3.3 He IT Heat and Mass Transfer

Heat transfer characteristics of He IT are sufficiently unique
that conventional heat transfer (convection, conduction) do not

apply.
Important questions
= What is the limit to heat transfer, q°, critical energy, AE?
= What is the associated thermal gradient in the He IT?
= How is the surface temperature determined?
Understanding and modeling must be based on transport
properties of He IT
Examples to be considered
= Thermal stability of He II cooled magnet
= Design of a He IT bath heat exchanger
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Surface heat transfer - general form

= Surface heat transfer s
characteristics look similar to g
ordinary fluids

= Physical interpretation different

= h,is the Kapitza conductance regime
(non-boiling)

= @~ is the peak heat flux

= g, Minimum film boiling heat flux h,

= hg, film boiling heat transfer
coefficient

= All above processes are similar to
boiling heat transfer in normal
liquids, but the physical
interpretation is different

v

Log (AT)

Q > Helll
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Heat Conductivity of He IT

= Anomalous heat transport q

= Effective heat conductivity
comparable to that of high

—

A

v

AT

purity metals
= Low flux regime dT/dx ~q
= High flux regime dT/dx ~ g3

= Transition between two
regimes depends on the
diameter of channel

= Heat transport in He IT can be
understood in ferms of the
motion of two interpenetrating
fluids. This "Two Fluid" model
effectively describes the o
transport properties &

= High heat flux regime of s = -
greatest technical interest q(W/cm?)

Turbulent He IT
100} Mutual friction regime
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Peak Heat Flux in He IT Channel

= Thermal gradient in He IT channel allows T(x = 0) to increase
above T,

= For practical channel dimensions, gradient is controlled by mutual
friction interaction |

Q 1 d T, ~ 1.8K
< L
X

A 4

VdT . AP,  Thermal resistivity
& ——f (T )q f (T ) = p§S4T3 function

e dT
q= —[f 1(T )&} Non-linear conduction equation

= Heat flux is limited by maximum allowable temperature at
x = 0 (usually T,)
= Steady state gradient
= Thermal diffusion
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He IT Heat Conductivity Function, f1(T,p)
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= Correlation based on He IT
turbulent flow

f—l(T)~p54T3[t561 t56]3t_/ (p)

Where Al ~ 145 cm s/g

= Above correlation is good to
about 10%

= Results indicate that the
peak heat flux, Q*, should

decrease with increasing p
and T.

= Improved correlation by
Sato (2003)
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Maximum Steady State Heat Flux (q*)

Integrating the heat transport equation over the length of the channel

T, T, 10
< L > é"*
_ _ =
T 7 A
0 - 1f dat |” _ z(T,) e
— = o
L7 f(T) L5 2
b.J
This expression is used o compute the maximum q for
a channel heated at one end and containing He IT at
moderate pressure
Example: L =10 cm at T, = 1.8 K- q* = 5.9 W/cm? %6 18 20 T

Temperature { K)
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Transient Heat Transfer in He II

Heat pulse diffuses through Q (1)
conductor and is transferred to He T(x)
IT by conduction

= thermal diffusion length into -

LHe & cm rather than um as in He I
Surface temperature difference

AT, = ATy ATy where “Kapitza Conductance T ;

AT, = Q/h¢S (Kapitza Conductance) : pef: Interfacial temperature difference
Take-off power is equivalent to ; due to thermal mismatch between two media!
energy to raise local He II ' In He IT heat transfer, h, # 5 kW/m2K

temperature to T, = 2.2 K

Q-At= L pc:ﬂdx

Note: this problem has significant implications to the thermal
stability of He IT cooled superconducting magnets.
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Thermal diffusion - solids

o — N\ conamtvesoid—_
L

d »
<

»

Heat transport is described by the diffusion equation

oT o°T 2
E:Dthy where D, = K {m}

th — oC'| s
= Characteristic time for diffusion over length L:
L° Dt
o7y Corresponds to a Fourier number = 1 (Fo = I_tg )
th

Metals at low temperature
= Copper: Dy, ~1m?/s; forL=1mthenty~1s
= Stainless steel: Dy, ~ 3 x 103 m2/s; for L = 1 m then 1y ~ 3000 s
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Thermal "diffusion” - He IT

ar _
dx f(T)g?

The effective thermal conductivity of He IT is heat flux dependent

= At T=18K, f1(T) ~ 10000 kW3/m> K
= For heat flux q = 10 kW/m?, k. ~ 105 W/m K
= For heat flux q = 100 kW/m?2, k. ~ 1000 W/m K ~ k_, @ 2 K

Volume heat capacity of He IT is much larger than that of metals at
low temperature (pCy, 11 ~ 1000 kJ/m3K; pC,, ~ 0.2 kJ/m3K)

Effective thermal diffusivity for He IT
= Characteristic diffusion time (L =1m): Ty~ L2/D~10s

Significance: thermal diffusion is an important heat transport
mechanism in He IT (contrary to normal liquids except at very short
times)

f(T )CI3 = K =
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He IT thermal diffusion equation

oT o, oTY?
pCE:&(f 1&) where T4 %,OCf%L%AT%

= Non-linear partial differential equation

= Methods of solution
= Approximate methods (similarity solution)
= Numerical methods T(t)

= Problems of interest .

= Step function heat flux — Q(t) %mmasing

> X
= Heat pUISe 1 Q(b) T(t)

At ) | "X
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Step Function Heat Flux (Clamped flux)

< L >

—  a@®

= Non-linear diffusion equation that can be solved by numerical
methods of approximate methods (constant properties)

00 o [ae}%
ot OX| OX

here 0=2—  and t
wnere = anda 7 =
T, =T, f¥pC(T, -T. J°

= Boundary conditions: 00

= Heat transfer b.c. at x = O:
OX

3
__ 4 f Yt>0

x=0 Tz _Tb

= T=T,or®=0@ x = infinity (approximate solution for x << L)
= For finite length, L, numerical solution is required. Solution should
asymptotically approach steady state profile
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Boundary conditions @ x = L

Time to onset of film boiling, At*

100} | | | i ey e
- 1 depends on boundary condition at x = L.
™

Isothermal B.C.
>~ Diffusion
3 Boundary Conditions:
- Infinite [
|| channel D G // ::::::_—__;:::::::—__'—:—T; ISOTHXE=F|{.MAL
L=
/10,000 |
At*(sec) ' W ADIABATIC
. . “) q-’ /____ _______________ X__.L
Adiabatic B.C. C
Diffusion
Diffusion time (1) is indicated by point where  w a= ===\ =] 1=

boundar% conditionat x = L de‘rer'mmes At” - L -
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Forced flow He II pressure drop

m=—={ )

Recall for ideal superflow the (laminar) pressure drop is associated
with the normal fluid viscous drag (fountain effect)

In turbulent flow (Rey > 1200) He IT behaves more as a classical fluid

Re, =22
€p = Since u, is small, turbulent flow is common in helium
n

Associated pressure drop is given by the classical expression

d f (1
d—)p( = —4?’(; ,OVZJ where the friction factor, T, (Re,)
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‘L Friction factor for He II

R . Blausius correlation

¢ Walstrom
A Walstrom
® Kashani f = 0.079
----- Von Karman-Nikuradse R %
Colebrook eD
VY Fuzier s
vV Fuzierw

001 | | Von Karman-Nikuradse

1 1
| 7T

Colebrook fore = 1.4 x 104

_ - 1__4|Og( s, 1.25]
0.001 Ll Ll L i \/T 37D Re\/T

10 10 10

=1.737*In(Re*y/f )~ 0.396
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Surface Heat Transfer (He IT)

There are three regimes of heat transfer

that can occur at a heated surface in He IT -

1. Kapitza Conductance (non-boiling)
Temperature difference occurs at surface, AT, ~ 1K 0
Due to a surface thermal impedance

2. Transition to film boiling (unstable) o A~
Exchange between boiling and non-boiling condition
Q

AT can be large ~ 10 to 100 K

3. Film boiling "
Vapor layer covering surface © /\r\f\
Q
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Kapitza Thermal Boundary Conductance

e discovered by Kapitza (1941) while studying heat flow
around a heated Cu block in He 1II

e general term associated with thermal resistance at
low temperatures

How measured: h, = lim d
AT - 0 ATS
iy |
\\2_\3\!
= SOLlD HE I T(x) |
q // i
I -t s
T Ty T Ts ! -
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Practical Significance of Kapitza Conductance

= Kapitza conductance causes largest AT in a non-boiling heat
transfer process in He IT
= h,~10 kW/m2 K AT,(q = 10 kW/m2 K) ~ 1 K
= dT/dx,, ;1 ~100mK/m AT, g~ (T, - T,) ~ 400 mK over 4 m

= Kapitza conductance is important in the design of numerous
technical devices

= He IT heat exchangers
= Composite superconductors stability
= Low temperature refrigerators and instrumentation
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Theory of Kapitza Conductance

Phonon Radiation Limit

= Heat exchange occurs by phonons
(quantized lattice vibrations) impinging on
the interface

= Analogue to radiation heat transfer

q=o(T+AT) —0oT*

Comparison of Highest Experimental Values
for the Kapitza Conductance with
the Phonon Radiation Limit*

([ k ? 3N % hZ(19 K) h(1.9K)
where o= 8 Solid 0p(K)  (kW/m2-K)  (kW/m?K)
Exoand  10P\ €5 ) Ldzv ——— ——
. Xpan Pb 100 190 32
) 3 In 111 171 11
Au 162 155 8.8
=401 SAT 1+ E AT AT + l £ Ag 226 55 p
gq= Sn 195 54 12.5
~—~ 2 T T 4\ T Cu 343 30 7.5
Ni 440 19 4.0
hk W 405 18 2.5
KCl 230 22 6.9
= Note: hk ~ T3/®D-2 SiO, (quartz) 290 19 5.7
Si 636 6.4 42
LiF 750 5.1 45
AL, O, 1000 1.5 1.6

“ Compiled by Snyder.*'
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Theory of Kapitza Conductance (cont.)

= Phonon radiation limit is an upper limit because it does not take
into consideration boundary reflections due to dissimilarity
between solid & He TI
= Acoustic mismatch theory
= Based on impedance mismatch between dissimilar materials

= Similar to optical transmission between media with different
refractive indices

= Similar expression to Phonon Radiation Limit

q=o(T+AT) —0oT*

Where in this case, t k/lq
51, 4 3
o= A kB,OLCL ~02 and hk ~TA3
D

15R%p,C? 0

= This is a lower limit to heat transfer
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‘L Experimental values for Kapitza Conductance

Example Copper:

50 T T T =
phonon radiation limit -
) \ ) _
10 EXPER!MENTS
— (CLEAN SURFACES)
5
| =
EXPERIMENTS 2]
0.5 (DIRTY SURFACES) A
Khalatnikov Theory P o
ol F \ e =
0.05——= ’ : .
I.4 IG 1.B 2.0 22
T(K)

i) Phonon radiation limit
he = 4.4 T3 kW/m?K

ii) Acoustic mismatch theory
h = 0.021 T? kW/m2K

1i1) Experimental results

a) clean surfaces
h ~ 09 T? kW/m?K

b) dirty surfaces
h ~ 0.4 T? kW/m*K

Large variations —

Kapitza conductance is an
empirical quality.
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Kapitza Conductance for AT/T ~ 1

Expand from theory
q=o(T+AT) —0oT*

2 3
0= 40T3AT{1+2 ATT +(ATJ +5(£j } ~ AT

T 4\ T

= Alternate correlation
n

q= a(TS“ - T, ) for finite AT
where a and N are empirically determined

T, surface temperature = Ty, + AT
T,: fluid temperature near surface

USPAS Short Course Boston, MA 6/14 to 6/18/2010
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Large Heat Flux Kapitza Conductance

Empirical correlation

q= a(TSn —Tb”)

USPAS Short Course

wm

w

Pt(Ref 39)

High Cu (Ref 42)

Ag (Ref 29)

Al (Ref 41)
~_ow Cu (Ref 45)
Pb-Sn (Ref 45)

varnish-Cu (Ref 45)

0 [ 2 3 3 5
q (W/em?)
Metal Surface condition T.oatl Wiem?  OW/em” K) n
Cu As received 31 0.0486 2.8
Brushed and baked 2.85 Lo
Annealed 2.95 0.02 38
Polished 2.67 0.0455 3.45
Oxidized in air for
I month 2.68 0.046 346
oxidized in air at
200° C for 40 min 2.46 0.052 3.7
50-50 PbSn solder coated 243 0.076 34
Varnish coated 4.0 0.0735 2.05
Pt Machined 3.9 0.019 3.0
Ag Polished 2.8 0.06 3.0
Al Polished 2.66 0.049 34

Boston, MA 6/14 to 6/18/2010
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Film Boiling Heat Transfer Modes

significantly reducing heat transfer

Near saturation (p < p,) Ei\
Low density vapor blankets surface /\f\——\
Q

2. Pressurized to p > p,

Triple phase phenomena (He IT, He I,
vapor)

3. Near T, permits nucleate boiling in
He I phase w/o exceeding q°
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Film Boiling Heat Transfer (He II)

Sample T,(K) T,(K) dp(kPa)® h(kW/m?-K)
Wire (d =76 um) 1.8 150 0.42 1.1
Wire (d =25 um) 1.8 K 150 0.56 2.2
Flat rectangular plate 1.8 75 0.14 0.22
(39 mm x 11 mm) 1.8 75 0.28 0.3
1.8 75 0.84 0.55
Flat surface (d=13.7 mm) 2.01 40 0.13 0.69
2.01 25 0.237 0.98
Horizontal cylinder 1.88 40 0.10 0.2
(d=14.6 mm) 2.14 40 0.10 0.2
Wire (d =200 um) 2.05 150 0.14 0.66
Cylinder (d = 1.45 mm) 1.78 80 0.06 0.22

@ 1 kPa="75torr=70.3 cm He.

e Typical value hg ~ 0.5 kw/m?K
e hg (flat plates) < hy, (wires)

* hg increases with pressure
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Subcooled He IT Refrigerator

WEC

; ~ ~
Compressor
A He |
T- 45K
]
- J
Counter-flow
Heat Exchanger
4 )

Saturated Bath

— Heat Exchanger

T-1.8K

& _J
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Application: He IT Heat Exchanger

= Performance of He IT heat exchangers are
governed by several processes:

= Surface heat transfer coefficient due to Kapitza
conductance

= Thermal gradient in He IT channel allows T(x = 0) to
increase above T,

= Solution is similar fo a conductive fin problem

PU
— (T -T)=
+A(b )=0

= Heat flux is limited by the temperature along the
heat exchanger exceeding the local saturation
temperature

USPAS Short Course Boston, MA 6/14 to 6/18/2010
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i He IT Heat Exchanger Requirements

1. The heat exchanger must have sufficient surface area
> Q
CouU(T, - T)

U = overall heat transfer coefficient

2. Bulk boiling in the heat exchanger should be avoided.

T <Tg; everywhere within the heat exchanger

3. Temperature gradient along heat exchanger should be
minimized to not degrade performance

T, <T, otherwise heat transfer at the end is poor
(low effectiveness)
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Summary of He IT heat transfer

= Heat conductivity of He IT is very high and thus models to
interpret heat transfer are different from classical fluids

= Thermal gradient (dT/dx) in He IT governed by two
mechanisms

= Normal fluid viscous drag (u,) yielding dT/dx ~ q
= Turbulent "mutual friction” (dT/dx ~ q3)

= Peak heat flux is determined by the He IT near the heater
reaching a maximum with onset of local boiling

= Thermal diffusion-like mechanism controls heat transfer for
short times and can result in significantly higher peak heat flux

= Forced flow He IT pressure drop is similar to that of classical
fluids

= Non-boiling heat transfer controlled by Kapitza conductance
process (thermal impedance mismatch)

= Boiling heat transfer forms vapor film over surface.
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