Fluctuation-Based Bunch Length Experiments

J. Corbett
US Particle Accelerator School
January 18-22, 2010

- Motivation
- Time Domain Measurements
- Frequency-based Measurements
- Interferometer-based Measurements
- Introduction to USPAS Simulator
- Alan derived theoretical basis for using statistical fluctuations to measure pulse length

- Each electron is an independent ‘radiator’ with a random, granular distribution along the bunch (shot noise)

- Sometimes the phase of wave packets overlap, sometimes they don’t

- The *mean and variance* (moments) in the signal yields pulse length

- Measurements can be made in the time domain or frequency domain

- We will review some experiments and introduce the USPAS simulator
Sum electric field emission from individual electrons

\[E(t) = \sum_{k=1}^{N} e(t - t_k) \]

where emission times \(t_k \) are random, Gaussian-distributed numbers

\[f(t) = \frac{1}{\sqrt{2\pi\sigma_t}} e^{-t^2/2\sigma_t^2} \]

Each wavepacket \(e(t) \) is centered at random time \(t_k \)

Wavepackets superimpose to produce more or less field at time \(t \)

The electromagnetic field intensity is \(E^*E \)

Total pulse energy \(\int E^*Edt \) is therefore random in time.
an incoherent electric field is often not what we were lead to believe -
Fluctuations in Electric Field and Intensity

Each light pulse from the synchrotron has statistical structure

Field fluctuations

Intensity fluctuations E^*E

wave packets emitted from individual electrons statistically add or cancel

the correlation length corresponds to the wavepacket coherence length

$$T_{\text{pulse}}/\tau_{\text{coh}} = M \text{ (mode number)}$$
To increase correlation length band-limit the radiation

This increases the coherence length of the individual wave packets

\[f = \frac{c}{\lambda} \]

\[\Delta f = -\frac{\Delta \lambda c}{\lambda^2} \]

\[\Delta t = \frac{1}{\Delta f} = \frac{\lambda^2}{c \Delta \lambda} \]

For 633nm light and a 1nm band pass filter

\[\Delta t = \frac{\lambda^2}{c \Delta \lambda} = \frac{(633 \times 10^{-9})^2}{(3 \times 10^8) (1 \times 10^{-9})} = 1.3 \text{ ps} \]

For a 15ps bunch, the ‘mode number’ \(M \approx 15 \).
Energy Fluctuation Statistics

Narrow band filter

\[E_1 = \int P_1(t)dt \]

\[E_2 = \int P_2(t)dt \]

\[E_3 = \int P_3(t)dt \]

\[\ldots \]

\[E_N = \int P_N(t)dt \]

Wide band filter

\[E_1 = \int P_1(t)dt \]

\[E_2 = \int P_2(t)dt \]

\[E_3 = \int P_3(t)dt \]

\[\ldots \]

\[E_N = \int P_N(t)dt \]

\[f(E) \]

signal/noise = 2.4

\[\sigma = \text{Sigma (noise)} \]

\[W = \text{Mean (signal)} \]
Intensity Fluctuation Derivation

Goodman, *Statistical Optics* Chapter 6

Average Value

\[\overline{W} = \int_{-T}^{T} \overline{I}(t) \, dt \]

Variance

\[\sigma_W^2 = E\left[\left(\int_{-T}^{T} I(t) \, dt\right)^2\right] - \overline{W}^2 \]

\[= \int_{-T}^{T} \int_{-T}^{T} \overline{I}(t)\overline{I}(t') \, dt \, dt' - \overline{W}^2 \]

\[\sigma_W^2 = \int_{-T}^{T} \int_{-T}^{T} \Gamma_I(t-t') \, dt \, dt' - \overline{W}^2 \]

where \(\Gamma \) is the autocorrelation function of \(I(t) \)

in terms of fields

\[\Gamma_I(\tau) = E\left\{e(t)e^*(t)e(t+\tau)e^*(t+\tau)\right\} \]

‘fourth order correlation’
Intensity Fluctuations (cont'd)

\[\sigma_W^2 = \int_{-T}^{T} \int \Gamma_I(t - t') dt dt' - \bar{W}^2 \]

\[\Gamma_I(\tau) = E\{e(t)e^*(t)e(t + \tau)e^*(t + \tau)\} \quad \text{‘fourth order correlation’} \]

But from interferometry \[\Gamma_I(\tau) = I^2 \cdot (1 + |\gamma(\tau)|^2) \]

Then \[\sigma_W^2 = \bar{W}^2 \frac{1}{T} \int |\gamma(\tau)|^2 d\tau \]

\[\frac{\bar{W}^2}{\sigma_W^2} = \left(\frac{1}{T} \int |\gamma(\tau)|^2 d\tau \right)^{-1} = M \quad \text{(same as before)} \]

\[M = \frac{1}{\frac{1}{T} \int |\gamma(\tau)|^2 d\tau} = \frac{\tau_{\text{pulse}}}{\tau_{\text{coh}}} \quad \text{is the number of modes-per-pulse!} \]

\[\longrightarrow \text{measurement of } W, \sigma_W \text{ with known } \tau_c \text{ yields } \tau_{\text{pulse}} \]
The ratio of Pulse Time to Coherence Time

\[M = \frac{T_{\text{pulse}}}{T_{\text{coh}}} \]

Goodman, *Statistical Optics* Chapter 6

Figure 6-1. Plots of \(M \) versus \(T/\tau_c \), exact solutions for Gaussian, Lorentzian, and rectangular spectral profiles.
Relation between physics and measurement

\[
\frac{\sigma_W}{\langle W \rangle} = \frac{\text{variance}}{\text{mean}} = \left(\frac{\tau_{\text{coherence}}}{\tau_{\text{pulse}}}\right)^{1/2}
\]

number of modes: \(M \)
Modes-per-pulse: Experimental Evidence, U. Tokyo

\[
\frac{\sigma_W}{<W>} = \frac{\text{variance}}{\text{mean}} = \left(\frac{\tau_{\text{coherence}}}{\tau_{\text{pulse}}}\right)^{1/2}
\]
In the simplest form...

\[\delta^2 = \frac{\sigma_w^2}{W^2} = \int_{-T}^{T} \int I(t)I'(t')dtdt' \]

fluctuations proportional to intensity correlation

For Gaussian statistics and band pass filter

\[\delta^2 = \frac{1}{\sqrt{1 + 4\sigma_t^2 \sigma_\omega^2}} \]

Expanding

\[\delta^2 \approx \frac{1}{2\sigma_t \sigma_\omega} \]

For

\[\sigma_{coh} \approx \frac{1}{\sigma_\omega} \]

We get

\[\delta^2 \approx \frac{\sigma_{coh}}{\sigma_t} = \frac{1}{M} \]

Make the coherence length long to reduce the number of modes M
Time-Domain Measurements at Berkeley

Intensity fluctuations, F. Sannibale, et al

\[\int_{-T}^{T} I(t)I(t')dt dt' \]

LeCroy 3GHz BW, 20Gsample/s calculate average value of AB, CD 5000 samples @ 1.5MHz

LeCroy 3GHz BW, 20Gsample/s calculate average value of AB, CD 5000 samples @ 1.5MHz

\[\delta^2 = \frac{\sigma_w^2}{W^2} = \int_{-T}^{T} I(t)I(t')dt dt' \]
Calibration against Streak Camera

\[\delta^2 = \sqrt{1 + \frac{\sigma_r}{\sigma_{r,c}}} \sqrt{1 + \frac{\sigma_x}{\sigma_{x,c}}} \sqrt{1 + \frac{\sigma_y}{\sigma_{y,c}}} \]

\(\sigma_{x/y,c} \) are transverse coherence sizes - related to transverse EM modes at 633nm - radiation process, including diffraction - ratios about 2 and 0.1

- also shot noise, photodiode noise

Figure 3: Examples of fluctuation and streak-camera bunch length measurements at the ALS for different beam parameters.
Total electric field has a spectral content

\[f(t) = e(t) \sum \delta(t - t_i) \quad \tilde{E}(\omega) = \tilde{e}(\omega) \sum_{k=1}^{N} e^{i\omega_k} \]

Phasors add up to ‘spike’ at frequencies \(\omega \)

Shot-noise in wavepacket emission causes the spikes

In the frequency domain still have shot-to-shot fluctuations

Width of each spike is inversely proportional to the bunch length
Frequency Domain: An Empirical Argument

\[f(t) = \sum \delta(t - t_i) \]

Fourier Transform

\[\tilde{f}(\omega) = \sum \delta(\omega - \omega_i) \]

Convolution

\[f(t) * g(t) \]

Product

\[\tilde{f}(\omega) \cdot \tilde{g}(\omega) \]

Product, convolution

\[(f(t) * g(t)) \times h(t) \]

USPAS January 18, 2010

Shot-by-Shot Fluctuation Measurements
Empirical Argument (cont’d)

(f(t)*g(t)) x h(t)

convolution, product

\(\frac{1}{t_c} \cdot \frac{1}{t_p} \)

Now make a leap of faith to random emission...

In both domains we have constructive and destructive interference

Figure 2.8: Electric field of Eq. (2.47) consists of \(M \) regular regions (\(M \) longitudinal modes).

Kim, Huang USPAS
Frequency Statistical Analysis

Experimentally can also analyze fluctuations in the frequency domain.

Integrate the power spectrum of each pulse over frequency to find energy:

\[\varepsilon = \int P(\omega) d\omega \]

The average energy is:

\[\langle \varepsilon \rangle = \int (P(\omega)) d\omega \]

And the variance is:

\[\frac{\langle \Delta \varepsilon^2 \rangle}{\langle \varepsilon \rangle^2} = \frac{1}{\langle \varepsilon \rangle^2} \iint \langle (P - \langle P \rangle) \cdot (P' - \langle P' \rangle) \rangle d\omega d\omega' \]

or

\[\frac{\langle \Delta \varepsilon^2 \rangle}{\langle \varepsilon \rangle^2} = \frac{1}{\langle \varepsilon \rangle^2} \iint \langle PP' \rangle - \langle P \rangle \langle P' \rangle \rangle d\omega d\omega' \]

Need to compute \(\langle P \rangle \) and 4\(^{th}\) order field correlation \(\langle PP' \rangle \) to evaluate variance.
Frequency Domain Analysis (cont’d)

\[
\frac{\langle \Delta \varepsilon^2 \rangle}{\langle \varepsilon \rangle^2} = \frac{1}{\left(\int T d\omega\right)^2} \iint TT' \left| f(\omega - \omega') \right|^2 d\omega \, d\omega'
\]

filter

bunch transform

For a Gaussian filter and a Gaussian bunch

\[
\frac{\langle \Delta \varepsilon^2 \rangle}{\langle \varepsilon \rangle^2} = \frac{1}{\sqrt{1 + 4\Delta \omega^2 \sigma_b^2}} \quad \frac{\langle \Delta \varepsilon^2 \rangle}{\langle \varepsilon \rangle^2} = \frac{\tau_c}{\tau_b}
\]

(filter characteristic)

(bunch characteristic)

(same as time-domain analysis)
Use a spectrometer to observe spikes in single-shot spectrum

Sajaev, Argonne Nat’l Labs

Frequency Domain Experiments at APS

Use a spectrometer to observe spikes in single-shot spectrum

Sajaev, Argonne Nat’l Labs
Bunch length proportional to Fourier transform of spectrum autocorrelation

Large frequency correlation
Short bunch length

Small frequency correlation
Long bunch length
Fluctuations in Interference Visibility Pattern

Landmark paper: Zolotorev and Stupakov (1996)

Measure fluctuations in the coherence function of the incoherent electric field

\[\Gamma(\tau) = \int E(t)E^*(t - \tau)dt \]

Utilizes a two-beam interferometer to measure \(\Gamma(\tau) \)

In simulation, the electric field is represented by \(E(t) = A(t)e(t) \)

pulse envelop random process
Each pulse of light is a superposition of randomly-phased ‘wave packets’

Simulator generates wave packets at random times t_k

Computes wavepacket superposition and resulting intensity E^*E

Records statistics of shot-to-shot photon beam energy $U = \int E^* Edt$
to deduce pulse length

Very much like Sinnabale experiment and USPAS laboratory
but you ‘see’ effects not physically observable
Simulator for Pulse-Energy Fluctuations

Single Pulse Intensity

Pulse-by-Pulse Energy

Pulse Energy Histogram

Load Default Parameters

Bunch Length [ps] 2.00e-011
Center wavelength 6.00e-005
Filter Width 2.50e-016
Coherence Time [ps] 2.04
Waves packets/Pulse 100
Number of Pulses 1000
Number of Points 4000

Mean Energy 6.71e-012
Energy Variance 2.25e-012

Histogram Bins 50

Show Wavepacket
Show Single Pulse
Start Acquisition
Stop Acquisition

single wavepacket profile
Part I: Photon beam properties
Calculate wavelength, energy, photon flux, etc.

Part II: Coherence properties
Coherence length with BP filter, etc

Part III: Time-base calculations for simulator code
Need simulate with 1um radiation

Part IV: The simulator interface

Part V: Wavepackets
Study as a function of wavelength, bandwidth, etc

Part VI: Study pulse-to-pulse statistics as a function of
bunch length, filter width, etc

Independent study
Summary Fluctuation Techniques

- Wavepacket emission is a statistically random process

- In the time domain
 use a filter to make coherence length~bunch length
 look for fluctuations in shot-to-shot intensity

- Fluctuations in interferometer visibility pattern

- In the frequency domain
 use a spectrometer to observe fluctuations in spectra

- Simulator for this afternoon