

Photomultipliers and Avalanche Photodiodes

Alan Fisher Stanford Linear Accelerator Center

Beam Diagnostics Using Synchrotron Radiation:
Theory and Practice
US Particle Accelerator School
University of California, Santa Cruz
2008 January 14-18

Structure of a PMT

- Photocathode converts light to electrons.
- Dynodes multiply number of electrons by secondary emission.
 - Overall gain can be 10⁶, depending on applied voltage.
- Anode collects the resulting current.

Many Sizes and Shapes

R9220: 28 mm diameter side entry for light

R8520: 30 mm square

Window Materials

Photocathodes and Quantum Efficiency

- The quantum efficiency ε_{QE} of a photocathode is the number of photoelectrons emitted per arriving photon.
- The QE is related to the radiant sensitivity S
 (amps/watt, plotted at right)
 by:

$$\varepsilon_{\rm QE} = S \frac{hc}{e\lambda}$$

We will use the Hamamatsu R7400U-06, which has a peak QE of 19%.

5

800

700

WAVELENGTH (nm)

Typical Photocathodes and Their QEs

6

Dynode Bias

- Usually cathodes are at negative high voltage, from -500 V to -2 kV, and the anode is directly coupled to an oscilloscope or other devices.
 - Sometimes the anode is at +HV, and must then be connected to the scope through a DC-blocking capacitor.
- A resistor chain biases the dynodes at successively more positive voltages.

Bias for our PMT

- A resistor chain is built into our PMT socket, a Hamamatsu E5780.
 - dynodes supply large pulsed currents without reducing biasing current in the resistor chain.

Dynode Structures

(1) Circular-cage Type

(3) Linear-focused Type

(2) Box-and-grid Type

(4) Venetian Blind Type

(6) Microchannel Plate Type

(8) Eelectron Bombadment Type

Gain in the PMT

- At maximum voltage, V = 1 kV, our PMT has a gain $G = 3.2 \times 10^6$ from the 8 dynodes.
- The gain per dynode is $(3.2 \times 10^6)^{1/8} = 6.5$
- This gain is a function of the accelerating voltage v_i
 between adjacent dynodes stages:

$$g_i = av_i^k$$
 with $k \approx 0.75$.

Time Response of a Photomultiplier

- Transit-time delay: Dynode-to-dynode acceleration.
 - Example: 2 kV divided equally in a PMT with 9 dynodes that are 5 mm apart.
 - 10 acceleration stages (to each dynode and to anode) = 200 V/stage
 - Time per stage = 1.2 ns. Transit time for the tube = 12 ns.
- Pulse spread and rise time:
 - Secondaries emitted at random angles.
 - Take different paths to the next dynodes.
- Our small PMT has a faster response:

Transit time5.4 ns

■ Transit-time spread 0.23 ns

Rise time 0.78 ns

11

Noise in a Photomultiplier

- Noise in the PMT is due to shot noise at every stage.
 - Model as a Poisson process:
 Standard deviation = square root of the number of particles.
 - Dominant stage is the photocathode, where N_{ph} incoming photons produces a small number N_{pe} of photoelectrons.

$$\sigma_{
m pe} = \sqrt{N_{
m pe}} = \sqrt{arepsilon_{
m QE} N_{
m ph}}$$

Dark current

• Electrons pulled from a surface by the voltage, producing a signal without light.

SUPPLY VOLTAGE (V)

Avalanche Photodiodes (APD)

- Used in the LBNL fluctuation experiment.
- Solid state with a single stage.
- Cathode diameters from 0.2 to 5 mm.
- Smaller cathode area and faster response than a PMT.
- Higher QE, but lower output than a PMT:
 - This APD: 20 A/W peak
 - Our PMT:
 - 62 mA/W at peak at cathode
 - Peak gain is 3.2×10^6
 - Output of 2.0×10^5 A/W. Useful for:
 - Weak light.
 - Short bursts of high current (with suitable dynode bias, including capacitors).

13