as it transits the bend produces a final beam 
which does not depend upon the initial energy spread.  Bottom:  A beam whose energy spread 
changes inside the chicane due to space charge or CSR is bent differently in the latter portion of 
the bend and the emittance grows due to a position and angular dependence upon the change in 
energy. 
 
                                                 
i.  [Carlsten, etc. emittance compensation ref] 
ii.  M. Ferrario et al., “HOMDYN study for the LCLS RF photo-injector”, SLAC-PUB-8400, 
LCLS-TN-00-04, LNF-00/004(P). 
iii .   “Recent Advances and Novel Ideas for High Brightness Electron Beam Production Based on 
Photo-Injectors”, M. Ferrario et al., SPARC-BD-03/003, LNF-03/06(P), Invited talk ICFA 
Workshop on “The Physics &Applications of High Brightness Electron Beams,” Chia Laguna, 
Sardinia, Italy, July 1-6, 2002. 
iv.  L. Serafini and M. Ferrario, “Velocity Bunching in Photoinjectors”, AIP CP 581,2001, p. 87. 
v.  See Electron Physics of Vacuum and Gaseous Devices”, M. Sedlacek, Wiley-Interscience, 
p.236-253, etc. for a discussion of the subtleties confining the beam. 
vi.  D.H. Dowell, “Reduction of bend plane emittance growth in a chicane pulse compressor,” 
PAC97 Conference Proc. 
vii.  D.H. Dowell, “Compensation of bend-plane emittance growth in a 10 degree bend,” PAC97. 
viii .  [V.N. Litvinenko, R. Hajima and D. Kayran, Merger designs for ERLs, NIM] 


