
4. Space Charge Effects in RF Linear Accelerators 
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4.1. Principles of linear resonance acceleration 

Layout of RF linear accelerator. (Courtesy of Sergey Kurennoy). 
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 Layout of ion linear resonance accelerator. 

Energy gain in RF linear accelerator. (Courtesy of Larry Rybarcyk.) 
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(Courtesy of Larry Rybarcyk) 
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(Courtesy of Larry Rybarcyk) 
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4.2. Electromagnetic wave equations 
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Cell of Drift Tube Accelerator (from M.Weiss, CERN 96-02, p.39) 

Electric field lines between the ends drift tubes (from M.Konte, W.MacKay, 1991) 
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 Alvarez accelerating structure (from M.Weiss, CERN 96-02, p.39) 
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accelerating wave        opposite wave 

Z(z)T (t) = Eo cos(kzz)cos(ωt) =
Eo

2
[cos(ωt − kzz) +  cos(ωt + kzz)]

kz =
2π
L

= 2π
βλWave number 

Cyclic frequency of RF field 

Ez (z,  r, t) = E cos(ωt − kzz)R(r)Equivalent traveling wave 

Standing wave: 

1
r
∂
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(r ∂R

∂r
)− R(kz

2 − ω 2

c2
) = 0Substitution into wave equation gives for radial field component: 

ω = 2πc
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= 2π fRF

kz
2 − ω 2

c2
= kz

2 (1− ω 2

kz
2c2
) = kz

2  (1− β 2 ) = kz
2

γ 2

R(r) = Io(
kz r
γ
)Solution for radial field component: 

where Io(x) is the modified Bessel function 
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4.3. Hamiltonian of particle motion in RF field 
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H = (Px − qAx )
2

2mγ
+
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ω L =
qB
2mγ

H =
P̂x
2 + P̂y
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Hamiltonian of particle motion in magnetic field : 

where Larmor frequency 
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Example of beam dynamics in accelerating structure. (Courtesy of Larry Rybarcyk.) 
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4.4. Longitudinal particle motion in RF field 
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where     is the phase deviation from synchronous particle                              (5.37) ψ ψ = kzζ

Relief of potential function and a family 
of phase trajectories (from Kapchinsky, 
1985),                       .       pψ =Ws −W

Separatrix of longitudinal phase space 
oscillations including acceleration.   
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Longitudinal oscillations in RF field with      = - 90o. (Courtesy of Larry Rybarcyk.) ϕs
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4.5. Transverse particle motion in RF field 

Quadrupole beam focusing in RF linear accelerator. (Courtesy of Sergey Kurennoy). 
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+
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Io(
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γ
) ≈1+ 1

4
(kzr
γ
)2

sin(ϕ s − kzζ ) ≈ sinϕ s − kzζ cosϕ s = sinϕ s (1−ψ ctgϕ s )

ψ = kzζ

qE
4kz
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2mγ
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4kz
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γ
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Hamiltonian of particle motion in RF field: 

Hamiltonian of transverse motion: 

Near-axis approximation: 

Expansion near synchronous particle: 

Phase deviation from synchronous particle 
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Ht =
px
2 + py

2
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+ qEπ
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Hamiltonian of near-axis, near synchronous particle motion, with Ub = 0: 

Frequency of longitudinal oscillations: 

Hamiltonian becomes: 

Transverse oscillation frequency of synchronous particle 
in presence of RF field: 
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Ωrs =
n
2
Ω,    n = 1, 2, 3 Parametric resonance occurs when  

µs =Ωrs
L
βzc

γ s =
1
4
Ω2 ( L

βzc
)2

Let us introduce phase advance for synchronous particle in RF field 

and defocusing factor 

Transversal equation of motion: d 2x
dt 2

+ x[Ωrs
2 − Ω2

2
ctgϕ sΦsin(Ωt +ψ o )] = 0

4.6. Parametric resonance and beam emittance growth in RF field 

Ht =
px
2 + py

2

2mγ
+ mγ
2
r2 (Ωrs

2 + Ω2

2
ψ ctgϕ s )

ψ = −Φsin(Ωt +ψ o )

Hamiltonian becomes: 

Longitudinal particle oscillations with  
amplitude       and frequency        : Φ Ω

Finally, Hamiltonian is: Ht =
px
2 + py

2

2mγ
+ mγ
2
r2[Ωrs
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2
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Parametric resonance regions (from Kapchinsky, 1985). 
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Effective beam emittance growth outside of parametric resonance: 

Phase space of transverse oscillations in presence of 
RF field (from Kapchinky, 1985). 

εeff
ε

= 1+Φctgϕ s
Ω2

4Ωrs
2 −Ω2
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Required transverse focusing in presence of RF field 

Ωr
2 =ω L
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Hamiltonian of particle motion in RF 
field with solenoid focusing 
Transverse oscillation frequency in 
presence of RF field 

Envelope equation 

Beam equilibrium condition 
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2
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3Re
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Required magnetic field 
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4.7. Beam bunching in RF field 

Layout of klystron beam bunching scheme (from 
http://en.wikipedia.org/wiki/Klystron)  

4. 34 



RF beam bunching scheme: (left) initial beam modulation in 
longitudinal momentum, (right) final beam modulation in density. 4. 35 



dv
dt

= q
m
U1

d
sinωt

ϕ in +ϕout

2
=ωt1

ϕout −ϕ in

2
= θ1
2

vo =
2qUo

m

v = vo +
q
m
U1

ωd
2sin(ϕ in +ϕout

2
)sin(ϕout −ϕ in

2
)

v = vo + v1 sinωt1

v = vo +
q
m
U1

d tin

tout

∫ sinωt dt

v1 = vo
U1

2U0

M1

M1 =
sinθ1

2
θ1
2

θ1 =
ωd
vo

Equation of motion in RF gap of width d and applied voltage U1 

Longitudinal particle velocity in RF gap 

Longitudinal particle velocity after RF gap 

Initial particle velocity after extraction voltage Uo 

RF phase in the center of the gap 

Transit time angle through the gap 

Longitudinal particle velocity after RF gap 

Amplitude of modulation of longitudinal velocity  

Transit time factor of RF gap 
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t2 = t1 +
z

vo + v1 sinωt1
≈ t1 +

z
vo
(1− v1

vo
sinωt1)

θ =ω z
vo

Phase of arrival of particle into second gap as a 
function phase of the same particle in the first gap. 

ωt2 −ω
z
vo

=ωt1 −ω
zv1
vo
2 sinωt1

X =ω zv1
vo
2 = U1M1

2Uo

ωz
vo

ωt2 −θ =ωt1 − X sinωt1

Time of arrival of particle to the second gap 

Phase of arrival of particle into the second gap  

Transit angle between gaps 

Bunching parameter 
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i2 =
I

1− X cosωt1

Current in the second gap as a function of time.  

X < 1 

X = 1 

X > 1 

i1dt1 = i2dt2

i2 = i1
dt1
dt2

= I
dt2
dt1

Conservation of charge 

Beam current in the second gap 

Beam current in the second gap as a function of RF phase 
in the first gap and bunching parameter 
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Phase of arrival of particle into second gap 

i2 (x) = Ao + An cosnx
n=1

∞

∑
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1
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i2 (x)dx
o

π
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2
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1
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o

π
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1
π

cos(nϕ − zsinϕ
o

π

∫ )dϕ
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2I
π

cos(nωt1 − nX sinωt1
o

π

∫ )dωt1 = 2IJn (nX)

x =ωt2 −θ =ωt1 − X sinωt1

i2 (x) = I + 2I Jn (nX)cosnx
n=1

∞

∑

Expansion of the current in the second gap in Fourier 
series 

Fourier coefficients 

Differentiation of RF phase 

Constant in Fourier series 

Other coefficients in Fourier series 

Bessel function (integral representation) 

Beam current in the second gap 
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Bessel functions determine amplitude of the fist, third and tenth 
harmonics of induced current in two-resonator buncher. 
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The first harmonic of the induced beam current in the second gap             
as a function of z for different values of voltage at first gap.	



The optimal value of bunching parameter is Xopt = 1.84. 	



I1
I
= 2J1(X)
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Beam bunching in presence of space charge forces* 

2Ez =
ρ
εo
2zp

Ez =
ρ
εo
zp

Gauss theorem 

m
d 2zp
dt 2

= q(Eext − Ez )

d 2zp
dt 2

+ω p
2zp =

q
m
Eext

ω p =
qρ
mεo

= 2c
R

I
Icβ

ρ = I
πR2βc

* From Yu.A.Katsman, Microwave Devices, Moscow, 1973 (in Russian). 

1D longitudinal space charge field 

Space charge density of the beam 

Substitution of space charge field gives: 

Plasma frequency 

Longitudinal oscillation in presence of  
space charge field, Ez, and external 
field Eext 
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Reduction of beam plasma frequency in presence of conducting tube 

ωq = Fpω p

d 2zp
dt 2

+ωq
2zp = 0

zp = Bo sinωq (t − t1)

dzp
dt

= Boωq cosωq (t − t1)

dzp
dt
(t1) = Boωq = v1 sinωt1

Bo =
v1
ωq

sinωt1

Fp = 2.56
J1
2 (2.4 R

a
)

1+ 5.76

(ωa
vo
)2

Reduced plasma frequency of the beam 
of radius R in the tube of radius a 

Plasma frequency reduction factor 

Longitudinal plasma oscillations in tube 

Longitudinal particle oscillations under space charge forces 

Longitudinal velocity of particle oscillations under 
space charge forces: 

Constant Bo is defined from initial conditions for  
particle velocity after first RF gap: 
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Effect of space charge repulsion on beam bunching. 
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zp =
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ωq
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z = vo(t2 − t1)+ zp
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2Uo

(ωz
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)
sin(ωq

z
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)

ωq
z
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Finally, particle oscillations under space charge forces  
in the moving system 

Particle drift 

Multiply by  

RF phase in the second gap 

Modified bunching parameter in  
presence of space charge forces 

sin(ωq
z
vo
) = 1 ωq

z
vo

= π
2Condition for maximum bunching: 

Xopt =
U1M1

2Uo

( ω
ωq

) I1
I
= 2J1(Xopt )

ω
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(Left) initial and (right) final beam distribution in RF field. (Courtesy of Sergey Kurennoy.) 

                                           * From Y.B., NIM-A 483 (2002), 611-628. 

4.8. Space charge dominated bunched beam in RF field* 
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Sequence of bunches in RF field. 4. 47 
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4.9. Beam equipartitioning in RF field 
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The space charge density of the beam is obtained as an integral of the b eam distribution function 
over the particle momentum: 

ρ (x,y,ζ) = q  
-∞

∞
 

-∞

∞
 

-∞

∞
f dpx dpy dpz = ρoexp (- q Uext + Ubγ  -2

Ho
),          (5.61) 

where o is the space charge density in the center of the bunch. The value of o is unknown at this 
point due t o the unknown space  charge potential of the bea m, Ub. For further analysis let us 
introduce an av erage value o f the spa ce charge density, ρ, which is equal to the density of an 
equivalent uniformly-charged cylindrical bunch with the same beam radius, R, and the same half-
bunch length, l, as that of unknown stationary bunch. The space charge density of the cylindrical 
bunch, ρ = Q/V, is 

ρ =
Iλ

2πR
2
l c

                                                     (5.62) 

 

 where Q = I /c is the c harge of the bunch, V = πR22l is the volume o f the bunch and I is the 
beam current. Let us compare the value of ρ, Eq. (5.62), with that for another distributions. The 
space charge density of a uniformly populated spheroid with semi-axises R and l  is 
 

ρs = 3 I λ
4π R2 l c

 = 3
2

 ρ.                                             (5.63) 

 
 

Space charge field of the bunch 
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More precise analysis based on numerical solution of equation for beam potential indicates 
that synchronous phase is shifted in space charge dominated beam and phase width of the 
bunch also decreases but much slower than vertical size of the separatrix. 

The separatrix shape for different values of 
space charge parameter (from Kapchinsky, 
1985). 

The potential function and separatrix 
of the beam with high space-charge 
density (from Kapchinsky, 1985). 
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Stationary bunch profile 
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Fig. 5.4. Comparison of potential functions of the bean and RF 
field: (dotted line) space charge potential of bunched beam 
distribution at the axis, s = -60o, C = 3.8; (solid line) inverse 
external potential at the axis, -Uext( ,0) .  
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C =C  (Gt
b

Gz
b )
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Fig. 5.5 Coefficient C in bunch shape for s = -30o as a function of ratio 
of transverse and longitudinal gradients of space c harge field of the 
beam: a)  = 1, b)  = 3, c)  = 6. 

 

 
Fig. 5.6 Coefficient C in bunch shape for s = -60o  as a function of 
ratio of transverse and longitudinal gradients of space charge field of 
the beam: a)  = 1, b)  = 3, c)  = 6. 

 

a

a

b

bc

c
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4.10. Maximum beam current 
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Fig. 5.7. Function f (ϕ s) = 3ϕs sinϕ s - 9
2

 ϕs
2 cosϕs + cosϕ s - cos2ϕ s in 

maximum beam current, Eq. (5.118). 
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Comparison with ellipsoidal model 
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