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Motivation

- Alan derived theoretical basis for using statistical fluctuations
to measure pulse length

- Each electron is an independent ‘radiator’ with a random,
granular distribution along the bunch (shot noise)

- Sometimes the phase of wave packets overlap, sometimes they don't
- The mean and variance (moments) in the signal yields pulse length
- Measurements can be made in the time domain or frequency domain

- We will review some experiments and introduce the USPAS simulator
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Time Domain View

Sum electric field emission from individual electrons

E(t):ie(t—tk)

where emission times t, are random, Gaussian-distributed numbers

f(t) = L g /2o

\ 270,

Each wavepacket e(t) is centered at random time t,

Wavepackets superimpose to produce more or less field at time t
The electromagnetic field intensity is E*E

Total pulse energy IE*Edt Is therefore random in time.
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Statistically Random Function in Time

pulse is T'.
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Figure 2.8: Electric field of Eq. (2.47) consists of M regular regions (M

longitudinal modes).
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an incoherent electric field is often not what we were lead to believe -
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Figure 2.7: An example of chaotic light given by a random superposition of
100 sinusoidal wave packets each six period long. The total duration of the

M~10
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Fluctuations in Electric Field and Intensity

Each light pulse from the synchrotron has statistical structure

Field fluctuations
20 A R R B R AR RS

10 |-

(t) (arbitrary units)
o
Tt
[}
2zl
Vi
LA

w 10 B

oo L b b v L b

wave packets emittted from individual electrons
statistically add or cancel

the correlation length corresponds to the
wavepacket coherence length
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Coherence Length and Coherence Time

To increase correlation length band-limit the radiation

This increases the coherence length of the individual wave packets
f=clA
S =-cl A°
X=1/8 =2°Ic
For 633nm light and a 1nm band pass filter

(633+10°°f
(3+10° J1+10°°

X=X11col = )=1.3ps

For a 15ps bunch, the ‘mode number’ M~ 15. M\WMW\MMM
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Energy Fluctuation Statistics

Narrow band filter
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Intensity Fluctuation Derivation

Goodman, Statistical Optics Chapter 6

-
Average Value W = j | (t)dt

-T

_ ol = E[U | (t)dt] }WZ
Variance e

]
= [ [ 1)1 (t)dtdt' =W *
T
i
oy = [ [T (t—t)dtdt' W
T

where I is the autocorrelation function of I(t)

in terms of fields T, (z) = Efe(t)e” (t)e(t + r)e" (t + )}
‘fourth order correlation’
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Intensity Fluctuations (cont'd)

ol = hr, (t —t')dtdt' —W 2
T

T (7) = E{e(t)e* (et +7)e (t+ z')} ‘fourth order correlation’

But from interferometry T, (z) =17 '(1+‘7(T)‘2)

Then o =W? Tiﬂj/(f)‘zdf

W2 (1 -
— = (— J- | y(r)\zd rj =M (same as before)
oy \TI

M

1 z-puls.e )
= = is the number of modes-per-pulse!

1
s

— measurement of W, o, with known t, yields t

pulse
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M: The ratio of Pulse Time to Coherence Time

Goodman, Statistical Optics Chapter 6
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Relation between physics and measurement

measure filter i
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Experimental Evidence, U. Tokyo

Modes-per-pulse
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Time-Domain Measurements (cont'd)

In the simplest form...

2 T
0% = VV—W = ” I (t)1(t")dtdt' fluctuations proportional to intensity correlation

. - : 1
For Gaussian statistics and band pass filter J° =
\/1—|— 4050‘5
. , 1
Expanding §° =
GT O-a)
For Gcoh zl/ Ga)
o 1
We get  6°~ 2=
J o M

Make the coherence length long to reduce the number of modes M
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Time-Domain Measurements at Berkeley

Intensity fluctuations, F. Sannibale, et al
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Calibration against Streak Camera

¢  Fluctnanon Measuremen
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Figure 3: Examples of fluctuation and streak-camera
bunch length measurements at the ALS for different beam

parameters.
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Oyy,c Are transverse coherence sizes
-related to transverse EM modes at 633nm
-radiation process, including diffraction
-ratios about 2 and 0.1

- also shot noise, photodiode noise
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Frequency Domain View

Total electric field has a spectral content

~ N
f(t)= E(T)Z o(t—1t) E(w) = g(w)zela)tk
k=1

Phasors add up to ‘spike’ at frequencies
Shot-noise in wavepacket emission causes the spikes
In the frequency domain still have shot-to-shot fluctuations

Width of each spike is inversely proportional to the bunch length
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Frequency Domain: An Empirical Argument

At
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Empirical Argument (cont'd)

L
t ", I,
— p
1N SV Vs,
* - frequency
(F79()xh() (F(@) o g(@) *Ii ()
convolution, product Product, convolution
Now make a leap of faith to random emission...
c . " 1t
time frequency

In both domains we have constructive and destructive interference
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Figure 2.8: Electric field of Eq. (2.47) consists of M regular regions
longitudinal modes)

Kim, Huang USPAS
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Frequency Statistical Analysis

Experimentally can also analyze fluctuations in the frequency domain

Integrate the power spectrum of each pulse over frequency to find energy

£ = J P(w)dw
The average energy is (&)= _[(P(a)))da)

(2s%) -1 [[{P-(P)]-[P~(P)])derdc

And the variance is <g>2 ()

o <<Aj;> = KPP (PP s

Need to compute <P> and 4™ order field correlation <PP’> to evaluate variance
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Frequency Domain Analysis (cont'd)

ﬂTT\f(a) o) deod e

)

filter bunch transform

For a Gaussian filter and a Gaussian bunch

<Ag> 1 <$82> r
(&Y 1+4ad’c? Y

(same as time-domain analysis)

filter characteristic bunch characteristic
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Frequency Domain Experiments at APS

Use a spectrometer to observe spikes in single-shot spectrum
Sajaev, Argonne Nat'| Labs
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Frequency Domain Experiments (cont'd)

Bunch length proportional to Fourier transform of spectrum autocorrelation
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Fluctuations in Interference Visibility Pattern

Landmark paper : Zolotorev and Stupakov (1996)

Measure fluctuations in the coherence function of the incoherent electric field
I'(z) = [EQE" (t—7)dt

Utilizes a two-beam interferometer to measure I'(t)
In simulation, the electric field is represented by E(t) = A(t)e(t)

pulse envelop  random process

[

20

10

E(t) (arbitrary units)

-10

-20
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USPAS Simulator - Pulse Energy Fluctuations

Each pulse of light is a superposition of randomly-phased ‘wave packets’
Simulator generates wave packets at random times t,
Computes wavepacket superposition and resulting intensity E*E

Records statistics of shot-to-shot photon beam energy U = J' E”Edt
to deduce pulse length

Very much like Sinnabale experiment and USPAS laboratory
but you ‘see’ effects not physically observable
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Simulator for Pulse-Energy Fluctuations

Single Pulse Intensity

«10" Pulse-by-Pulse Energy Pulse Energy Histogram
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USPAS Simulator (cont'd)

Part I: Photon beam properties
Calculate wavelength, energy, photon flux, etc.

Part Il: Coherence properties
Coherence length with BP filter, etc

Part lll: Time-base calculations for simulator code
Need simulate with 1um radiation

Part IV: The simulator interface

Part V. Wavepackets
Study as a function of wavelength, bandwidth, etc

Part VI: Study pulse-to-pulse statistics as a function of
bunch length, filter width, etc

Independent study
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Summary Fluctuation Techniques

» Wavepacket emission is a statistically random process

» In the time domain
use a filter to make coherence length~bunch length
look for fluctuations in shot-to-shot intensity

» Fluctuations in interferometer visibility pattern

> In the frequency domain
use a spectrometer to observe fluctuations in spectra

» Simulator for this afternoon
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