

5.1 Cryogenic system design

- Low temperature environment
- Source of refrigeration
- Heat exchange medium
- Thermal insulation
- Structural support
- Instrumentation and control

Thermal Insulation Systems

- Solid foam insulation
- Powder insulation
- Vacuum
 - Radiation heat transfer
 - Gas conduction/convection
- Multi-layer insulation
 - Radiation shields (active and passive)
 - MLI

Solid Foam Insulations

- Solid foam insulations are not used very often in cryogenics because they have relatively poor performance
- Since these materials are typically gas filled, their thermal conductivity is $> k_{air} \sim 25 \text{ mW/m K}$.

Table 7.12. Apparent thermal conductivity of foam insulations for boundary temperatures of 300 K (80°F) and 77 K (-139°F)

	Density		Thermal Conductivity	
Foam	kg/m ³	lb _m /ft ³	mW/m-K	Btu/hr-ft-°F
Polyurethane	11	0.70	33	0.019
Polystyrene	39	2.4	33	0.019
	46	2.9	26	0.015
Rubber	80	5.0	36	0.021
Silica	160	10.0	55	0.032
Glass	140	8.7	35	0.020

Example:

Consider a Polystyrene LN₂ vessel with 20 mm wall and 1 m² surface area.

Heat leak: Q = kA
$$\Delta$$
T/L = 33 mW/m K x 1 m² x (300 - 77) K / 0.02 m = 368 W

$$h_{fg}$$
 (LN₂) = 200 J/g; ρ ~ 800 g/L

$$dm/dt = 1.84 g/s (8.3 L/hr)$$

Vacuum Insulation

- High performance insulation systems all involve some level of vacuum.
 - How low vacuum is needed?
- Even for perfect vacuum, thermal radiation can still contribute significantly to total heat leak
 - $Q_R \sim T^4$ so process is dominated by high temperature surfaces (usually 300 K)

- Radiation from room temperature is one of the main heat loads in cryogenic systems
- Black body spectrum is ideal emitted power versus wavelength of radiation
- Integral of spectrum is total emitted power

$$E_b = \int_0^\infty e_b(T, \lambda) d\lambda = \sigma T^4$$

where σ = 5.67 x 10⁻⁸ W/m²K⁴, the Stefan-Boltzman constant

$$e_b(T,\lambda) = \frac{8\pi hc}{\lambda^5} \left(\frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1} \right)$$

- Emissivity is the property of a surface material that determines the fraction of radiant flux that is absorbed or emitted.
- ε depends on material conductivity, temperature
- ε is also a function of wavelength, but engineering usually relies on average values measured for range of temperatures
- For a real surface, $q_{\nu} \cong \varepsilon \sigma T^4$

Radiation heat transfer

Net heat transfer for two facing black body surfaces

$$q_r = \sigma A[(T + \Delta T)^4 - T^4]$$

 For non-black bodies, the heat exchange between surfaces depends on the emissivity of each surface:

$$q_r = \left(\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2 - \varepsilon_1 \varepsilon_2}\right) \sigma \left(T_1^4 - T_2^4\right)$$

For
$$\varepsilon_1 \sim \varepsilon_2 = \varepsilon$$
 and $\varepsilon \ll 1$, () $\sim \varepsilon/2$

• Example: Radiant heat transfer between 300 K and 77 K $\epsilon \sim 0.05$,

$$q$$
 = 0.05/2 x 5.67 x 10⁻⁸ x (300⁴ - 77⁴) = 11.4 W/m² h_{fg} (LN₂) = 200 kJ/kg and the density, ρ = 800 kg/m³ volume consumption = 11.4 W/m²/200 J/g = 0.06 g/sm² or about $\frac{1}{4}$ liter/hour of LN₂ (much better than foam) Note if the low T surface were at 4 K in Helium, the liquid consumption would be larger because h_{fg} (LHe) is about 21 J/g

Two surfaces facing each other with vacuum between

Photon radiation exchange

- Residual heat leak due to gas conduction can contribute significantly to heat loading to a cryogenic system
 - At pressures near 1 Atm, the heat transfer is by natural convection
 - At lower pressure, convection is reduced, but gas conduction still can transfer considerable heat, k (T). This regime occurs for gas densities where the mean free path is less than the wall spacing.
- In addition to radiation heat transfer, gas conduction due to poor vacuum can seriously affect thermal performance

Gas conduction heat transfer

 At pressures below about 1 Pa, the mean free path of the molecule begins to exceed the distance between surfaces and heat is carried by Molecular-Kinetic processes

$$l \approx \frac{1}{n\sigma_{tot}} \approx \frac{k_B T}{\pi d^2 p}$$
 Where d is the molecule diameter and p is the pressure

- For helium gas at 1 Atm (100 kPa) and 300 K, $l \sim 60$ nm
- For helium at 1 Pa and 300 K, $l\sim 6$ mm, a distance comparable to spacing in containers
- In the molecular kinetic regime, the heat exchange depends on
 - Number of molecules striking the surface/unit time
 - The thermal equalization of the molecule with the surface
 - Probability that the molecule sticks to the surface

Adsorption & Accommodation Coef.

$$\alpha = \frac{T_i - T_e}{T_i - T_w} \le 1$$

 $\alpha = \frac{T_i - T_e}{T_i - T_w} \leq 1$ $T_i \text{ is the temperature of the incident molecule}$ $T_e \text{ is the temperature of the emitted molecule}$ $T_w \text{ is the temperature of the wall}$

For heat exchange between two surfaces, it is necessary to use an average accommodation coefficient,

$$\overline{\alpha} = \frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2 - \alpha_1 \alpha_2}$$

 $\overline{\alpha} = \frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2 - \alpha_1 \alpha_2}$ Note: If the surfaces are not of equal area, geometric corrections are required for this formula

Gas conduction heat exchange

 In the molecular-kinetic regime, heat transfer between two parallel surfaces can be calculated using the expression,

$$q = \frac{\overline{\alpha}}{4} \frac{\gamma + 1}{\gamma - 1} \left(\frac{2R}{\pi MT} \right)^{1/2} p(T_1 - T_2)$$
 Where $\gamma = C_p/C_v$

- Values for accommodation coefficients:
 - lack α decreases with cleaner surfaces
 - \bullet α increases with decreasing temperature to ~1 at T ~ T_{NBP}
 - For rough calculations, $\alpha \sim 0.5$ is practical

Surface condition	Transport gas	Temperature (K)	Accommodation coefficient
Very clean	helium	300	< 0.1
Engineering	helium	300	0.3
Engineering	helium	20	0.6
Engineering	nitrogen	250	0.7

Example of gas conduction heat transfer

- Consider a 100 liter (A = 1 m²) cryostat for storing liquid nitrogen.
 - Calculate the consumption of LN₂ if the vessel is only vacuum insulated. (h_{fg} = 198 kJ/kg). Radiant heat transfer between 300 K and 77 K (assume ϵ ~ 0.05)

$$q = 0.05/2 \times 5.67 \times 10^{-8} \times (300^4 - 77^4) = 11.4 \text{ W } (0.06 \text{ g/s})$$

• Calculate the consumption if the vessel had a poor vacuum with helium at p ~ 0.1 Pa (10⁻⁶ Atm)

$$q = \frac{\overline{\alpha}}{4} \frac{\gamma + 1}{\gamma - 1} \left(\frac{2R}{\pi MT} \right)^{\frac{1}{2}} p \left(T_1 - T_2 \right) \approx 7.6 \frac{p\Delta T}{\overline{T}^{\frac{1}{2}}} \approx 12W \quad \text{Adds to the radiation heat transfer doubling the heat load}$$

Conclusion: Good vacuum is highly desirable

Multi layer shielding

 Adding shielding between the radiant surfaces can significantly reduce the heat transfer. For n shields with emissivity e, the heat exchange is

$$q_r = \left(\frac{\varepsilon}{(n+1)(2-\varepsilon)}\right) \sigma \left(T_1^4 - T_2^4\right)$$

which for $\epsilon \ll 1$, reduces the q_r by a factor of 1/n +1

Note that the shield temperatures are not equally distributed because the heat exchange is not linear. Consider one shield and all emissivities = ε in steady state;

$$q_r(1,s) = \frac{\varepsilon}{2}\sigma(T_1^4 - T_s^4) = q_r(s,2) = \frac{\varepsilon}{2}\sigma(T_s^4 - T_2^4)$$

or

$$T_s = \left(\frac{T_1^4 + T_2^4}{2}\right)^{\frac{1}{4}} \sim 252 \text{ K for } T_1 = 300 \text{ K and } T_2 = 77 \text{ K}$$

Refrigerated radiation shields

- There is significant thermodynamic advantage to actively cooling radiation shields in a cryogenic system. Examples:
 - LN₂ shield cooling in a cryostat
 - Vapor cooling in LHe storage vessels
 - Refrigerated shields
- Why would you want to do this?
 - Thermodynamic advantage of removing heat at higher temperature (COP)
 - Reduce boil-off of expensive fluid (LHe)
 - Can be done in conjunction with active cooling of other components (structural supports, current leads)

- MLI is a material developed to approximate thermally insulated shields.
- MLI consists of aluminum (5 to 10 nm thick) on Mylar film usually with low density fibrous material between layers
- Insulation must operate in vacuum
- Heat transfer is by a combination of conduction and radiation
- MLI must be carefully installed covering all surfaces with parallel layers, not wrapped since conduction along layer will produce a thermal short
- Engineering applications must include factor of safety compared to ideal data

Radiation heat load for different densities between 4.2 K and 77 K

Recommended conservative values: q_r (77 K, 4 K) ~ 50 to 100 mW/m² q_r (300 K, 77 K) ~ 1 to 1.5 W/m²

Powder insulations (perlite, glass bubbles)

- Powder insulations were developed for ease of installation in less stringent operating conditions.
- Perlite is a commercial powder of random size and shape (cheap)
- Hollow glass micro-spheres (3M) of 50 to 200 µm in diameter
- Vacuum requirements are less critical. Good performance at p ~ 0.1 Torr compared to 10⁻⁴ torr for MLI
- Perlite is mostly used for less stringent cryogenic vessels such as LNG containers or LN₂ and LO₂.
- NASA is planning to build new storage containers with glass bubbles

Perlite or Vacuum: which is the better insulation?

■ Below T=77 K and P = 5×10^{-5} torr, pure vacuum provides superior insulation

Structural supports

Simple support:

Actively cooled support:

- Simple support is appropriate for small masses where the conduction heat leak is not large
- For large mass, an actively cooled support is preferred to reduce heat load at the lowest temperatures where the thermodynamic efficiency is low
 - Position for the intermediate cooling station
 - Thermodynamic optimization

Optimization of mechanical supports

Considerations:

- Intermediate cooling stations (number, T_I , x)
- Variation of thermal conductivity, k(T)
- Temperature dependent mechanical properties, $\sigma(T)$
 - Only an advantage if loads occur when support is cold

Procedure

- Full optimization is based on assumptions about efficiency of refrigeration
- Vary T_i and x_i to minimize total refrigeration
- Typical practical solution (easier)
 - Intermediate temperatures are known based on available refrigeration system (e.g. 80 K (LN₂), 20 K)
 - Vary position (x_i) to match available refrigeration

Example: 45 T Hybrid Magnet Cryostat

- Magnet loads are supported by refrigerated ss support column
 - 80 K by LN₂ natural circulation loop
 - 20 K by He gas forced circulation loop.
- Wall thickness decreases in low temperature sections
 - Increased strength of ss
 - Major portion of load only present when magnet is energized
- Location of refrigeration stations was optimized so that equivalent refrigeration is equal at each.

Support Tube for Hybrid

- Since load only occurs when magnet is energized, the structure takes advantage of increased material at low temperature
- Design load 6.3 MPa
- Cooling supplied by refrigerator at 20 K and LN₂ natural circulation loop (80 K)

Temperature	σ (MPa)	k _{ave} (W/m K)	Cross section (m²)	Length (m)	Q (W)
1.8 K to 20 K	300	0.9	0.021	0.3	1.2
20 K to 80 K	240	5.6	0.026	0.3	30
80 K to 300 K	150	12.4	0.042	0.3	380

Instrumentation leads

- Monitor and control function (T, P, flow)
- Measure performance of device (B, V, I)
- Instrumentation leads can significantly impact the thermal performance of a cryo system
 - Conduction heat leak
 - Joule heating in lead
- Proper lead design is important to ensure good measurement
 - Material selection
 - Thermal anchoring

		, a c a a 11
Gauge	D(mil)	D (mm)
24	20	0.51
28	12.6	0.32
32	8	0.2
36	5	0.127
40	3.1	0.08

Temp

Thermally optimized current lead

$$\frac{d}{dx}\left(k(T)\frac{dT}{dx}\right) + \rho(T)\left(\frac{I}{A}\right)^2 = 0$$

$$Q = I \left[2 \int_{T_L}^{T_H} k(T) \rho(T) dT \right]^{\frac{1}{2}}$$

For Wiedemann-Franz law materials

$$\frac{k(T)\rho(T)}{T} = L_0$$

Q ~ constant for all materials
USPAS Short course Boston, MA 6/14 to 6/18/2010

Thermally optimized lead (continued)

For W-F materials, exact solution:

$$\frac{Q}{I} = \sqrt{L_0 \left(T_H^2 - T_L^2 \right)}$$

 $\sim 47 \text{ mW/A for T}_{H} = 300 \text{ K}, T_{L} = 4 \text{ K}$

Optimum (L/A) for W-F materials

$$\frac{L}{A} = \frac{1}{I} \int_{T_L}^{T_H} \frac{k}{\sqrt{L_0 (T_H^2 - T^2)}} dT = \frac{k}{\sqrt{L_0 I}} \left(1.57 - \sin^{-1} \left(\frac{T_L}{T_H} \right) \right)$$

$$\sim 10^4 \, (k/I), \, m^{-1}$$

Example: For a lead I = 1 A and L = 1 m, A = 0.25 mm² (d = 0.56 mm) J = 4 A/mm²

High current leads benefit from active cooling, which allows higher current density

Conduction Cooled Lead: Sample Results

Conduction Cooled Lead: Conclusions

- An 'optimized' lead is optimized for a single (maximum) current
- Q_{c, min} ~ I
- $Q_{c, min}$ is a function of T_h , T_c , I, and (weakly) on material choice
- JL = constant dependent only on T_h , T_c , and mtl. choice
- L/A ~ 1 / I

Vapor Cooled Lead - Scaling Rules

Minimum heat leak:

- As with conduction cooled leads, Q_{min} ~ I
- Dependence of Q_{min} on coolant is dominated by (C_L / C_p)

Optimized aspect ratio:

- $L/A_{opt} \sim 1/I$ smaller current \rightarrow larger aspect ratio
- L/A_{opt} dependence on coolant: colder range \rightarrow larger aspect ratio