The Fringe Pattern of a Synchrotron-Light Interferometer

Alan Fisher

SLAC National Accelerator Laboratory

Beam Diagnostics Using Synchrotron Radiation:
Theory and Practice
US Particle Accelerator School
University of California, Santa Cruz
San Francisco — 2010 January 18 to 22
Derivation of the Interference Pattern

- Assumptions:
 - One dimensional (y)
 - Two narrow, parallel slits of width a
 - Small slit separation (center to center) $d > a$
 - Slits are far from the source: $z_0s \gg d$
 - Small source size σ_0, but comparable to slit width
 - Nearly monochromatic light, due to a bandpass filter
Consider a point source at \(Y \) on the \((X,Y) \) plane.

The light is monochromatic at wavelength \(\lambda = 2\pi/k \).

We calculate the intensity at a point \(y \) on the image plane \((x,y) \).

The two slits are on the \((u,v) \) plane.

The electric field at \(y \) is found using a Fraunhofer diffraction integral over the slit plane.

We will need the difference in the length of the optical path for all the rays leaving \(Y \) and arriving at \(y \).
Layout of the Two-Slit Interferometer
Reference Path

- Compare all paths to a reference path that:
 - Leaves the source plane at \(-y/m\)
 - Here \(m\) is the magnification of the lens: \(m = z_{li}/z_{0l}\)
 - Is imaged geometrically to \(y\) on the image plane.
 - All optical paths from \(-y/m\) to \(y\) have equal lengths.
 - A fundamental property of geometric imaging.
 - Applies to the imaged ray passing through the slit at \(v\).
- Consider a ray leaving \(Y \neq -y/m\) that diffracts in the slit at \(v\) with an angle that brings it to \(y\).
 - Its path matches the imaging path from \(-y/m\) to \(v\) to \(Y\) after the slit…but not before.
 - This lets us compute the path difference \(\Delta s\) from the reference.
Difference in the Optical Path Length

\[\Delta s = \sqrt{(v - Y)^2 + z_{0s}^2} - \sqrt{(v + \frac{z_{0l}}{z_{li}} y)^2 + z_{0s}^2} \]

\[\approx \frac{1}{2z_{0s}} \left[-2v \left(Y + \frac{z_{0l}}{z_{li}} y \right) + Y^2 - \left(\frac{z_{0l}}{z_{li}} y \right)^2 \right] \]

\[= \frac{1}{2z_{0s}} \left[-2v \left(Y + \frac{f y}{z_{fi}} \right) + Y^2 - \left(\frac{f y}{z_{fi}} \right)^2 \right] \]

\[= -(gv + h) \]

where \[\frac{1}{f} = \frac{1}{z_{0l}} + \frac{1}{z_{li}} = \frac{1}{z_{0l}} + \frac{1}{f + z_{fi}} \]
Fraunhofer Diffraction Integral

\[
E(y, Y, k) = \int_{\text{slits}} e(v) \frac{1}{s_{Y, v}} \exp \left[i k s_{Y, v} + i k s_{v, v} \right] dv \\
= \int_{\text{slits}} \sqrt{A(v)} \exp \left[i k \Delta s + i \phi(v) \right] dv \\
= ae^{-ikh} \text{sinc} \left(\frac{kga}{2} \right) \left(\sqrt{A_1} e^{-ikgd/2} + \sqrt{A_2} e^{ikgd/2 + i\phi_0} \right)
\]

\[
I(y, Y, k) = a^2 \text{sinc}^2 \left(\frac{kga}{2} \right) \left[A_1 + A_2 + 2\sqrt{A_1 A_2} \cos \left(kd + \phi_0 \right) \right]
\]

- Envelope from single-slit diffraction
- Individual slits
- Interference between slits
- Phase offset between slits
Fringe pattern of a monochromatic point source at 450 nm, using parameters for the PEP-II HER interferometer at SLAC. $A_1 = A_2 = 1$, $d = 5$ mm, $a = 0.5$ mm.
Diffraction from an Extended Source #1

- Replace point source at Y with a Gaussian:
 \[
 \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left(-\frac{1}{2} \left(\frac{Y-Y_0}{\sigma_0} \right)^2 \right)
 \]
- Source consists of independent electrons: Incoherent.
 - Integrate the intensity, not the electric field.
- Compare arguments: $\text{sinc}^2\left(\frac{kga}{2}\right)$ versus $\cos(kgd + \phi_0)$
- Recall that:
 \[
 g = \frac{1}{z_{0s}} \left(Y + \frac{fy}{z_{fi}} \right) \sim \frac{1}{z_{0s}} \left(\sigma_0 + \frac{fy}{z_{fi}} \right)
 \]
- For $d=5$ mm, $a=0.5$ mm, $\lambda=450$ nm, $\sigma_0=0.3$ mm, $z_{0s}=10$ m:
 - $k\sigma_0a/(2z_{0s}) = 0.105$ Small compared to zero of sinc at π
 - $k\sigma_0d/z_{0s} = 2.09$ Significant change in cosine phase
We remove the sinc from the integral over the source, getting:

\[
I(y, k) = a^2 \text{sinc}^2 \left(\frac{ka}{2z_{0s}} \left(Y_0 + \frac{fy}{z_{fi}} \right) \right)
\]

\[
\cdot \left\{ A_1 + A_2 + \frac{2\sqrt{A_1 A_2}}{\sqrt{2\pi} \sigma_0} \int \exp \left[-\frac{1}{2} \left(\frac{Y - Y_0}{\sigma_0} \right)^2 \right] \cos \left[\frac{kd}{z_{0s}} \left(Y + \frac{fy}{z_{fi}} \right) + \phi_0 \right] dY \right\}
\]

\[
= a^2 \text{sinc}^2 \left(\frac{kg_0 a}{2} \right) \left\{ A_1 + A_2 + 2\sqrt{A_1 A_2} \exp \left[-\frac{1}{2} \left(\frac{k\sigma_0 d}{z_{0s}} \right)^2 \right] \cos \left(kg_0 d + \phi_0 \right) \right\}
\]

where

\[
g_0 = \frac{1}{z_{0s}} \left(Y_0 + \frac{fy}{z_{fi}} \right) = \frac{fy}{z_{0s} z_{fi}} - \theta_0 = \frac{y}{f + z_{fi} (1 - z_{sl}/f)} - \theta_0
\]
Fringe pattern of an extended source, with $\sigma_0=0.2$ mm
Pass synchrotron light through a narrow Gaussian filter:
\[
\frac{1}{\sqrt{2\pi\sigma_k}}\exp\left[-\frac{1}{2}\left(\frac{k-k_0}{\sigma_k}\right)^2\right]
\]

Compare arguments: \(\text{sinc}^2\left(\frac{k_0a}{2}\right)\) versus \(\cos\left(k_0d + \phi_0\right)\)

Recall that:
\[
g_0 = \frac{y}{f + z_{fi}(1-z_{sl}/f)} - \theta_0
\]

Essentially \(g_0\) is a scaled vertical coordinate with an offset \(\theta_0\).

Compare effect of \(\sigma_k\) to an argument of \(\pi\), where \(\text{sinc} = 0\).

For \(\Delta\lambda = 30\) nm FWHM:
\[
\pi\sigma_k/k_0 = 0.09 \quad \text{Small}
\]

Again we can remove the sinc from the integration over the bandpass filter.
Quasi-Monochromatic Light #2

\[I(y) = a^2 \text{sinc}^2 \left(\frac{k_0 g_0 a}{2} \right) \]

\[\cdot \left\{ A_1 + A_2 + \frac{2 \sqrt{A_1 A_2}}{\sqrt{2\pi \sigma_k}} \int \exp \left[-\frac{1}{2} \left(\frac{k - k_0}{\sigma_k} \right)^2 \right] \exp \left[-\frac{1}{2} \left(\frac{k \sigma_0 d}{z_{0s}} \right)^2 \right] \cos (k g_0 d + \phi_0) \, dk \right\} \]

\[= a^2 \text{sinc}^2 \left(\frac{k_0 g_0 a}{2} \right) \left\{ A_1 + A_2 + \frac{2 \sqrt{A_1 A_2}}{\sqrt{1 + \left(\frac{\sigma_k \sigma_0 d}{z_{0s}} \right)^2}} \exp \left[-\frac{1}{2} \left(\frac{k \sigma_0 d}{z_{0s}} \right)^2 \right] \cos \left(\frac{k \sigma_0 d}{z_{0s}} \right) + \phi_0 \right\} \]

Beam size Bandwidth
Fringes with a Bandpass Filter

Fringe pattern using a Gaussian bandpass filter with a full width at half maximum (FWHM) of $\Delta \lambda = 30$ nm.
Compare to van Cittert and Zernicke

- We previously looked at the derivation of van Cittert and Zernicke (VCZ). Is this approach the same?

- VCZ:
 - The “degree of coherence” $\mu(A_1,A_2)$ between two apertures due to the finite source.
 - VCZ says that, for a narrow-band source, this expression resembles the diffraction pattern on the slit plane due to the source.
 - The intensity pattern on the camera is then determined from the single-aperture patterns and μ.

- My approach changes the order, but reaches the same result:
 - First do the full calculation through two slits to the camera for a monochromatic point source.
 - Next include the finite size.
 - Finally add the narrow bandwidth.
Interferometry on SPEAR-3
First Mirror (M1) in the HER of PEP-II
Distortion of PEP’s First Mirror

- The first mirror in PEP-II takes a huge heat load, even with grazing incidence to spread out the heat.
 - Extensive (and stiff) stainless-steel water-cooling tubes on the rear add mechanical stress.

- A slot along the midplane of the mirror is meant to allow the narrow and hot x-ray fan to bypass the mirror and hit a separate dump.
 - Some folding of the mirror about the slot.

- Thermal and mechanical stresses reduce image quality and would decrease fringe contrast in an interferometer.
Compensation with a Cylindrical Lens

- Interferometer slits pass light from two thin horizontal stripes along M1.
 - Little of M1’s surface contributes…and we can reduce this more.
- Beam is imaged through the slits onto the camera.
 - Fringes of a vertical (y) interferometer measurement form a series of parallel horizontal lines on the camera.
 - Beam size is calculated from the intensity variation along y.
- The direction along the stripes (x) is less interesting.
 - Change the focal length horizontally to image M1, not the beam.
 - Insert a cylindrical lens to shorten the focal length in x only.
 - Position along each stripe corresponds to an x coordinate of M1.
 - Computer selects x value with best fringe visibility on the camera.
- The interferometer uses only two small rectangles, selected for fringe quality, on M1’s surface.
Adding the Cylindrical Lens

Beam: Source Plane for y Image

First Mirror: Source Plane for x Image

Slit Plane

Spherical Lens

Cylindrical Lens (horizontally focusing)

Image Plane for x and y
LER Interferometer on Tunnel Wall

Cylindrical lens

Slit assembly
Double-Slit Assembly

- Rotation motor
- Spherical lens
- Plate for outer jaws
- Jaw motors
- Plate for inner jaws
Sketch of Slit Assembly

- Inner jaws mounted from lower plate.
- Outer jaws mounted from upper plate.
- Each jaw is on a translation stage with no motor, moving transversely.
- A third, motorized stage on each plate moves longitudinally, spreading the jaws with a wedge.
Cylindrical Lens to Camera

- Cylindrical lens
- Camera
- Polarizer
Polarizer, Filter, and Camera