2.3 Introduction to EES

Engineering Equation Solver (EES)

- EES solves non-linear sets of equations
 - » iterative solution technique starting from the Guess values
- Equations CAN (but shouldn't usually) be entered in any order
- EES will check that there are enough equations & unknowns
- There are sets of equations for which no solution exists
- Equations are entered in the Equations window
 - » EES is NOT case sensitive
 - » Variable names must start with a letter
 - » 1 equation per line
 - » typical rules (^, *, /, +, -)

Annotating EES Code

- Your equations can be annotated to make the problem more understandable
 - » use comments "", or {}
 - » comments do not affect the solution

"EXAMPLE 3-2: Energy absorption in a lens"k=1.5 [W/m-K]"conductivity"L=1 [cm]*convert(cm,m)"lens thickness"alpha=0.1 [1/mm]*convert(1/mm,1/m)"absorption coefficient"q_flux=0.1 [W/cm^2]*convert(W/cm^2,W/m^2)"incident energy"h=20 [W/m^2-K]"heat transfer coefficient"T_a=20 [C]"ambient air temperature"

"Obtain constants of integration"

T_a+q_flux/(k*alpha)-C_2=-q_flux/h-k*C_1/h -q_flux*exp(-alpha*L)/(k*alpha)+C_1*L+C_2-T_a=-q_flux*exp(-alpha*L)/h-k*C_1/h

"Maximize temperature"

x=x_cm*convert(cm,m) T=-q_flux*exp(-alpha*x)/(k*alpha)+C_1*x+C_2

Using EES Effectively

- It is generally NOT a good idea to enter every equation in a problem and then try to solve it
 - » it is difficult to debug a large problem
 - » it is easy to make small mistakes (e.g., T1 is not T_1)
- Better approach enter equations systematically and solve your problem often
 - » allows you to quickly isolate and fix problems
 - » reduces frustration

Using EES Effectively

"Heat Exchanger Geometry"

D_tube_out=0.0095 t_tube=0.0009 N_tube_row=10 N_tube_col=2 H=0.2 W=0.204 L=0.06 t_fin=0.00015 p_fin=0.0015

"Operating Conditions"

T_f_in=converttemp(C,K,75) T_a_in=converttemp(C,K,20) P_f=1*convert(atm,Pa) P_a=1*convert(atm,Pa) Fluid\$='Water' Vdot_f_gpm=0.5 Vdot_f=Vdot_f_gpm*convert(gal/min,m*3/s)

"Properties"

rho_f=density(Fluid\$,T=T_f_in,P=P_f)
mu_f=viscosity(Fluid\$,T=T_f_in,P=P_f)
k_f=conductivity(Fluid\$,T=T_f_in,P=P_f)
Pr_f=Prandtl(Fluid\$,T=T_f_in,P=P_f)
c_f=cP(Fluid\$,T=T_f_in,P=P_f)
rho_a=density(Air,T=T_a_in,P=P_a)
mu_a=viscosity(Air,T=T_a_in)
k_a=conductivity(Air,T=T_a_in)
Pr_a=Prandtl(Air,T=T_a_in)
c_a=cP(Air,T=T_a_in)

"Air-Side Performance"

Vdot_a_cfm=60 Vdot_a=Vdot_a_cfm*convert(cfm,m^3/s) mdot_a=Vdot_a*rho_a Nf=W/p_fin Ac_a=(H-N_tube_row*D_tube_out)*(W-Nf*t_fin) per_a=Nf*2*(H-N_tube_row*D_tube_out) dh_a=4*Ac_a/per_a um_a=Vdot_a/Ac_a Re_a=um_a*rho_a*dh_a/mu_a f_a=96/Re_a DP_a=f_a*(L/dh_a)*rho_a*um_a^2/2 DP_a_inH20=DP_a*convert(Pa,inH20) DP_a_inH20=0.3927-0.003437*Vdot_a_cfm2

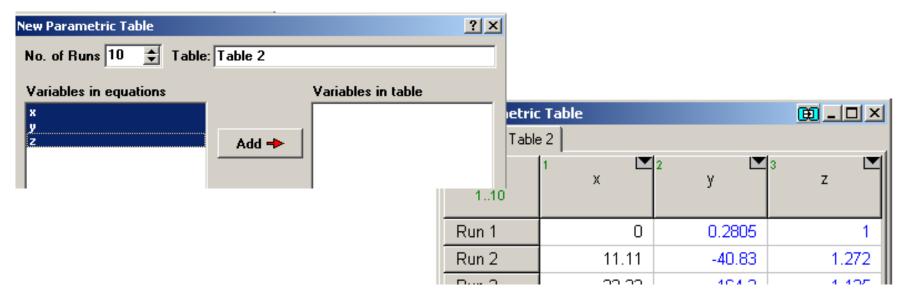
"tube outer diameter" "tube thickness" "number of tube rows" "height of core" "width of core" "length of core" "thickness of fins" "fin pitch - distance between adjacent fins"

"inlet temperature of fluid" "inlet temperature of air" "pressure of fluid" "pressure of air" "type of fluid"

"volumetric flow rate of fluid"

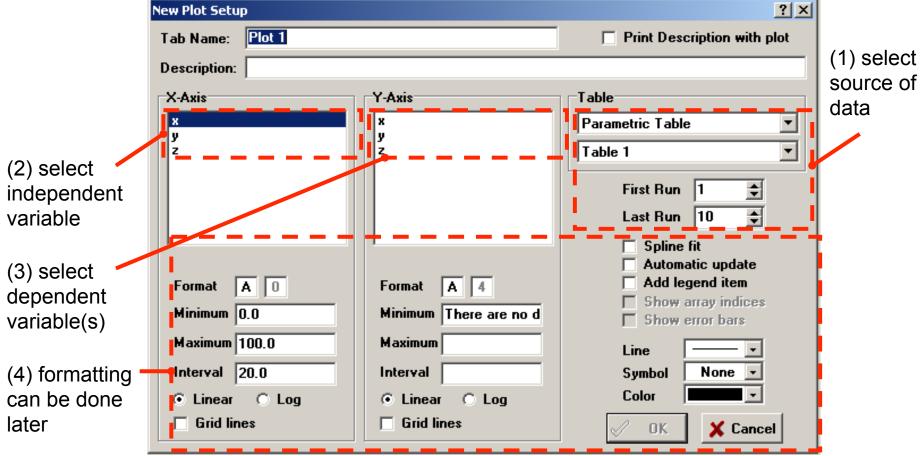
"density of fluid" "viscosity of fluid" "conductivity of fluid" "Prandtl number of fluid" "specific heat capacity of fluid" "density of air" "viscosity of air" "conductivity of air" "Prandtl number of air" "specific heat capacity of air"

"Guess for the air-side flow rate" "Air side flow rate in SI units" "Mass flow rate on air side" "Number of fins on air side" "Cross-sectional area available for air flow" "Perimeter for flow" "Hydraulic diameter of flow" "Reynolds number" "Friction factor of flow" "Pressure drop" "Pressure drop in inch H20" "Fan curve" equations are entered in order - therefore, any bottom part of code can be commented out and the rest run


Formatted Equations

- The formatted equations window provides the equations in a more readable format
 - » greek variable names become greek symbols
 - » {} comments do not appear in formatted equations
 - » "" comments do appear in formatted equations
 - » _ gives subscript, _dot gives a dot, others

Equations Window		K Formatted Equations	
X^2+Y^3=77	"This is a		
sqrt(X/(Y^2+1))=alpha alpha=1.23456	{This cor "Greek na	χ^2 + χ^3 = 77 This is a comment	
DELTAT=25	"Use upp		
m_dot=X+Y	{_dot, _ba	$\int \frac{X}{\alpha} = \alpha$	
V_1=alpha^2	"note that	$(V Y^2 + 1)$	
\$TabStops 1.25 in		α = 1.23456 Greek names appear in symbol font	
		ΔT = 25 Use upper case letters for upper case symbol	
		$\dot{m} = X + Y$	
		$V_1 = \alpha^2$ note that underscores signify subscripts	

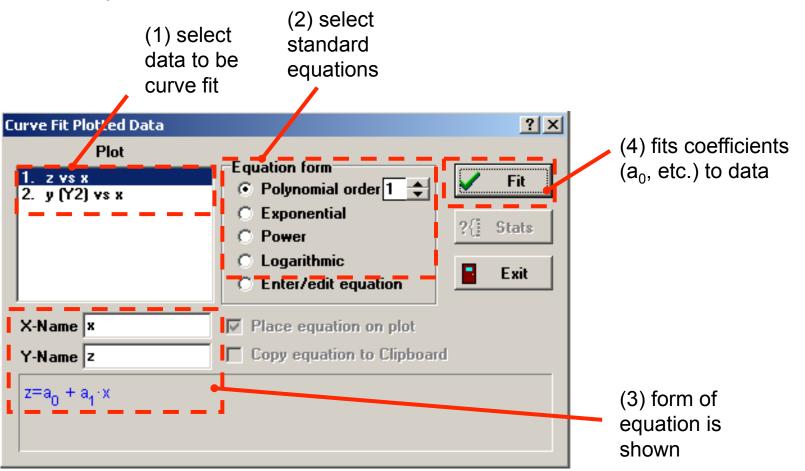

Parametric Tables

- Parametric tables allow you to run EES multiple times
 - » enables parametric studies
 - » each row in the table corresponds to solving the equations
 - » variables that are set in the table are pasted into the Equations window
 - » the results of the calculation are stored in the other columns
 - » be careful not to over-constrain your problem

Plotting

- Data in any table can be plotted (parametric, lookup, array, or integration)
 - » Select New Plot Window from Plots menu

Plot Formatting


- Plot axes, legends, etc. can be created (
- **Grid lines**
- Data symbols
- Splines
- Adding text or images 💔

- Adding arrows
- Moving plots (

Curve Fitting

- Any data that is plotted can be curve fit
- You can use standard curve fits or build a custom functional form

Curve Fitting (continued)

Curve Fit Plotted Data Plot 1. z vs x 2. y (Y2) vs x	Equation form Polynomial order Exponential Power Logarithmic	? X Plot ?{] Stats Exit		best fit equation can be plotted details about fit can be examined
X-Name × Y-Name z z=2.5406 - 0.015782·x +	 ○ Enter/edit equation ✓ Place equation on plot □ Copy equation to Clipboar 0.00011273·x² 		can	et-fit equation be exported to or clipboard
best-fit				
coefficients				
are shown				

Non-Standard Curve Fitting

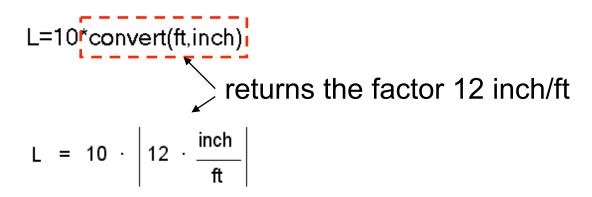
(1) select Enter/edit equation	Curve Fit Plotted Data Plot 1. z vs x 2. y (Y2) vs x	Equation form Polynomial order Exponential Power Logarithmic Enter/edit equation	?{ Fit ?{ Stats Exit
	X-Name × Y-Name z z=a0/x+a1+a2*x	✓ Place equation on plot ✓ Copy equation to Clipboard	

(2) make up your own equation type:z=some function of x where a0, a1,etc are coefficients to be adjusted

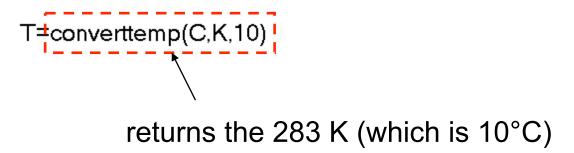
Problem #1 (try on your own)

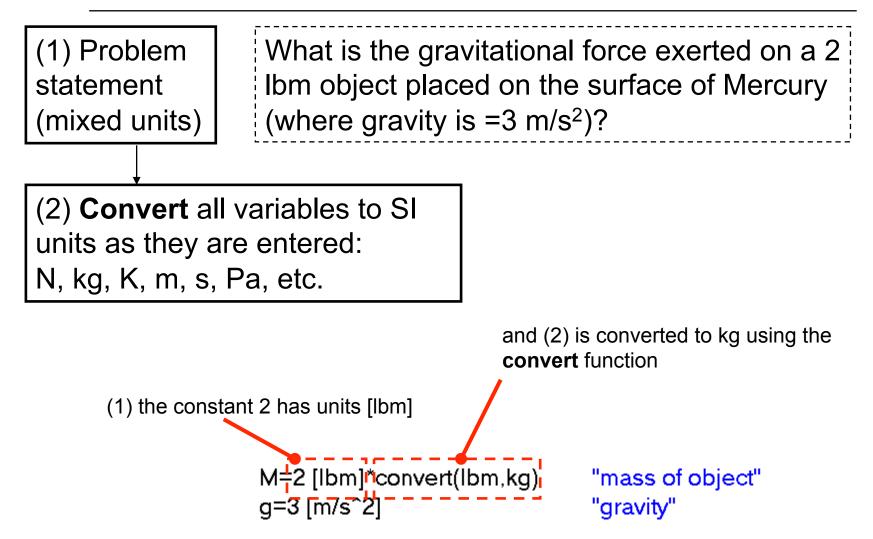
Problem 1

Solve the equation: $a / x + b + cx^2 = 1$ for a = 1, b = 2, and c = 0.5.


Make a plot showing how the solution, x, varies as a function of c for values of c ranging from 0.1 to 10. Label your axes. Overlay on your plot the solution if a=2 and a=3 and use a legend to differentiate the curves.

Units


- Most engineering problems involve variables that correspond to physical quantities with units
- EES can:
 - » help you convert between units
 - » allows you to assign a unit to each variable
 - » checks to see if the units assigned to the variables are consistent with the set of equations that you are using
- EES will **NOT** adjust your units so that they are consistent


The Convert & Converttemp Functions

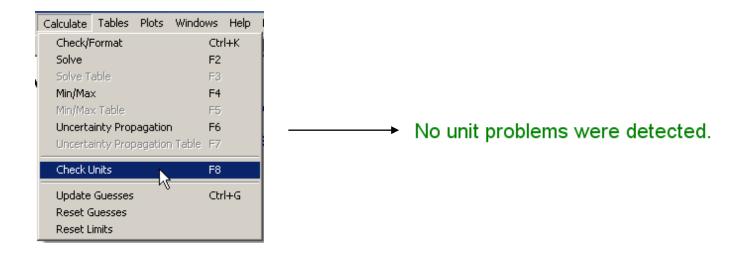
The function **Convert('unit1','unit2')** returns the conversion factor to go from 'unit1' to 'unit2'

The function **Converttemp('unit1','unit2',temperature)** returns the temperature converted from 'unit1' to 'unit2'

(3) **Set** the units of every variable as it is entered

Function Info Ctrl+Ak€F Unit Conversion Info Constants	He m gr		
Show array variables			
Show string variables			
Variable	Guess 💌	Lower	Upper Display Units
	3	-infinity	infinity A 3 🙀 m/s^2
M	-9999	-infinity	infinity A 3 N kg

(4) **Solve** the problem in SI units & set the units of each variable in the problem


F=M*g

"force on object"

🔩 Variable Information					
🔽 Show array variables					
Show string variables					
Variable	Guess 🔻	Lower	Upper	Display	Units
F	2.722	-infinity	infinity	A 3 N N	
g	3	-infinity	infinity	A 3 M m/s	s^2
M	0.9072	-infinity	infinity	A 3 N kg	

the SI unit of force is N

(5) **Check** your equations for dimensional consistency

(6) **Convert** your solution to whatever units you want

F_lbf=F*convert(N,lbf)

"force in lbf"

You will never make a unit error and you have ensured that your equations are dimensionally consistent

Problem 2

A concrete wall is 8 ft high and 10 ft long with a 10 inch thickness. The concrete wall has thermal conductivity 0.7 W/m-K. The wall separates conditioned room air from ambient air. The temperature of the inner surface of the wall is maintained at 25° C.

Determine the heat flow through the wall (\dot{q}) for an outer surface temperature of -5°C. The equation for this calculation is:

$$\dot{q} = k A \frac{\left(T_{in} - T_{out}\right)}{t}$$

where k is the thermal conductivity, A is the area of the wall, t is its thickness, and T_{in} and T_{out} are its inner and outer temperatures.

Make sure you check your units.

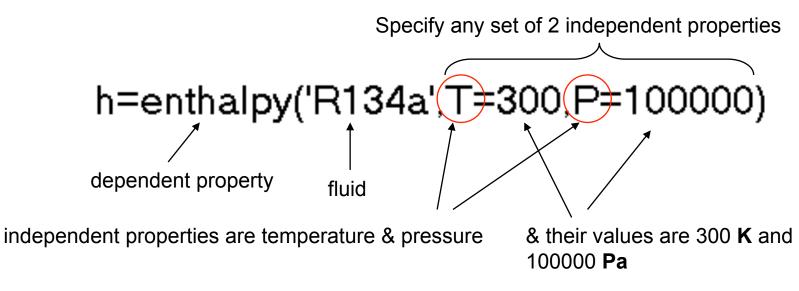
Make a plot that shows the heat flow through the wall as a function of wall thickness.

Built-in Functions

- EES provides many built-in functions
- Use the Function Information command (Options menu) to review
- Click the Function Info button for specific help

Function Information	<u>? ×</u>
O Math functions	C EES library routines
Fluid properties	C External routines
C Solid/liquid properties	
? Function Info	? Fluid Info
ACENTRICFACTOR CONDUCTIVITY [W/m-K] CP [kJ/kg-K] CV [kJ/kg-K] DENSITY [kg/m3] DEWPOINT [C] ENTHALPY [kJ/kg] ENTROPY [kJ/kg-K] FUGACITY [kPa]	▲ ir ▲ Air_ha ▲ AirH2O ▲ Ammonia ▲ Ammonia_mh ▲ Argon C2H2 C2H4 C2H50H
Ex: ACENTRICFACTOR(Air)	
🔁 Paste	🗙 Done

EES provides thermodynamic and transport properties for many fluids


Function Information	<u>? ×</u>
 Math functions Fluid properties Solid/liquid properties 	 EES library routines External routines Convection
7 Function Info	? Fluid Info
AcentricFactor Conductivity [W/m-K] Cp [J/kg-K] Cv [J/kg-K] Density [kg/m3] Dipole [debye] Enthalpy [J/kg] Enthalpy_fusion [J/kg] Entropy [J/kg-K]	C2H2 C2H4 C2H5OH C2H6 C3H8 C4H10 C5H12 C6H14 C8H18 ▼
Independent Properties Temperature [K]]
Ex: h_1=Enthalpy(C8H18,T=T_	_1]
🔁 Paste	🗙 Done

- In order to use these functions, you **MUST** set the unit system (Pa,
 - N, K, J, etc.)
 - » indicates the units of the independent properties provided to the functions and
 - » the units of the dependent properties returned from the function

Options	Calculate	Tables	Plots	Wind
Variab	Variable Info)	
Function Info		Ctrl+Alt+F		
Unit C	onversion Ir	nfo		
Const	ants			
Unit S	vstem	N 0	rl+Alt+	
	Iriteria		rl+Alt+	
Defau	lt Info			
Show Diagram Tool Bar				
Preferences				

Unit System	Specific Properties	
SI	Mass basis	E Load
🔿 English	C Molar basis	
]		🖳 😫 Store
Temperature Units	Pressure Units	
C Celsius	⊙ Pa ⊖ bar	
Kelvin	🔿 kPa 🔿 MPa	
Energy Units	Trig Functions C Degrees C Radians	V OK

• The property functions are very flexible

- » the values could be variables
- » other independent properties are also possible

h=enthalpy('R134a',T=300,s=1)

enthalpy at T=300 K and s=1 J/kg-K

- ACENTRICFACTOR
- CV and CP
- CONDUCTIVITY
- DENSITY
- DEWPOINT
- ENTHALPY
- ENTROPY
- FUGACITY
- HUMRAT
- INTENERGY
- MOLARMASS
- PRESSURE
- P_CRIT
- PRANDTL

- QUALITY
- RELHUM
- SPECHEAT
- SOUNDSPEED
- SURFACETENSION
- TEMPERATURE
- T_CRIT
- T_TRIPLE
- VISCOSITY
- WETBULB
- VOLUME
- VOLEXPCOE
- V_CRIT

- B= wet-bulb temperature
- D=dew-point temperature
- H=specific enthalpy
- P=pressure
- R=relative humidity
- S=specific entropy
- T=temperature
- U=specific internal energy
- V=specific volume (=1/density)
- W=humidity ratio
- X=quality

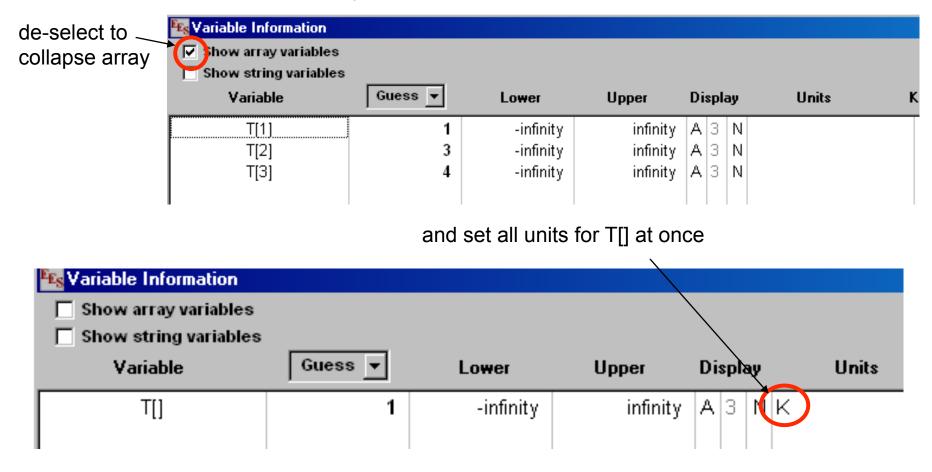
Problem 3

Determine the density of carbon dioxide (in kg/m^3) at a temperature of 500 R and a pressure of 600 bar.

Plot the temperature (in K) of deuterium as a function of pressure from 100 kPa to 10,000 kPa at constant specific volume = $0.1 \text{ m}^3/\text{kg}$.

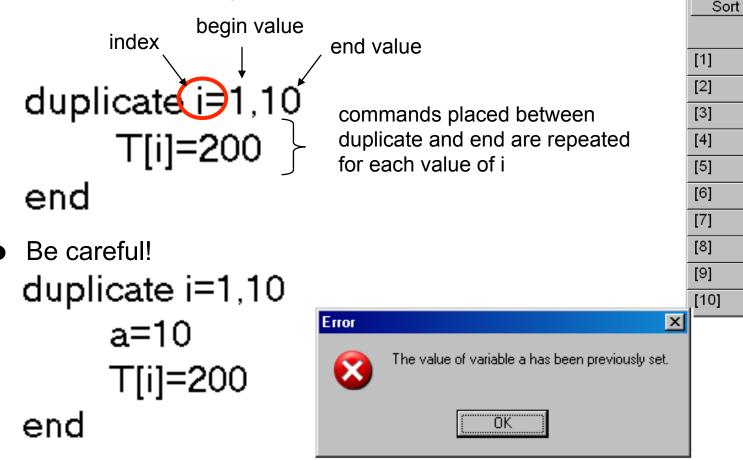
Arrays

- An array is a variable with multiple elements (a vector rather than a scalar)
- You access the elements with brackets []


T[1]=1 T[2]=3 T[3]=4

• Arrays are viewed in the Arrays window

Es Arrays Table	<u> </u>
Sort	' T _i
[1]	1
[2]	3
[3]	4


Arrays

• Units can be set for arrays all at once

Duplicate Loops

- Duplicate loops carry out a command a certain number of times
- Each time the loop iterates the index increases

🖽 🗕 🗆 🗵

T,

[K]

🔩 Arrays Ta