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4.1. Principles of linear resonance acceleration
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Layout of RF linear accelerator. (Courtesy of Sergey Kurennoy).



Layout of 1on linear resonance accelerator.

¢=0

Particle remains synchronized with
accelerating field, i.e. arrives at the
center of each accelerating gap at a
specified phase ¢, wrt RF

¢synch

At each gap the particle gets the ]
required “kick” to reach the next gap [ ]

at ¢, and remain synchronized

Energy gain in RF linear accelerator. (Courtesy of Larry Rybarcyk.)
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Choose ¢g To Produce Stable Motion
About Synchronous Particle

Need a longitudinal

restoring (focusing) force
to ensure that non-
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\

By choosing ¢, < 0 AW o f ............ .g/ AW

particles make stable, T \

oscillatory motion about | \

the synchronous particle , a

Bunching action is a |

natural result '.
Faster particle arrives early and gets

a smaller kick which makes it arrive
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(Courtesy of Larry Rybarcyk)



The Other Choice For ¢g Will Produce Unstable Motion
About Synchronous Particle

Does not produce the
needed longitudinal
restoring (focusing) force
to ensure that non-
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4.2. Electromagnetic wave equations

To obtain the electromagnetic wave equation in a vacuum using the modern method, we begin with the modern 'Heaviside'
form of Maxwell's equations. In a vacuum and charge free space, these equations are:

V-E =0
0B

VxE = o

V-B =10

JE
VxB = u0€08—t

Taking the curl of the curl equations gives:

0 O*E

VxVxE = —&VXB=—#05087
) 0°B
VxVxB = pos()a—tv x E = _“05087

By using the vector identity
Vx(VxV)=V(V-V)-VV

where V is any vector function of space, it turns into the wave equations:

‘QE
%T—COQ-VQE =0
2

%—t]f— 0’ -V’B = 0

__1 _ ) 8 : : :
. where 0= = 2.99792458 x 10° m/s is the speed of light in free space. 6



J°E. 1 a( aE,.) 1 9°E.
5+ — F—|— >—=0
dz” rdr\ or c-  dt”

The solution 1s usually given in the form of a product of functions of one variable:
E. (znt) = Z(z) R(r) T(1)

divE=li(rE,)+aEz ,
ror dz
g1ving
1 ,0E.
E(r)=—=|,—=1"dr’,
(=1 e,
and By via
rot B= i, 9E
c- ot
giving
dBy _ 1 JE
Iz c* ot
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. E
Standing wave: Z(2)T(t)=E, cos(k z)cos(wt) = 2" [cos(wt—k z) + cos(wt+k.z)]

accelerating wave opposite wave
: 21c
Cyclic frequency of RF field W= o =27 fror
L o2m 2
Wave number "L B

Equivalent traveling wave E.z, 1, 1)=Ecos(@r—k2)R(r)

19,6 dR

e : : ] , o
Substitution into wave equation gives for radial field component: =" (r 5) — R(k; — C—z) =0

wZ (02

k2
- = -G =k 1-F)= 5

k,r

)

Solution for radial field component: R(r)=1(

where / (x) 1s the modified Bessel function
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Finally, equivalent traveling wave is

E.=E Io(k—;’”) cos (@1 - k:z) (5.1)

E =- }/EII(]%) sin (of - k,2), (5.2)

Bo=-L By EI (’%) sin (01 - k.2) (5.3)
C

Effective traveling wave can be represented in Hamiltonian by a potential
function

U, = i_ Io(k;—r) sin (@t - k=2). (5.4)

zZ

Particle, which velocity coincides with the velocity of the accelerating wave,
is called synchronous particle. Dynamics of the synchronous particle is
described by the integration of equation for synchronous particle momentum,
P, and position, z;:

dPs

= qE cos @
dt
d zs — Py
dt mys

where @; = @t - k:zs 1s the synchronous phase.
4.
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4.3. Hamiltonian of particle motion in RF field

Consider Hamiltonian in a focusing channel with RF field:

K=cm2c+ (Px—qAx)2+ (Py- qu)2+ (P,- qAZ)2 +qUq+ qUo+ qUp, (5.9)

where U, 1s the potential of electrostatic focusing lenses, and U, is the scalar potential of field
of the beam. For the further analysis, let us introduce new variables

pZ=PZ_PS’ §=Z_ZS, (5.10]

which define deviation from synchronous particle. Generating function of the transformation is
F3(8, Pz, 1) = - (8 + z5)(P7 - Ps), (5.11)

which can be easily verified by differentiation:

p.=-963, 7=- 95 (5.12)
¢ dP;
New Hamiltonian is given by
_ «/ ) 0 2 2 2 0F3
T=cNm?c+ (Py-qAy) + (Py-qAy) +(Ps+ p-qA7) + qUa + qUe + qUp + a— (5.13)
t . . }

4. 12



Consider separately expression for square root in Hamiltonian:

s (s Py, pn) = N m2c3+ pE+ pl+Pg+ pp), (5.14)

where for simplification, the components of canonical momentum are substituted by that
of mechanical momentum, p, = Py -g Ay, py = Py-q Ay, and an additional variable is

pn =pz-qA;. Typically, momentum of the synchronous particle is much larger than
transverse particle momentum and longitudinal momentum spread, Py >> py, py, pp. Let
us expand expression for square root in the vicinity of s(p,, p,, p,) up to the order of pZ,
Py, iy

2 2
s=AVmic PR+ O pop O pg 05, 1O p%+La—py+
Opx apy dpn 2 9p2 2 opg

2 2 2 2

d d d d
LOS po+ L 95 ppyt L 05 poppse L _O°
2 Bp% 2 dpy9py 2 dpxdpn 2 dpydpq

pypn, (5.15)

where all derivatives are taken at p,= 0, p, = 0, p,= 0. Calculations of expansion gives:

) 2
p Py Psbn Pn
2my  2my MY opy3o

c\/m202+px+py +(P +p77) = mc? Y + (5.16)

where reduced energy is

p.2
mc



Time derivative of the generating function, Eq. (5.11), 1s:

%ﬁ=¢r4&+ga+@m. (5.18)
4
where dot means derivative over time. Taking into account that the particle velocity is zg = P_S,
my
the following expressions in time derivative, Eq. (5.11), are:
;P = s (P4 p) z'P:i (5.19)
S+ Z my S < Al my ’ .
and the time derivative of the generating function is therefore
oF 3 —¢py-BsPe g o p (5.20)

my



Substitution of expansions, Egs. (5.16), (5.20), into Eq. (5.13) gives for the new Hamiltonian,
H=T-m*cy:

H

AR (Py-gAY (h gAY ;
_(PrgAy’  PyraAy”  (p-gAy) +qU,+ qUy  + qUy - B2 L P (z40). (5.21)
2my 2my 2my3 my

The term Pz, can be excluded, because it does not depend on canonical variables and does
not contribute to equations of particle motion. The acceleration of synchronous particle

according to Eq. (5.7) is Py = gE cos@,. The term P can be combined with the accelerating
potential:

qU,+ PsC=q kE [10(’%”) sin (@s - k:8) + k:Ceos@q). (5.22)

zZ

Finally, the new Hamiltonian is

2
H=(Px'qAx)2+(Py_qu) +(pz‘qu)2+
2my 2my 2my3

+gE [10(%-?) 5in (@5 - k) + k.Ccosog] + qUop + qUyp - qus_;}z. (5.23)

zZ



Consider the following terms in the Hamiltonian:

2
(P:-q Az)” _gPsA7 _ p: _9PsA; (1+ Pz _ qA; ) (5.24)
2my3 my  omy3 mY Psy? ZPS?’

As soon as p, << P, g4, << P, the second and the third terms in parentheses in Eq. (5.24) can
be omitted:

gPsA ; (1+ Pz - q A; ) gPsA 7 2 = gfcA,. (5.25)
my Pgy 2P97 my

The vector - potential 1s A; = A; magn + p Up. Therefore, in the adopted assumptions, the
c

Hamiltonian becomes:

2
Py-q A", Py-ady)y = p?
2my 2my 2my3

H= +

+q k— Lo (kzr)sm (@s- kz0) +k:Ccos@g] +q(Ue - BcA, magn) +4 > Ub

(5.26)
Y y



Consider separately structures with quadrupole focusing and with longitudinal magnetic focusing.
In the absence of longitudinal magnetic field, transverse components of the vector potential are
A= 0, A, = 0, therefore, the transverse components of canonical momentum coincide with that of

mechanical momentum: p, = P, p, = P,. The term U, — BcA, ,..q. 1s the focusing potential of the
structure. Averaged potential of quadrupole structure is given by

2 2
Ui - BeA; magn = G % (5.27)

where G, 1s the gradient of averaged focusing potential. The Hamiltonian for particle motion in
RF field with quadrupole focusing is

Up

(5.28)
}/2

2 2 2
p=Pi Py P2 L AE koo k0) + keleospg] +qGr YY) 4 g
2my  2my  2my3 k-, Y 2

In presence of longitudinal magnetic field, the Hamiltonian, Eq. (5.26), is

2 2 2
H=% 2_’5:9 & ;nf?y) + 251}3 + ‘j{E [Io(k;r)sin(qos - kZ§)+kZ§COS(pS]+q% (5.29)
where transverse components of vector-potential are given by
Ax magn = - A6 magn Sin@= - B % (5.30)
Ay magn = A6 magn cos@ = B Ex (5.31)

4. 17



Transformation to Larmor system is given by

X=XxXcos OLt-ysin Lt
y=xSin@Lt+ ycos @Ot
Py=Px coswrt-Py sinwrt

Py =Py cos @pt+ Py sin 0Lt

qB
where Larmor frequency W, = —Zmy

Hamiltonian of particle motion in magnetic field :

PI+P'  p’  qE
3+k

Z

[IO(er)sin(q)s —kL)+ kL coso, ]+ myw;
2my  2my 4

2
r

—+
2

U
b
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4.4. Longitudinal particle motion in RF field

Consider longitudinal particle motion neglecting space charge forces. From Hamiltonian, Eq.
(5.26), equations of particle motion around synchronous particle are:

%— gE (I, (kzr) cos(Qs - k8) - cosqg), (5.33)
d_ p:_ (5.34)
@& my’

In most of accelerators particles perform radial oscillation close to axis in the way that kr << I
and the value of Bessel function in Eq. (5.33) 1s close to 1. Radial dependence of longitudinal
motion can be usually neglected and longitudinal motion can be consider only for on-axis
particles, given by the Hamiltonian:

2
T=_P7 L % [in (- k0 + kleosoyl. (5.35)
2my3 kz

Hamiltonian. Eq. (5.35), describes particle oscillations around synchronous particle. Let us
assume that parameters y, E, k., are changing slowly during particle oscillations. Hamiltonian,
Eq. (5.35), with constant values of ¥, E, k., is a constant of motion.



Figure below illustrates phase space trajectories corresponding to constant values of

Hamiltonian. Phase space trajectory, corresponding to maximum stable oscillations is
called separatrix. Particle trajectories inside separatrix are closed and, therefore, stable.

Outside separatrix, particle trajectories are open, which corresponds to unstable particle
motion. Consider separately potential function

V() =q ki [sin (¢s + W) - Yeos @], (5.36)

zZ

where v 1s the phase deviation from synchronous particle v=kJ( (5.37)

Separatrix of longitudinal phase space

oscillations including acceleration.
Relief of potential function and a family &

of phase trajectories (from Kapchinsky,
4. 1985), Py =W, —W . 21



Derivative of potential function Z—V =g E [cos (@5 + Y) - cospg] =0, (5.38)
v

tan

<

determines two extremum points ¥ =0 and ¥ = - 2¢,. First point corresponds to stable
position, while the second one is unstable. To be stable, potential function must have minimum

in extremum point ¥ =0, which means that the second derivative hast to be positive:

d°V —_ E
av =-q = sin (@s) > 0. (5.39)
ay’ ly=0  k

Eq. (5.39) defines stability condition, 1. e. sing, < 0, or synchronous phase must be negative,

¢,<0. Taking in Hamiltonian, Eq. (5.35), p, = 0, v = 2¢ g the value of Hamiltonian,

corresponding to separatrix, 1s

T|p, =0, y=-20,=9 kE (-sin@s + 2QscosQy). (5.40)

Substitution of this value into Eq. (5.35) gives the equation for separatrix:

2

B q kE [cos@s(siny -w -2@;) + sin@g(1 + cosy)] = 0. (5.41)

2m)/3
4. 22
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(Up) accelerating field and (bottom) longitudinal phase space trajectories.
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Phase length of separatix is determined from Eq. (5.41) assuming p.=0:
cosQs(siny -y -2@s) + sin@g(1 + cosy) = 0. (5.42)

The first root 1s y = —2¢,. The second root, ¥ = ¢, can be obtained approximately via

expanding trigonometric functions in Eq. (5.42) in Taylor series. Finally, the phase length of
the separatrix is approximately 3 ¢;.

The width of separatrix in momentum is determined from Eq. (5.41) assuming y = 0. For
practical applications, the relative momentum spread is important:

g= P.-Ps _ Pz (5.43)
Py P
Taking into account that P, = mcf3y, the half-width of the separatrix in relative momentum is
9e ’ 7 E . S
gmax = \/ T (B2 dsing (1- Py, (5.44)
| 3 mc 12 Qs
f | 295 ¢
Cg
| 7 max

A separatrix on the phase plane of
longitudinal oscillations.
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From Egs. (5.33), (5.34) the equation for longitudinal oscillations is

d d§_ qE [cos (@5 - k;{) - cos@s]
@&’ my’ (5.45)
Eq (5.45) describes nonlinear oscillations around synchronous particle. Expanding of trigono-

metric function in Eq. (5.45) cos (s - k;{) = cos@s + (k;{)sin@; results in equation for linear
oscillations

2
d (;‘ qu ‘sm(pg‘)g 0. (5.46)
dt* my?

Expression in brackets in Eq. (5.46) is a square of longitudinal oscillations. It can be rewritten
as dimensionless value

2 ) = (‘IE’l ) ;’;‘f . (5.47)
mC

Frequency of longitudinal particle oscillations drops with particle energy.

gf gh

N /BNy A

Distortion of the longitudinal phase space
due to nonlineartity of longitudinal forces.
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4.5. Transverse particle motion in RF field
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Quadrupole beam focusing in RF linear accelerator. (Courtesy of Sergey Kurennoy).
4, 27



Hamiltonian of particle motion in RF field:

C+pl > E k 2 U
p=CTl P L9 S Gingg, — kO + kL cosg, 1+ my Q2 gt
2my  2my’  k, y 2) ¥
Near-axis approximation: ] k.r 3 1 k.r
p; + Py r? U,

Hamiltonian of transverse motion: H, = 3 ( a2 )’ sin(@, —k.§)+my Qz Y +q— >

2my 4

( k.r ) qErm
4k y 2By A

Expansion near synchronous particle:

sin(p, —k.§)=sing, — kL cosp, =sing,(1-wyctgp,)

Phase deviation from synchronous particle v=k{ 08
4.



Hamiltonian of near-axis, near synchronous particle motion, with U, = 0:

2

2 2
p.tp,  qEm . ) o 7
H = =+ sing (1—wctgp )r-+my Q. —
t 2m'}/ Zﬁ'yzﬂ, (ps( l// g(ps) ’}/ r 2
Frequency of longitudinal oscillations: 02 = 27 gE |sing,
A m By’
pz n pz my 2
Hamiltonian becomes: H=—"—2-—2Q(1-wyctgp,)r’ + my Q> —
2my 2
pitp, m Q’
H =2+ 22100 -2 (1-yetgo, )]
2my 2 2
Transverse oscillation frequency of synchronous particle 0?
in presence of RF field: Q> =Q’ - -



4.6. Parametric resonance and beam emittance growth in RF field

2

2_|_ 2
BT Py, mzy r*(Ql +%1//ctgcos)

2my

Hamiltonian becomes: H =
t

Longitudinal particle oscillations with

amplitude @ and frequency Q: Y =—@sin(Qx +y,)

2 2 2
Finally, Hamiltonian is: H = P: TP, Ly rQ? —Q—ctgq) Osin(Qr +y )]
t 2m}/ 2 rs 2 N o
: . d’x , :
Transversal equation of motion: F +x[QF — 7(;tgq)sq) sin(Qt +y,)]=0
4
Parametric resonance occurs when o ="0 ,=1273
L
Let us introduce phase advance for synchronous particle in RF field H=L, E
and defocusing factor y = le ( L %
"4 Be
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Parametric resonance regions (from Kapchinsky, 1985).

31



Effective beam emittance growth outside of parametric resonance:

2

Q —Q°

€
E

=1+ dctgp, 1

Phase space of transverse oscillations in presence of
RF field (from Kapchinky, 1985).
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Required transverse focusing in presence of RF field

Hamiltonian of particle motion in RF
field with solenoid focusing

Transverse oscillation frequency in
presence of RF field

Envelope equation

2
Beam equilibrium condition ﬂ =0
dz*
Required magnetic field B=
4.

P+ P? 2 Q’ si
R (LS
2my 2 2 sin@, Y
0? = > _Q_z sin ¢
2 sing,
d°R ¥ Q 21
> T3t > R- 75 =0
dz>  R* (Bo)  I.(By)R
Q’ 5’ 21

sing@ R

2mc By \/( EJ 21 qgEA

n(—)

) T3t 2 3( 6)2
R,”  1.(PBy) mc” " (By)” A
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4.7. Beam bunching in RF field

|—— Drift Space —-{

"Buncher" "Catcher"”
Cavity Cavity
Density of Electrons
Cathode \ Collector

Electron Beam

aon 1T 1[?

Microwave Input Microwave QOutput

Layout of klystron beam bunching scheme (from
http://en.wikipedia.org/wiki/Klystron)
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dv qU,

Equation of motion in RF gap of width d and applied voltage U, — =2 "Llsinwt
dt md
U tUI/tI
Longitudinal particle velocity in RF gap vV=v + 42 I sin @t dt
m
Z‘in
Initial particle velocity after extraction voltage U, - 2qU,
’ m
. . . . — ii 2 . goin + (pout . (pout — (pin
Longitudinal particle velocity after RF gap v=vy,+ sin(———=)sin(—*—+)
m od 2
. qoin + goout _
RF phase in the center of the gap T, - 1,
o od ¢, —0, 6
Transit time angle through the gap 0, =— Lour Pin _ 71
1% 2 2

Longitudinal particle velocity after RF gap S
Vo 1 1

Amplitude of modulation of longitudinal velocity v, =V Y, M,
°2U,
Transit time factor of RF gap sin21
M, =

4. i 36
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: : : Z Z Vo
Time of arrival of particle to the second gap t, =t + . ~t,+—(1——Lsinwt,)
v, + v, sinwt, v, v,
: o Z FAZS
Phase of arrival of particle into the second gap Wt, — 0 — = O, — O —; Sin Ot
VO VO
wt, 8 2

—

Trojet S N /¢ wt, —0 = wt, — X sinwt,

Transit angle between gaps 0= 0>
N

o

i
!
I
i
t
i
!
|
I
I
I
1

' v, UM, oz
T wt Bunching parameter X =@-—5 =——
’ 1% 2U, v

o o

Phase of arrival of particle into second gap as a
function phase of the same particle in the first gap.



Conservation of charge idt, = iydr,

. dt, I
_ L,=1,— = R
Beam current in the second gap dt, di,
dt,
Beam current in the second gap as a function of RF phase i = 1
in the first gap and bunching parameter 2 1=Xcos or,
Ly
= T e = X<1
: g ;
Lz,n : : :
4 7Z¥:7/"\R X=1
. ] Lt
Lok .
l: Ear U _____ U T X> 1
ﬂ =
| i e

Current in the second gap as a function of time.
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Phase of arrival of particle into second gap x=wt,—0 =t — Xsinwt,

Expansion of the current in the second gap in Fourier L(X)=A + iAn COS 11X

series n=1
. .. 17% 2%
Fourier coefficients A = _jl-z (x)dx A = _.[iz (x)cos nx dx
7r o n o
Differentiation of RF phase dx = wdt,
1% dt
Constant in Fourier series A, = ;Jld_tla’dtz =1
0 2
. : : . 21 ,
Other coefficients in Fourier series A =— Jcos(nwtl —nXsinwt,)dwt, =21J (nX)
T

1 T
Bessel function (integral representation)  J (z)= —Jcos(n(p— zsinQ)do
T

o

Beam current in the second gap i,(x)=1+ 212 J (nX)cosnx

4. n=1 39



n=l

Jn (nX)
0;50 ¥ n ;‘3 :
. ;
' n=10! :
0,25 ¢ | I\ | !
E I ’:Bui
; R
= 0 2 X
-0.25F

Bessel functions determine amplitude of the fist, third and tenth
harmonics of induced current in two-resonator buncher.
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Beam bunching in presence of space charge forces*

Gauss theorem 2E, =—2z

o | P
, 1D longitudinal space charge field E . =—z

Longitudinal oscillation in presence of 4 %

space charge field, E,, and external dt
field E_,,

2
o . . d Zp + 2, — iE
Substitution of space charge field gives: ™2 0,2, = e
_|ap _2¢ |1
Plasma frequency O =\ me - RAT B
1
Space charge density of the beam p= nR*Bc

4.

* From Yu.A.Katsman, Microwave Devices, Moscow, 1973 (in Russian). 42



Reduction of beam plasma frequency in presence of conducting tube

Reduced plasma frequency of the beam o, = /prp

PP IAAIIIINY, of radius R in the tube of radius a
4
l\ ® |rear . Ji24-)
— ——————  Plasma frequency reduction factor F, = 2.56#
2a b ) 1 + :
it ()
. e d’z,
Longitudinal plasma oscillations in tube 7 2” +m,z,=0
4
Longitudinal particle oscillations under space charge forces Z,= B, sin @, (t—1,)
Longitudinal velocity of particle oscillations under ﬁ _ B
space charge forces: g B,w,cosw,(t—1)
. . T .y de .
Constant B, is defined from initial conditions for E(tl) =B,w, = v, sinwr,

particle velocity after first RF gap:
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. : I v, :
Finally, particle oscillations under space charge forces z,= —Lgin o, (t—1)sinor,
in the moving system @,
Particle drift z=v, (L, =1)+z,

V. .
z=v,(t,—t)+—sinw, (1, - t,)sinwt,

)

q

Wz v,

Multiply by @ — =t, —wt, +
1%

o q o

sin, (t, —t,)sin ot

RF phase in the second gap wt, —0 = ot, — Xsinwt,

v, .
Modified bunching parameter in X = o sinw, (1, — 1)
presence of space charge forces qVo , Z
sin(w, —)
X_U1M1(wz) v,
2U v Z
o o a)q -
vO
: Z Z T
Condition for maximum bunching: sin(@, v_) =1 w0, ===
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4.8. Space charge dominated bunched beam in RF field*
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(Left) initial and (right) final beam distribution in RF field. (Courtesy of Sergey Kurennoy.)
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Consider an intense bunched beam of particles with charge ¢ and mass m, propagating in a
continuous focusing channel with an applied accelerating RF field. Beam is bunched at the RF

frequency @ =2mc/A. Particle motion is governed by the single-particle Hamiltonian:

2, 2
+ 2
H=M +_ Pz +q Uen + q%, (5.48)
2my 2m 7y’ y?
— E 1 k' sino.- g r’
Uext = £ [ 1o( y ) sin(Qs- k;0) - sin@s+ k;{ cos@s] + Gy Py (5.49)

where U is the potential of external field, U, is the space charge potential of the beam, G is
the gradient of the focusing field, and r is the particle radius.

4. Sequence of bunches in RF field. 47



The space charge density distribution of a moving bunched beam has the form p = p (x, y, z -vi?).
The moving bunch creates an electromagnetic field with a scalar potential U, = U, (x, y, z -vst)

and a vector potential A, = A, (x, y, z -v,t), which obey the wave equations:

2
AL@-{232?==-£’, (5.50)
C ot 0
s 20
Ady - L0 -y, g, (5.51)
2 ot

where j= p;s is the current density of the beam. The current density has only longitudinal
component

jx=jy=0,  je=vsp (x,y,2- Vsl); (5.52)

and, therefore, the vector potential has only a longitudinal component 4_.

In a moving coordinate system where particles are static, the vector potential of the beam is zero,

A = 0. According to the Lorentz transformation, the longitudinal component of the vector
potential in the laboratory system 1s A, = ; U / ¢. Therefore, to find solution of the problem it
suffice to solve only equation for the scalar potential (5.50). Substitution of the value 4_into the

wave equation (5.51) gives the equation for the scalar potential:

2 2 2
a%+ﬁlg+8l@=_i¢wn%o, (5.53)
ax=  ay°  y2¢ b

4. 48




Equation (5.53) has to be solved together with the Vlasov equation for the beam distribution
function:

Py"‘g?”z) - 4(

af .9
df -1 9,
dt mYy odx  dy

of U, of AU of 3U_ (5.54)
dpx dx Odpy dy Odp; 9¢

where U = U,y + v ~2U, is a total potential of the structure. Egs (5.53), (5.54) define the self-
consistent distribution of a stationary beam which acts on itself in such a way, that this
distribution 1s conserved.

The general approach to find a stationary, self-consistent beam distribution function is to
represent it as a function of Hamiltonian f'= f(H) and then to solve Poisson's equation. Because
the Hamiltonian is a constant of motion for a stationary process, any function of Hamiltonian is
also a constant of motion which automatically obeys Vlasov's equation. A convenient way is to
use an exponential function f = f, exp (- H/ H,):

2 2

pxtp 2 Uet + Upy
f=foexp (-2 - Pr_ g™ DV (5 55)

2myH, 2mvy°H, H,




4.9. Beam equipartitioning in RF field

Consider an important consequence which follows immediately from Eq. (5.55). Let us rewrite the
distribution function, Eq. (5.55), as

2+ 2 2 )
f=foerp(-2P2T P g b g Uent Uhy 7 (5.56)
Pt DI H,

where p, =2 V<p?> =2 V<p?> and p;=2 V<p2> are double root-mean-square (rms) beam sizes in
phase space. Transverse, &, and longitudinal, &, rms beam emittances are:

g=2 P x> =2 Pt y<y?s, (5.57)
mc mc
g=2PL V<. (5.58)
mc

Taking together Eqgs. (5.55) - (5.58), the value of H_can be expressed as a function of the beam
parameters:

16.1r_10_mc2 & :mc2 &’ :mc2 et (5.59)

AP N AP R <>




Equation (5.59) can be rewritten as

&= & (5.60)
R vyl

where R = 2V<x%> is a beam radius and /= 2@ is a half-length of the bunch. Equation (5.60)
expresses the equipartitioning condition for the beam in a RF field (R.Jameson, IEEE Trans Nucl Sci,
NS-28, 2408 (1981)). From the above derivations it is clear, that the equipartitioning is a consequence
of stationary nature of the collisionless beam distribution function, Eq. (5.55). If the distribution
function is stationary (time independent), equipartitioning is fulfilled. The opposite statement is not
valid in the general case: there are an infinitely many distribution functions which obey condition
(5.60), but which are not necessarily stationary. To find the stationary distribution function, it is
necessary to solve the nonlinear Poisson equation for the unknown space-charge potential of the

beam.



Space charge field of the bunch

The space charge density of the beam is obtained as an integral of the beam distribution function
over the particle momentum:

el

Uext + Ub}/ _2)

fdpxdpydp; = poexp (- q (5.61)

o

p (x,y,0) =61’ I

(o o]

-0co | J -0

where p, is the space charge density in the center of the bunch. The value of p, is unknown at this
point due to the unknown space charge potential of the beam, U,. For further analysis let us
introduce an average value of the space charge density, p, which is equal to the density of an
equivalent uniformly-charged cylindrical bunch with the same beam radius, R, and the same half-
bunch length, /, as that of unknown stationary bunch. The space charge density of the cylindrical
bunch, p=Q/V, is

. I

p =" (5.62)

2xR [l c

where O = [ A/c is the c harge of the bunch, ¥ = 7R?22[ is the volume o f the bunch and  is the
beam current. Let us compare the value of p, Eq. (5.62), with that for another distributions. The
space charge density of a uniformly populated spheroid with semi-axises R and / is

%:3/} (5.63)

ps =
dr R*1c¢ 2



A bunch with the Gaussian distribution

2 2 2
_ I exp (- X1 oV Cz ) (5.64)
)y *cV<x > V<y> V<> 2<x™> 2<y7> 2<({7>
FRNESE —-_ 8 IA - 8 4
has a space charge density in its center PG p. (5.65)

Qry'? ¢ R* V27

Since different distributions give similar expressions for the space charge density in the bunch
center within the factor of £ = /....3, one can assume that unknown value of the space charge
density p, in the bunch center, Eq. (5.61), also differs from the average value of the space charge

density p within the same factor:
Po =k p. (5.66)

For further derivations introduce dimensionless variables:

QN

mquext vb=M, £
H() HO

Il
2

(5.67)

where a is a channel radius. Poisson's equation (5.53) in cylindrical polar coordinates becomes

2 2
Wo  0Vo g TVo P8 oy (Veyr Vo) (5.68)

1
& a¢ 352 877272 80 H, 7
4. 53



Let us introduce a bunching factor, B= 2/ /(1) Substitution of p,, Eq. (5.66), and H,, Eq. (5.59),
with the introduced quantity of B into Eq. (5.68) gives:

2 2
éaa‘;b + aagzb ' aizv SRl 1%)2 exp - (Veu+ 1), (5.69)
y Y

where b is the dimenionless beam brightnes b = 2IR*/(Byl.€?), Equation (5.69) is a nonlinear

differential equation for the unknown beam space charge potential, V;,, which appears in the left and
right hand side of the equation. The unknown space charge potential of the beam can be represented
as a Fourier-Bessel series:

Vo =Vo+ > > Jo(VomdlAnmecoskznna) + By ysin(k;nna)l, (5.70)
n=0 m=1

where Jy({) is the Bessel function, v,,, is the m-th root of the equation J,({) = 0. Expansion (5.70)

obeys the Dirichlet boundary condition Vp(1, n) = V, at the perfectly conductive surface of the
channel and takes into account the periodic nature of potential due to the train of the bunches. To find
the first approximation to the solution of Poisson's equation, let us take only the first term in the
expansion of the exponential function

exp(-Vext -Vpy _2) = 1-Vext -Vpy 2, (5.71)

Poisson's equation (5.69) then becomes:

(o) [ee) 2 2 2 )
14 Vom + (kzna)y = p R
S 3 fe a0 TRy

n=0 m=1

4. Jo(Vom&[Anmeostkznna) + Bymsin(k;nna)] = (1 - Vo) v° - Vo (5.72) 54



The space charge potential, Eq. (5.70), is mostly represented by several low-order terms. For
example, for the train of uniformly populated cylindrical bunches, the values of Fourier-Bessel
coefficients drop quickly with numbers m, n:

A ~ 1 —. (5.73)
n Vom [Ugm + (kzna)™y 2]

For a space charge dominated beam, b >> I, Eq. (5.72) can be simplified. The expression in
square brackets in Eq. (5.72) is

2 2,2 2
14 Vmt (kna)”y 7 g RYE gy, (5.74)
8 kb a
where introduced parameter 0 is:
5= VG + (kz”a)2 Y 2 B (&)2 (5.75)
8 kb a

Low-order roots of the Bessel function are v,=2.408, v,,=3.832, v),=5.52. The product of kza is
usually close to unity:

k.a=2m ((4) = 1. (5.76)
pr



Taking into account that B </ and R/ a = 0.5, it is easy to see that the value of 9, Eq. (5.75), is much
smaller than unity for a high brightness beam. It can be written as

s~ 1 <«<1, (5.77)
bk

where b, is a dimensionless beam brightness of the bunched beam:

bay =2 I (ay - 2 leak ay (5.78)
BR BriIB & Py I &

and /1., = 1/ B is the peak value of the bunched beam current. Therefore, the expression, Eq. (5.74),
can be taken out of the sum in Eq. (5.72). With this approximation, Eq. (5.72) becomes:

(14 (Vo - Vo) =(1 - Vew)y? - Vo (5.79)

Let us define the constant ¥, in such a way that the total potential of the structure vanishes at
the bunch center:

Vext 0,0)+ Y600 _ g, (5.80)
%

The external potential is equal to zero at the beam center V,,, (0,0) = 0 (see Eq. (5.49)) therefore the
condition (5.80) gives V,(0,0) = 0. Substitution of V,,, (0,0), V;(0,0) into Eq. (5.79) defines constant
V, = - v 2/8. Then, from Eq. (5.79) the self-consistent space charge dominated beam potential is:

Vp=- y’ Vorr. (5.81)
1+6
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Taking the first approximation to the space charge potential of the beam, Eq. (5.81), the Hamiltonian
corresponding to the self-consistent bunch distribution is as follows:

H

2 2
+ 2
=px Py + Pz +q< 0 )Uext- (588)
2my 2my’ 1+6

Equation (5.88) indicates that in the presence of an intense, bright bunched beam (8 << I) the

stationary longitudinal phase space of the beam becomes narrow in momentum spread, while the
phase width of the distribution remains the same in the first approximation.
@
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More precise analysis based on numerical solution of equation for beam potential indicates
that synchronous phase is shifted in space charge dominated beam and phase width of the
bunch also decreases but much slower than vertical size of the separatrix.

P)

The potential function and separatrix The separatrix shape for different values of

of th? beam with high space-charge space charge parameter (from Kapchinsky,
density (from Kapchinsky, 1985). 1985).



Stationary bunch profile

The self consistent space charge density distribution of a matched beam can be found from Poisson's
equation:

p(r, 0 =- e, [L 9 (
r or or yzag

Substitution of Eq. (5.84) into Eq. (5.89) gives the stationary particle density distribution inside the
bunch:

2
p Oy O Uy (5.89)

P(”,C) = 2Y2Gt 8(){1 - 6 -
V(1+8) - 26V

AV prss avm)2

2 L2 2 e o
) 812 (me 0 s s 7/8773/2 } (5.90)
32'}/ <X™> tha [(1+& - 26Vext]

For a high brightness beam parameter d << I, therefore the space charge density is close to constant
within the bunch:

2
pr,l) =2 1 Z . G; €,. (5.91)

From Eq. (5.81) it follows, that, in the first approximation, the space charge potential of the beam is
the same function of coordinates, as the external potential, Eq. (5.49), with the opposite sign.

Therefore, equation U,,,(r, {) = const gives the family of equipotential lines of the space charge field
of the beam:

Io(k;/’r)sm(%-kzé) - sinQy+ k. Gcos s + %kzrz = const. (5.92)
E

4. 59



In the general case, the bunch boundary is not an equipotential surface; therefore Eq. (5.92) does not

coincide with bunch profile. To find the self-consistent bunch profile, consider a uniformly populated
bunch with boundary R({), defined by the following nonlinear equation

Io(kf;Ye Ysin(Qs-k;C) - singos+kzCcosgag+C(kZR)2= const. (5.93)

Equation (5.93) differs from Eq. (5.92) by the inserted parameter C, which will be used to adjust the

bunch shape in such a way, that the self field of the bunch will be approximately opposite to the
external field. The value of the constant in right side of Eq. (5.93) can be determined from the

condition, that the longitudinal bunch size is, in the first approximation, the same as for the zero -
current mode. Therefore, at R({) = 0 one boundary of the bunch is £.(=2¢, and the value of the
constant is

const = 2Qs cosQs - 2 SinQs;. (5.94)

Substitution of Eq. (5.94) into Eq. (5.93) gives expression for the expected bunch profile:

10("25 )sin( sk O)+sin@s-2 sk, O)cos @+ C(kR)*= 0. (5.95)

Figure below illustrates a uniformly populated bunch with boundary, Eq. (5.95). The bunch profile in
real space resembles a separatrix shape in longitudinal phase space. The space charge field of the
bunch in longitudinal direction is a nonlinear function of the coordinate ¢, and approximately repeats
the RF field inside the bunch with negative sign. In the transverse direction the space charge forces
are close to a linear function of the coordinate and compensate for external focusing forces. It is

clearly seen that the high brightness beam shields itself from the external field (Debye shielding). The
shape and space charge forces of the bunch depend on the parameter C. Consider those dependencies
in more detail.

4. 60



T T \\ -]
o, 1.0108 \
0.0-100

-1.0103 | H ! \ -

-0.3 -0.2 -0.1 0.0 0.1 0.2
(M)

E g\ /(mc
T
1

0.05

=
£ 0.00
<
-0.05
(L)
C
— T —T
20.10-3_ | H H | -
G 10103 /
£
N 0.0-100 /
w /
1.0103 N ~ R
i | H 1 1 I
0.3 0.2 -0.1 0.0 0.1 0.2
or{(:29]

Stationary self-consistent particle distribution in RF field,
¢, = -60°, C=3.8: (a) RF field, (b) particle distribution, (c) space
charge field of the beam.



For a long bunch, BA>>R,,.., the Bessel function can be approximated as [,(y) = 1 + y %/4, and
equation (5.95) for bunch boundary becomes:

R() = pr Qs - k:8) coss - sin@s - sin(Qs-k; ) ' (5.96)
2m C+ 1 sin( s-k: )
4y?

Transverse bunch size, R, is determined from the equation dR(()/0¢=0, which has an approximate

solution {(R,,,)=0. Substitution of this value into Eq. (5.96) gives for maximum beam size:

max= P [ 295 COSGs - Sings). (5.97)

21 Cc+ 1 Sin Qs
4 y?

The exact value of {(R,,,) is slightly positive and the maximum value of the bunch profile is shifted
to the head of the bunch. The phase length of a separatrix is approximately 3¢, and the full bunch
length 1s [, = BA3@s/(27). The ratio of transverse to longitudinal bunch sizes for a given value of

synchronous phase, ¢,, is:

Rmax = 1 | 2(scosgs - singy) (5.98)
I 3oy C+ L1 sing,
492



Let us compare the space charge potential of the bunch with that of external RF filed. Consider

for simplicity a non-relativistic case. The potential of an arbitrary charge distribution at the point ¢, at
the axis is:

Up (go, 0) = 1 p(;iv =
4re, M

" Cmax
p(r,Q) rdr df de (5.99)

Gmin vr2 + (C - Co)z

- 1

Are,

R 2rm
’O .

0

Let us use the RF phase y = - k. instead of longitudinal coordinate {. After integration in Eq. (5.99)
over radius and azimuth angle, the beam potential is:

s Ymax

Uy (W, 0) = U, k2R 2w+ (w- wo)- V(v - w)? 1 dy. (5.100)

Ymin

For typical values of the parameter C = [....5, the bunch profile, Eq. (5.96), can be approximated as
follow:

(k:R)* = é (W + 2¢y) cos@s - sin@s - sin (W + @y)]. (5.101)



Substitution of Eq. (5.101) into Eq. (5.100) gives the space charge potential of the bunch at the
arbitrary axis point

- =205
[ \/ e W(COEQDS Dy 2(5c08 Ps-SinQs-sin( Qs+ ) 2

Ub ( l/]() 9O)= U()
. C

(0

Nw- w1y, (5.102)

Because the value of the synchronous phase in an RF field is negative ¢,<0, integration in (5.102)
has to be performed in the limits of (¢,, -2¢,). In Fig. 5.4 results of space charge potential of the
bunch, Eq. (5.102) are presented. Also, an inverse autophasing potential is given:

V(W) = - Uew (W, 0) = - kE [ sin (W + @) - W cosgs). (5.103)

Z

It is clear that the values of both potentials are close to each other. Therefore, a uniformly populated
bunch with boundary, Eq. (5.95), compensates for the "restoring" autophasing force inside the bunch,

which indicates a good approximation of the bunch boundary by Eq. (5.95).
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Parameter C can be expressed as a function of ratio of transverse, G?, and longitudinal, G?,
gradients of space charge forces inside the bunch

(5.104)

Figs. 5.5 and 5.6 illustrate dependencies, Eq. (5.104), for different values of synchronous phase and
beam energy. Components of electric field of a relativistic bunch in a moving frame, Ex, E), EZ were

calculated via numerical solution of the Poisson's equation and then the Lorentz transform was
applied to get components of electric field, E,, E,, E., in the laboratory system:

Ex=yE:., E,=yE,, E.=E.. (5.105)

In the laboratory system, the transverse field was reduced by the factor of ¥~ due to self magnetic
field of the beam:

(5.106)

Fe=E.-v:By=Lx,  F,=E +v.B=
Y

RSty

Gradients of the space charge field were calculated as derivatives of space charge forces in the
vicinity of the synchronous phase:

Gl =9Fx_ 1 9B b _0OF: _ OE: (5.107)
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According to Eq. (5.81), the space charge field of a stationary bunch compensates for the external
accelerating and focusing field within the bunch. Therefore, if space charge forces are known, the
opposite field defines the required external filed. Gradients of external field are calculated from Eq.
(5.49) in the vicinity of synchronous phase utilizing expansions

sin(Qs - kz8) = sin@s - (k:{)cos s - gkz@zsinfps, k.§ <<1, (5.108)
2
L&y~ 1+ L kery (5.109)
% 4

Substitution of Egs. (5.108), (5.109) into Eq. (5.49) gives for the external potential:

2 . 2
Uea= G2+ GIoq1 - Ge SOkl G & 4 G, 1, (5.110)
2 2 2Y°Gy  sinQs 2 2

where G. is the longitudinal gradient of external field

G. =2 Elsin @4 (5.111)
and G, .5 1s the effective transverse gradient of external field, depressed due to RF defocusing:
L G,
Gt eff = G(1 - —%—). (5.112)

2 '}/2Gt
4, 68



Taking into account Eq. (5.81), one finds the relationships between gradients of space charge field
and that of external field are

Gt = (1 2w Elsin o] (5.113)
1+0 PA
E‘sin gos‘
Gl =- (1 )G T2 Py, (5.114)
t 1+8 v2 BA

Egs. (5.113), (5.114) together with dependencies, presented in Figs. 6, 7, uniquely define the shape of
the stationary bunch for given values of the accelerating field, £, focusing gradient, G,, synchronous
phase, @, wavelength, A, and beam energy, 7.



4.10. Maximum beam current
The volume of the bunch is defined by

- =205
R*(y) dy. (5.115)

* Zmax

V=ru R%Qd@:%

! Qs

J Zmin

For a long bunch, A >> R,,,., an approximate bunch boundary, R(y), is determined by Eq. (5.101).
Integration in Eq. (5.115) gives for the bunch volume:

V= S(BM Bos sings - = q)g coSQs + cosQs - coS2 Q). (5.116)
T

The total charge of the bunch 1s Q = p-V and the beam current, / = Q @, 18

2
I
[= tmax_ (5.117)
1+6
Inax=I( By )(G’q 3¢ sm(ps- 2 pFcos@s+ cosPs- cos2s), (5.118)
167°C" mc?

where /,,,. 1s the maximum beam current for an infinitely bright beam. The expression in square
brackets in Eq. (5.118) is close to the cubic function of the synchronous phase, @, (see Fig. 8),
which exhibits that the maximum beam current is proportional to the cube of the synchronous phase.
It is in qualitative agreement with analysis, based on the well-known ellipsoidal approximation to a
bunched beam.
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maximum beam current, Eq. (5.118).

Substitution of Eq. (5.78),into Eq. (5.117) gives an explicit expression for the beam current:

2
I=Lypa (1 - &2), (5.119)
o

where o defines the normalized acceptance of the channel in presence of transverse focusing and RF
fields:

2 2
873BC  mc?

) [3¢s sing; - % PZcosQs + cosQs - cos2¢s] - (5.120)

Eq. (5.118) gives a unique expression for the beam current limit (without separate transverse and
longitudinal limits) for every combination of the values of E, G, ¢, and A.
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Comparison with ellipsoidal model

Let us discuss the applicability of the well-known approximation of the bunch by uniformly

populated ellipsoid. In the derivations of the self-consistent solution of the beam distribution
resulting in Eq. (5.81) no assumptions were made regarding the external potential. Therefore, Eq.
(5.81) is valid for an arbitrary external field. In the vicinity of the synchronous particle, where
external forces are approximately linear functions of coordinates, the external potential is given
by Eq. (5.110). Substitution of Eq. (5.110) into Eq. (5.81) gives for potential of a stationary
bunch:

2 "
Up=- P (G5 + 9o 2 (5.121)
28() Gt 2 2

where p is given by Eq. (5.91). Potential, Eq. (5.121), corresponds to a uniformly populated
ellipsoid. In a moving system of coordinates, the potential of the ellipsoid, U}?, with space charge
density p = p/y is given by
Up=--P- o>+ 1-M ;2 (5.122)
2¢&, 2
where ¢ = { y is the longitudinal deviation from the center of ellipsoid and M is the function of
semi-axes of an ellipsoid:

oo

2
MR, yl) =RV 2 ds (5.123)
2 (R™+5) (y2" + )

o

After transformation to laboratory system, the beam potential, U, = yUp, is

Up=-P (my?c*+ 1L-M,2 (5.124)
2€, 2
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Comparison of Eq. (5.121) and Eq. (5.124) gives for the coefficient M

G
MR, yl=—G: (5.125)
2'}/2Gz

The coefficient M, Eq. (5.125), and the space charge density p, Eq. (5.91), define a family of
ellipsoidal bunches with the same ratio of semi-axes R//, which are in equilibrium with the
external field. Taking into account that the volume of an ellipsoid is V= (4/3)x R’ , the
maximum bunched beam current, [,,,. = pVw/(27), which can be carried by an ellipsoid is

2 2
Inar = I 2 y2R Ly G427y (5.126)
3 3 m c?

Since a bunch with current, Eq. (5.126), completely cancels the external field, expression
(5.126) gives both a transverse and longitudinal current limit. Let us substitute the gradient of
the focusing field, G, by the value of the zero-current phase advance, o,, of betatron oscillations
per period S = NfA of a pure focusing structure (without RF field):

6, =/96: S, (5.127)
my B

In presence of a RF field, the effective focusing gradient is G, .= G/(1 - M), see Egs. (5.112)
(5.125). Therefore, the zero-current phase advance per period, g,,, including both the focusiny
and RF defocusing term is defined by:

0o = 05 (1 -M). (5.128)
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The phase width of the bunch, which contains most of the particles, can be approximately taken
as 2@, and, therefore, half of the bunch length is
[ = BAos/(21). (5.129)

Substitution of expressions (5.127) - (5.129) into Eq. (5.126) gives for the current limit
= me? g3 s O (R, (5.130)
37 q (1 - M) N A

where Z, = (ce,)" = 376.73 Q is the impedance of free space. Expression (5.130) is the well

known transverse current limit. Let us show that Eq. (5.126) gives also longitudinal current
limit. Substitution of the parameter M, Eq. (5.125), and the amplitude of the accelerating field £

from Eq. (5.111) into Eq. (5.126) gives for current limit:

32, BM A?

which is the well-known expression for longitudinal current limit in a RF field. Usually the
parameter M can be approximated as M = R/(3y[). With that approximation the current limit,
Eq. (5.131), 1s:

Inee = 2PY E 2 [sine R. (5.132)
z

o

For small absolute values of synchronous phase one can assume |sing, ~ |y, and the current
limit, Eq. (5.132), is proportional to the cube of synchronous phase [1, 2, 6], which is consistent
with derivations of Section 6. Analysis shows that approximation of the bunched beam by an
uniformly populated ellipsoid is valid for small bunches, R << 8,1, [ << BsA, while more
general analysis results in a bunch shape, described by Eq. (5.95).
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