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H)"’s Introduction

= Bunch lengths are getting shorter:
= 30 ps in typical rings
= < 10 ps with special low-momentum-compaction lattices
= 10to 100 fs in new linac-based light sources (LCLS at SLAC)

= Fastest streak camera has a resolution of 200 fs/pixel.
= Also expensive and complex for a routine monitor.

= Various new technigues have been devised.

= A technically simple, but subtle, scheme (Zolotorev and
Stupakov, 1996) studies the statistics of single-bunch
emission, either examining:
= Turn-to-turn variations in the energy in a narrow band, or
= Single-shot variations in the spectrum
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m‘” Electric Field of a Bunch

= The electrons in the bunch are randomly distributed:

= Normalized distribution f(t): J._Oo f(t)dt=1, f(t)isreal
= Characteristic time duration o; ,
= Later we will use a Gaussian: f(t)= exp| — t

% do} 20

s Electric field isNthe sum of the fields of the N >> 1 electrons:

E(t)=) e(t-t,)

k=1
s Fourier transform of the field: TR

E(w)=[" E(t)e"dt= é(a))ZN:e“‘"k ol _ |

= The total field is noisy.
g o =

= @& is smooth: the noise in E comes
from the random spacing of the t,.

E(t) (arbitrary units)
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i)

= The energy radiated by the bunch is:
W= (" |E@) dt
- Jo'o) N @ 00 A
— dtiz dwé(w)e " tk) L

o —00 27Tk1._00

Energy Radiated by the Bunch

j dw&*(w')e'” W

2 Z” da)da)’dté(a))é*(a)’)e‘(@tk—w’tu)e—i(a)_a)')t

k,I=1

:_Zjdw|e( )| aio ()

27
= We used |E|* for power to simplify notation.

=  We made use of the identity: f_oo e''dt = 275 ()
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m‘“ Mean, Variance, and Standard Deviation

= To get the bunch length, we find the mean (1t moment) and variance (2"
moment) of the energy per pulse W.

= For any distribution p(t) and function q(t), define:

= Mean

m, =(a()) = [a(t) p(t)dt

= \Variance

2010-01-21
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:<q2(t)>—m§ 015

= Standard deviation = ¢ a1l
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I\“ﬂ Mean of the Energy

= The ensemble-averaged (also time-averaged) energy is then:

<W> =M, = %;J‘J‘ dtkdt| f (tk) f (tl )jda)|é(a))|2 plo(tt)

[dolé()]

[dolé()]

_Z” dtdt, f(6) £ () + 2 [[dtdt f ) £ (t)e" Y

k=l

N+ N?

f (a))ﬂ (for N >>1)

= The first term is incoherent radiation from the N electrons.

= The second term is coherent radiation:
« The characteristic width of f(w) is o, =1/0,
= Coherent term is insignificant when o >> o,
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”’s Bandwidth and Coherence Time

= The light is filtered to a narrow bandwidth oy, centered at s,
= The characteristic coherence time for oscillations of the filtered electric field is:
Teoh = Lot
= We are interested in the statistics of the incoherent part of the emission.
= The filter is chosen so that M = o/7,,, >> 1, or 1/c; = 0, << oy,
= We can neglect the coherent-radiation term.
= The filter band is also narrow compared to @y, and so o, << Gy, << Wiy

= Since the bunch duration is many coherence times, it can be pictured as M
independently radiating modes, each with random amplitude.

= The filtered power |é(w)|? from each electron, which is not random (but has random
timing), has a characteristic width of oy
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Variance of the Energy

i)

=<M|2>—|<w>|2
> [[[dedtd [fdordt,dt f@) @) FEI @@t e

(277)2 kI
_ [Ej‘da)|§(a))|2}

1 N T
) (277)2 |:k%n(m)+k M= n()}_[_.“dde(w)' }
Zﬂdwdw Be)* (e)]” [[dt,dt, f (1) f ()60

(27r)2
N ) . - 2
=\ 5 | [Jdede @) o(@)f f(0-0)
T )
(N - A, (4 e, AP The next slide explains
oz ) ! da)|e(a))| Idw ‘f(w) some steps used here.
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m‘“ Wait...How Was That Done?

= As before, we kept only the significant combinations:
= k=1, m=n: Canceled by the last term (the mean-squared term).
= k=n,l=m: Gives fA(a)+ ") terms, which are small.
= Neglect coherent-radiation terms.
s f (w — ") has width o, , much narrower than width of é(«).
= We can set é(w') = é(w) when integrating over o'.
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m’] Ratio to Mean

= Ratio of the variance to the mean squared:
O _ jda)|é(a))|4 jda)

2 2

| [dofs@) |

= A beam in a storage ring is Gaussian in time (slide 3). In the frequency
domain, the distribution becomes:

f(a))— L Texp - 5 +iwt |dt =exp —wzatz
V2ro, 7, 20 2
s Assume that the filter is also Gaussian.

= A filter’s RMS width oy, is generally expressed in terms of intensity (E?), not
field. So, after the filter, the single-electron spectrum is:

X p (@ — wg,)°
8(w) 2 _ 1 eXp|:— filt }
| | \/ZG filt ZGfiItZ

f(o)]
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m‘” Finding the Length of a Gaussian Bunch

[ do|é(w)| = p,

[ dold(o)] =—2

[do f(a))r .

2
GW _ 1 Tcoh _

mvzv ) \/EGtGﬁlt ) \/EGt ) J2M

Conclusion: The bunch length o; can be determined by finding
the mean and variance of many measurements of the radiated
energy W through a narrow filter of known bandwidth ;.
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(00
!h | Example

= View 550-nm light through a filter with a 1-nm bandwidth (in
Intensity):
s @y, = 270/ Agy, = 3.425%1018 571
= Gty = @ity 03 [ Ay = 6.227x10%2 s
s T, = Log, = 0.16 ps
= Measure the statistics:
= o,/m, =0.08
= The bunch length o; = 18 ps.
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I\“ﬂ What if the Pulse 1sn’t Gaussian?

= Interferometric method

= Split the pulse, delay one part by a time 7, and recombine at the
detector, for a total field:

E e (t,7) = E(Q) + 2E(t —7)

= A Michelson interferometer can be used.
= Inthe frequency domain:

étotal (w,7) = é(a))z g'h (1+ aei“")
k
= When 7= 0, this is the same as the previous approach.

= We will see that the result is the autocorrelation of the distribution f(t)
as a function of the delay 7 :

jf(t)f(t—f)dt

= When f(t) is real and symmetric, the autocorrelation can normally be
inverted to find f.
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m‘” Energy In the Pulse

1

(27

W (r) = ° > [[[ dtdod o’ &(@)e*(') (1+ae™ )(1+a *e ™ erot et
kI

_i A 2 ior |2 io(t,—t)
— 27TI(ZI:j.dCz)|e(Cz))| ‘1+ae e

ZJ-J- dtkdt| f (tk) f (t| )eia)(tk_tl)

(W (2))=m, (z) = %; j dolé(o)| [L+ae"

2

_ % [dop@) [1+ae”| +§—; [dolé@)] L +ae | |f (co)\2

= As before, we neglect the second term, for coherent radiation, because the
filter passes light only at a high frequency ax;, .
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I“‘” Variance
QL2

2 1 ,
o2 (1) = oy k.z j j dodw

x.'dtk f (tk): dtl f (tl)jdtm f (tm)jdtn f (tn)eia)(tk—t|)—ia)’(tm—tn)

2 2

8(w)| |8(e") 1+qe™”

2 .
‘1+ ae'”

[ N A 2 i 2 2
— Z—jda) e(a))| ‘l+ae"‘” }
| 27

1 r|a 214 n|2 iot 2 o't 2
- oy kZ [[dodo'[§(o)| B L+ ae | [L+ae
« j dt, f (t,) j dt, f (t, )e' )t
N ’ n 2 1A 2 P12 iwrl2] 2 2
=| | [[dedo’ @) B(@)] [L+ae" | L+ae"" [ | (0-o)
27

The next slide explains
some steps used here,

2010-01-21 Fisher — Fluctuations and Bunch Length 15



m‘“ The Usual Tricks

= Only certain combinations of the sum are significant:
= k=1, m=n: Canceled by the last term (mean squared).
= k=m, |=n: Givesthe o' terms that provide our result.

= f(w- ') has width o, , much narrower than width of &(&').
= We can set é(w') = é(w) when integrating over o'

= Recall that:
= &(w) Is centered at a high frequency ax;
= The delay 7 is comparable to the pulse width o;
= 0T ~ 0oy >> 1

= Asaresult:

= In expanding the |1+ ae'® factors, all but the constant terms and those
Involving @' oscillate rapidly, vanishing in the «' integral.

= But for =0 this argument does not apply, and we simply pull the
|1+ factors out of the integral.
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L” Variance and Autocorrelation

o2 (1) = (%T (1+|a|2)2 [[deodar]e
+(lj2|a|2 ”da)da)' e

:( N j (1+]of ) [dofp@)f* [do| (@)]
( j|a| Re jdw|e(a))| [do| f ()] & }

N

:(gj B(w)|” da)[ 1+l jf(t) dt+2[a [ () (z- t)dt}

2 ei(a)—a)’)r +e—i(a)—a)’)r)

Again, see the next slide
for some steps used here.
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m‘“ And More Tricks

= We used a theorem of Fourier transforms: The product of two
transforms Is an autocorrelation in the time domain.

1
j g(t)h(z —t)dt = a7

jda)_“dw'g\(@)ﬁ(a)')j‘dte—iwt—iw’(r—t)

_1 | §(w)h(w)e ™ do
27T

= We also used a special case of this, Parseval’s theorem:

2 1 2
Jlow['dt=—=[lg(@) do
= And we used the fact that f(t) is real and assumed to be symmetric.

= When we look at the change in the variance as 7 Is scanned,
we can ignore the first, ~independent term.

= For o =0 (no interference), the result reverts to the prior case.
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m‘" Ratio to Mean

Gv%/ () -”é(a))|4 da)[(l+|a|2 )2—[ f(t)2dt + 2|Oc

ij(t)f(r—t)dt}

m’ (0) B 1+ a|4 U|§(a))|2da):

2

= As 7lis scanned, the ratio of the variance to the central (peak)
value of the mean gives a constant and a varying term.

= When {(t) is real and symmetric, the autocorrelation from the

varying term can be inverted to determine
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I\“‘” Additional Complications

= [ransverse beam size

= If the beam is too wide for transversely coherent emission, or if there is
diffraction at a limiting aperture, then the measured variance is
reduced.

s Detector noise

= Detector noise adds to the measured fluctuations, and must be
accounted for to find the correct bunch length.

= Photon count

= |If the number of photons on the detector is too low, shot noise will
Increase the measured fluctuations.
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m’] Another Variation

= Spectrographic method
= Use a spectrometer to make many narrow filters.

= The fluctuations from one wavelength bin to the next then give the
bunch length in a single measurement of the pulse.
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I“‘” Conclusion
QL2

= We can find the length o; of a short bunch using a simple
statistics of many measurements of the radiated energy W
through a narrow filter.

= A more elaborate setup can provide more information about
the temporal profile.
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