
LBL-31664

III I I I I I I I I I I1' II

LawrenceBerkeleyL oratory' _ UNIVERSITY F CALIFORNI _b
II | III II I II ml II II I IIII

' Accelerator & Fusion
Research Divisio:,

To be published as a chapter in AIP Conference Proceedings Series - Physics
of Particle Accelerators, Mel Month and Margaret Vienes, Eds.,
American Institute of Physics, New York, NY, 1992

Dynamic Devices A Primer on Pickups and Kickers

D.A. Goldberg and G.R. Lambertson ._.,..,.,.;_._i,,,__'" '
.,-i,_'____

.... ,,,.6.!'(_:_._%1'--

November 1991 _:__.,(&t,£,9 "

, f"

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

, ,___Jc. _"_"'_r"t t&l_"t,(i 127 ._r,:..._



DISCLAIMER

This document was prepared a_ an account of work sponsored by the
United States Government. Neither the United States Government

nor any agency thereof, nor The Regents of the University of Califor-
nia, nor any of their employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its en-

dorsement, recommendation, or favoring by the United States Gov-
ernment or any agency thereof, or ]'he Regents of the University of
California. The views and opinions of authors exlm'essed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur-
pt.',_ es,

Lawrence Berkeley Laboratory is an equal opportunity employer.



LBL--31664

DE92 008312

Dynamic Devices A Primer On Pickups and Kickers*

D.A. Goldberg and G.R. Lambertson

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720

Will appear in the Physics of Particle Accelerator, AIP Conference Proceedings Series 1992.

* This work was supported by the Director, Office of Energy Research, Office of High Energy
and Nuclear Physics, High Energy Physics Division, of the U.S. Department of Energy under

, Contract No. DE-AC03-76SF00098.

,,.)_I ()F 'l-F-tl_ L'tOOUM_Ni i_:, Ut',lt..i:v] _ ..,,

MA.RTEB
.... •vi Ikli



DYNAMIC DEVICES

A PRIMER ON PICKUPS AND KICKERS
lt

D.A. Goldberg and G.R. Lambertson

Lawrence Berkeley Laboratory, Berkeley California 94720J

TABLE OF CONTENTS

A. INTRODUCTION

B. BASIC PRINCIPLES

1. General Theorems ............ 4
a. Relation Between I_ic'ker and'Pickup'Performance ............ 4

i. Lorentz Reciprocity ....................... 4
ii.Green's Reciprocation Theorem .................. 6

b. Panofsky-Wenzel Theorem ..................... 7

2. The Beam Voltage .......................... 9

3. Frequency Spectrum of a Charged-Particle Beam .............. 12
a. Single-Particle Spectrum ..................... 12

i. Longitudinal Spectrum .................... 12
ii. Transverse Spectrum ..................... 12

b. Bunched-Beam Spectrum .................... 13
e. Schottky Spectrum ....................... 14
d. Summary of Qualitative Results .................. 16

4. Figures of Merit for Pickups and Kickers ................. 16
a. Kicker Response Functions ..................... 17

i. The Kicker Constant ...................... 17
ii. The Shunt Impedance ..................... 18

b. Pickup Response Functions ..................... 19
i. The Transfer Impedance ............. 19
ii. Relation Between Kicker and l_icb,ip t_efforrn_ce .......... 19

c. Effect of Impedance Mismatch .................... 21

5. Beam Impedance; A Simple Model ................... 23
a. Longitudinal Impedance ................ 23
b. Resonant Cavity/Resistive _Vall'Monitor ............... 25

i. Kicker Performance ..................... 25
ii. Pickup Performance ...................... 26
iii. Beam Impedance ................ ....... 27

, c. Transverse Impedance ................. 27
d. Resonant Cavity/Resistive _Vall'Monitor ............... 29

i. Kicker Performance ...................... 29
• ii. Pickup Performance ...................... 30

iii. Beam Impedance ....................... 30



C. PROPERTIES OF SPECIFIC DEVICES

6. The Resonant Cavity ..................... 32
a. Longitudinal Kicker/l_ic_:up ..................... 33
b. Transverse Kicker/Pickup ..................... 35

7. The Capacitive Pickup ...................... 36
a. The Single-Plate Capacitive l_ic_p .................. 37
b. The Resonated Capacitive Pickup . ................. 38

8. Stripline Eleclaodes .............. 40
a. Stripline Geometry'and l_lectromagnetic Fielcis .............. 40
b. Pickup Analysis Using Image Currents ................ 42
c. Analysis Based on Kicker Behavior ................... 43
d. Stripline Beam Impedance ............... ...... 47

9. Standing-Wave Devices; A Summary .................. 48

10. Traveling-Wave Devices ....................... 49
a. The Helical Line ......................... 50
b.The Slotted-Coax Coupler ..................... 51
c.The Wall-Loaded TM Waveguide ............. 52
d. The Gain-Bandwidth Product for "i_ Devices ............. 53

Appendix 1' Review Of Relativistic Dynamics ................ 55

Appendix 2: Integrals Involving Time-Varying Fields ............. 57

1. Defining the Variables ....................... 57

2. Time-dependence of the Integrated Quantities .............. 58

3. Integrals Involving Phasors ............... 59
a. Total Energy Gain and Related"In'tegrals .............. 59
b. Transit-Time Factor . . . . . ........ 60
c. Integrals of Phasor Procluctsi tt_e i_ecipr_it'y Theorem ........ 61

References .............................. 62



DYNAMIC DEVICES

A PRIMER ON PICKUPS AND KICKERS

t

D.A. Goldberg and G.R. Lambertson

Lawrence Berkeley Laboratory, Berkeley California 94720
,i

A. INTRODUCTION

A charged-particle beam generates electromagnetic fields which in turn interact with the
beam's surroundings. These interactions can produce fields which act back on the beam
itself, or, if the "surroundings" are of suitably designed form (e.g., sensing electrodes with
electrical connection to the "outside world"), can provide information on various properties
of the beam; such electrodes are generally known as pickups. Similarly, charged-particle
beams respond to the presence of externally imposed electromagnetic fields; devices used to
generate such fields are general!y known as kickers. As we shall show, the behavior of an
electrode system when it funcuons as a pickup is intimately related to its behavior as a
kicker.

A number of papers on pickup behavior have appeared in recent years [1-5] in most of
which the primary emphasis has been on beam instrumentation; there have also been sever-
al workshops on the subject [6,7]. There have been several papers which have treated both
pickup and locker behavior of a particular electrode system [8.9], but this has been done in
the context of discussing a specialized application, such as a stochastic cooling system.

The approach in the present paper is similar to that of earlier works by one of the
authors [10,11], which is to provide a unified treatment of pickup and kicker behavior,
and, it is hoped, to give the reader an understanding which is both general and fundamen-
tal enough to make the above references easily accessible to him. The paper is basically an
expanded version of Ref. 10. As implied by the revised title, we have done the re-writing
with the non-expert in mind. We have made the introduction both lengthier and more
detailed, and done the same with much of the explanatory material and discussion.

We begin with an overview which, in addition to providing a general background for
the succeeding material, will also serve to introduce some of the terminology and notation.
Because most electrodes can serve as either pickup or kicker, in the discussion which
follows we will frequently refer interchangeably to the behavior of such a system in terms
of its behavior as either pickup or kicker, with the understanding that words such as
"detect" or "respond", as applied to the pickup be changed to "influence" or "affect" as
applied to the kicker.

lt is conventional usage to refer to electrode systems which respond only to the total
beam current as longitudinal devices, because their response turns out to be sensitive only
to those properties of the beam which are associated with its longitudinal motion (e.g., rev-
olution frequency, longitudinal emittance, pulse length). Those systems which respond to

. the product of the current and the transverse displacement are known as transverse devi-
ces, because they are sensitive properties of the beam's transverse motion (e.g. betatron
tune, transverse emittance). As with the case of the pickup/kicker duality, we shall see that

• the longitudinal and transverse responses of an electrode system are intimately related.
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Schematically we can represent a longitudinal or a transverse kicker as a "black box" as
shown in Figs. la and lb:

Zc Zc ,

VK ---IP,,_ VK--.I_
,,

E +AE P± _ P.L

Fig. la SchematicModelof LongitudinalKicker Fig. 2b SchematicModelof TransverseKicker

A (time-varying) voltage is injected onto an electrode structure internal to the black box as a
result of a voltage Vr being impressed on an input signal cable of characteristic impedance
Z_. The resulting electrode voltage produces a change in either the energy (E) or trans-
verse momentum (P.L)of the particles in the beam passing through the structure.

A word on some of the conventions to be employed may be appropriate. As per the
above figures, we will use the parallel symbol (11)tO denote quantities related to longitudinal
motion; the perpendicularity symbol (.L), transverse motion. We could equally well have
used p, as the characteristic of longitudinal motion but the energy turns out to be a more
convenie_lt parameter, lt is frequently convenient to express the change in beam energy in
terms of an equivalent beam voltage V - AE/e, where e is the electron charge; the beam
voltage has the same numerical value as the change in beam energy expressed in electron
volts. One can define a corresponding transverse beam vol age as APiflc/e, where tic =
v, the (longitudinal) beam velocity; in many accelerators v = c, so that fl = 1. (Those
wishing either a brief review of, or a crash course in elementary relativistic dynamics are
referred to Appendix 1.)

We can employ a schematic representation for pickups similar to that used for kickers:
A beam of particles passing through the black box causes a signal to appear at the end of a
signal cable which is (possibly indirectly) connected to an internal beam-sensing electrode
structure. For a longitudinal pickup, the output signal is proportional to the beam current;
for a transverse pickup, it is proportional to the product of the beam current and the beam's
transverse displacement, i.e. to the dipole moment of the beam.

Zc Zc

Vp_ V_

IB ,

Fig. 2a Schematic Model of Longitudinal Pickup Fig. 2b Schematic Model of Transverse Pickup
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For those with little background in the subject, an overly simplified example may serve
not only to illustrate the ideas we have been discussing, but to provide a physical example
to consider while we introduce some general theorems in the next section. Let us consider
a set of electrodes consisting of a pair of parallel plates on opposite sides (say, top and bor-

' tom) of the beam,which arc sufficiently wide that we can ignore any effects due to the later-
al position of the beam, and let us consider its interaction with a single, short beam pulse.

• Considering the behavior of the electrodes acting as a pickup, it should be plausible, if
not obvious, that the signal obtained by adding the voltages on the upper and lower plates
is proportional to the total charge of the beam pulse (i.e. the current), and to fin'st order is
independent of the vertical position of the beam. On the other hand, the signal obtained by
subtracting the voltages on the upper and lower plates is to fu'st order proportional to the
vertical position of the beam. In other words, the same electrode system can be used to
sense both the longitudinal and transverse properties of the beam.

In like fashion, were we to apply an external signal to the two plates, we would be able
to be able to influence the beam's motion: If we excited the two plates with voltages which
were equal in both magnitude and sign, we could give the beam a longitudinal kick; if the
voltages were equal in magnitude but opposite in sign, the beam would receive a trans-
verse kick. Hence the same electrode system may function as either a pickup or a kicker.

We alluded earlier to the fact that kicker voltages were time-varying. In fact, in our
example of the parallel-plate electrodes, we can see that placing a dc voltage on the plztes
will produce no net change in the longitudinal motion of the beam: If the beam underwent
an acceleration when entering the plates, it would experience an equal and opposite decele-
ration when leaving them; a time-varying field is necessary for a net longitudinal kick. (In
contrast, a dc voltage across the plates would result in a transverse beam deflection.)

In treating the time-dependent variation of kicker voltages, we will make use of the fact
that such voltages can be expressed as a superposition of sinusoidal waves and will hence-
forth assume that, unless specified otherwise, ali time dependent quantities such as Vx arc
sinusoids; this approach should be recognizable to electrical engineers as a frequency-
domain analysis. Since beams in particle accelerators are also time-dependent, a similar
approach will be used for the treatment of pickups. For bunched beams, it is probably not
surprising that the frequencies of interest will be those associated with both the bunch
length and the bunch-to-bunch separation (the reciprocal of the separation period as well as
its higher harmonics); for a circular machine, harmonics associated with the revolution
period (a subharmonic of the bunch-separation frequency) will also be of interest. What is
perhaps less obvious is that these latter frequencies are also of interest in the case of signals
from an unbunched beam in a circular machine, the so-called Schottky signals, which will
be described later.

The main body of the paper will be divided into two sections. The first of these deals
with basic principles and theorems, including such topics as figures of merit for pickups
and kickers, the frequency spectra of charged-particle beams, and a brief discussion of
beam impedance. The second section will illustrate the application of these ideas by ana-

. lyzing the performance of a variety of electrode systems. We have included two appendi-
ces, one on relativistic particle dynamics (to which we have already made reference) and a
second on integrals involving time-varying fields. Including this material in the form of

• appendices avoided interruption of the flow of the arguments, and, hopefully, irritation of
the more expert reader. References to this material appear at the relevant places; however
we leave it up to the individual reader to decide on the appropriate times to consult it.
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B. BASIC PRINCIPLES

1. Some General Theorems

t

As we have already mentioned, an electrode system which can be used as a kicker can
also function as a pickup, although as a practical matter not every electrode system may
find application in both roles. The first two theorems in this section, dealing with reciproc-
ity, demonstrate the relationships between the behavior in both roles. The third theorem
demonstrates the relationship between the longitudinal and transverse effects of an electrode
system. The results are derived in terms of kicker performance; by virtue of reciprocity,
the results are equally applicable to pickup behavior.

a. Relation Between Kicker and Pickup Performance

In analyzing the behavior of an electrode system, it frequently proves easier to cal,_ulate
its behavior as _ kicker, i.e. the response of the beam when the structure is powered
externally, than it is its performance as a pickup, where one must solve a boundary-value
problem with the beam current as a source term. This is particularly true when, in the case
of the kicker, the fields due to the presence of the beam are negligible compared to the
externally applied fields. In any case, one practical consequence of these theorems is that
one need calculate the device's behavior in only one of its modes of operation.

i. Lorentz Reciprocity Theorem The basic form of that theorem [12] states that if we
have a volume V bounded by surface S, and we consider two independent modes of elec-
tromagnetic excitation (whose fields, for reasons which may already be apparent to the
reader, we denote by subscripts K and B), with which are associated source currents JK and
JB , then if the fields and current flows are expressed as complex phasors with time
dependence tri't°t (i.e., using the frequency-domain analysis referred to earlier) we have the
relation

EK × HB - EB × HK)" aS = f_ (EB • JK- EK" JB)d vol . (1.1)

The boundary which defines the surface and volume integrals in Eq. 1.1 is usually chosen
to include not only the volume in which the fields are present, but the surrounding conduc-
ting surfaces as weil.

To apply this somewhat abstract result to the case of the pickup/kicker problem, let us
consider the device shown schematically in Fig. 3. An assembly containing some sort of
electrode structure is located in an accelerator beam tube; signals to and from the electrode
are transmitted to an external signal port, usually by a coaxial cable. The surface S sur-
rounds the entire assembly, the only "penetrations" where fields may exist being the two
beamline connections and the signal port.

Let subscript B (as in "beam") denote the fields present when the device functions as a
pickup, where the fields generated by the presence of beam current IB result in an outgoing
signal, characterized by VB, at the signal port. Let subscript K denote the fields and cur-
rents present when the device is excited as a kicker by the injection of an ingoing signal •
characterized by voltage VK at that same port. The currents denoted by JB include both the
beam current 1B as well as any surface currents it may induce anywhere within the assem-
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bly, including the signal cables. By way of contrast, the JK include only those currents
resulting from the presence of VK. This is tantamount to asserting not only that the fields
present during kicker operatioa are negligibly influenced by any beam currents present, but
that such a current, if present, would be negligibly perturbed by such fields.

#

VKI VB
" noo,

it,' ",, "..
i •

o

I I I

{ , -

0 t

' _ B

', '] J "kB :
##" EK K

'_, o,, '_'°
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Fig. 3 Application of ReciprocityTheoremto Pickup/ledckerGeometry

For the surface S shown, the integral on the left hand side of F-4. 1.1 includes two
types of surfaces at which fields may be present: entrance and exit beam apertures, and the
signal port at the end of the input/output signal cable. In most practical cases, the kicker
fields are strongly attenuated in the beam tubes; this is usually accomplished by operating at
frequencies below the cutoff frequency of the beam tube, or through the use of damping
materials. Hence we can usually simplify the calculation by defining S to intercept the
beam tube at a sufficient distance that the contributions from the surface integrals over the
beam tube apertures are negligible. For the signal port, if the input/output signals are TEM
waves propagating in a cable of characteristic impedance Z c, the signal voltage is simply
the integral of the electric field between the inner and outer conductors; it is quite straight-
forward to show that each term in the surface integral contributes VKVB/Zc .1

Turning to the volume terms on the right hand side of the equation, we note that since
the fields and currents in resistive media are proportional, the sum of the terms involving
currents in the walls and cables is zero. Therefore, since only for the pickup case are there
source currents in free space, only the EK*JB.term contributes to the integral. Applying the
above considerations to Eq. 1.1 and transposing yields

VB = 2VK EK" JBd vol. (1.2)

SeveralfeaturesofEq.1.2areworthpointingoutexplicitly.Inevaluatingtherighthand
sideofEq.1.2,we mustnotonlyusethekickerfieldsthatresultwhen thedeviceisexcited

' by akickersignalatfrequencyt0,butmustuseasinusoidaIlyvaryingcurrentatthatsame
frequencyforJB (seethediscussionon frequencyspectraofbeams inSect.3).Another

. IForthoseconcernedwithmathematicalniceties,wecouldhavechosenS sothattheremaining
surfaces,ratherthanbeinginfield-freespace,conformedwiththeconductingwallsoftheenclosureandthe
signalcables;providedthesesurfacescanbecharacterizedbyasurfacewaveimpedance,theintegrandwould
vanishonthese,asv,ell.
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point to note is that the integral is to be taken at a fixed time. In gene_l, the kicker field
will have the form of a standing wave. However, since the beam ctm'ent will exhibit a
sinusoidal spatial variation, for devices longer than a half-wavelength, cancellation will
begin to occur in the integral; hence, for other than travelling wave devices, the device
length is typically less than one half a wavelength at the frequencies of interest. We will be
using Eq. 1.2 in deriving relations among the various kicker/pickup relations, and will
dispense with further comment until that point.

ii. Green's Reciprocation Theorem This related theorem [13] describes a reciprocity rela-
tion for electrostatic problems. However, it is also applicable to electromagnetic excita-
tions, as we shall subsequently see. In its basic form, the theorem applies to a set of con-
ductors (numbered from i = 1 to n) for which we consider two different modes of excita-

tion, which we will again "arbitrarily" denote by the superscripts K and B. The theorem
states that if in the first rr,ode the conductors easy charge QKi and are at potentxals vK_,
and if in the second mode these quantities are QBi and are at potentials V/_,then we have
the following reciprocal relation between the Q's and V's.

li li

i=1 i=1

In addition to conductors, one can also include in the above summations point charges.
In these cases the Vi represent the potential at the location of the ith charge due to ali the
other charges, lt is not necessary that charges be at ali such locations in both sums;
however, if a charge is present at the ith location in one of the excitations, then the poten-
tial at that point for the second excitation must be included in the sum, whether or not a
charge is present there in the latter excitation.

Consider the following problem, which frequently arises in the analysis of pickup
behavior. Let us suppose that a charge QB contained in the beam passes among a group of

one or more pickup electrodes; we wish to calculate the quantity gi, the fraction of Q.B
which is induced on the ith electrode. We can solve this problerr using Eq. 1,3 oy

positing a second problem in which there is no charge at the former location of Qh_ and we
ground ali of the conductors except the ith, which we maintain at potential V i. If we
make the assumption that the charges on the electrodes in the former mode are no different
from what they would be if the electrodes were grounded (in this mode, this assumption
applies to ali the electrodes, including the ith one) then it is straightforward to show that

gi_.a_ VK= (1.4)
QB Vf

In other words, the fraction of the charge QB which appears on the ith electrode in the
former mode is the same (but with opposite sign) as the ratio of the voltage at the point
where QB was to the voltage on the ith electrode, with ali other electrodes grounded. If
we simply set vKi = 1, then gi = VK.

A few points are worth noting. Using our example of the simple parallel-plate elec-
trodes as a model, the longitudinal signal, obtained by summing the voltages on the two
plates, will turn out to be proportional to gl + g2, whereas the transverse signal, obtained
by subtracting them, will depend on gl - g2. One can use superposition to simplify the
calculation, by placing both plates at +1 for the former calculation, and using equal and
opposite unit potentials for the latter.
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b. The Panofsky Wenzel Theorem: Relation Between Longitudinal and Transverse Effects

Consider a particle of charge e and velocity v moving through a kicker along a path
' defined by its instantaneous velocity, ds= vdt. Its total momentum change in passing

frow point a to point b is given by

Ap=e (E+vxB)dt (1.5)

where E and B are the electric and magnetic fields generated by the kicker along the path.
On that same path the particle will undergo an energy change

AE= e E • d s (1.6)

To calculated the transverse kick using Eq. 1.5 requires knowledge of both the (trans-
verse) electric and magnetic fields. However, the Panofsky-Wenzel theorem shows that
for dme-varying electromagnetic fields, the deflection can be expressed in terms of only the
longitudinal component of the kicker's electric field; the original derivation of the theorem
[14] was for fields with sinusoidal time dependence, but was later extended [10] to any
time-varying field. In many instances this theorem can be used to simplify not only the
calculation of transverse effects, but of one's conceptualization of them, as weil.

We now make the assumption, which we will employ throughout virtually ali the
succeeding sections, that the particles move with constant velocity (see Appendix 1), i.e.,
that the trajectory from a to b is a straight line in the z-, or equivalently, the s- direction,
which is traversed at constant speed v = tic. This implies that the time and (longitu6inal)
position coordinates along the path are related by

s = a + v(t-t a) (1.7)

For a full discussion of the coordinates and integration limits in equations such as Eqs. 1.5
and 1.6, the reader is referred to Appendix 2.

If we now differentiate Eq. 1.5 with respect to time (the differentiation is actually with
respect to ta; see Appendix 2), under the constant velocity approximation, we obtain

II IOAp JE
--_ = e ---_ dt + dsxm (1.8)

If we insert
, OB

--_---= - V x E (1.9)

• and use the identity

d s x V x E = V (ds• E)- (d s • V) E
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OE
= V (d s. E)---_ds (1.10)

t

we can combine the space and time partial derivatives of E to obtain

I''O--EP= e [-V(ds. E)+ dE] (1.11)bt

Eq. 1.11 can be separated into long±rod±naland transverse components to yield

(Aps) = e Es at (1.12a)

and _¢

I'0(Ap±)=_e [V±(E.ds)-dE_ (112b)_ , .

where the operator VI " denotes the transverse components of the gradient. The latter
equation is the one of interest. Evaluating the integral, and making use of Eq. 1.6 yields

Ap±= - V± (AE)+ e [E±(b,/b)-E±(a,ta)] (1 13)&

which is the result for arbitrary time dependence. As we saw in the discussion of the
reciprocity theorem, we can usually choose a and b to represent points at which the
entrance and exit fields vanish, and so the te.rynin the square brackets is zero. Finally, if
we consider fields with sinusoidal variation d tot, and divide by the electron charge e, we
get the original form of the Panofsky-Wenzel theorem,

/coAP±e= _le Vi (AP.)=- V±V], (1.14)|

where we define V- AE/e as the beam voltage gain, in this case resulting from the
energy change produced by the longitudinal field of the kicker.

There are several points worth noting about Eq. 1.14. First, as advertised, we have
obtained an expression for the transverse kick purely in terms of the longitudinal electric
field (except perhaps for an additional static deflection). Surprisingly, this implies that it is
not possible to produce a transverse deflection in a kicker which has only a transverse
component of electric field (i.e. if the kicker is excited in a TE or TEM mode)! This appar-
ently paradoxical conclusion results from the fact that in such a mode, the deflection due to
the v x B force will exactly cancel that due to the transverse E field.

A corollary of the above result is that a transverse kicker generates a transversely vary-
ing longitudinal kick which introduces an energy gradient across the width of the beam.
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However, since it is only the transverse gradient of the longitudinal field which causes the
deflection, it is usually possible to find a mode of excitation for a deflecting kicker in which
the field on the longitudinal axis is zero, so that after multiple passes (e.g. in a cyclic
accelerator), the energy gain for ali particles averages to zero.

As implied by the above remarks, the Panofsky-Wenzel theorem is a statement about an
electrode system in a particular mode of excitation. In fact the same electJrode system can
function as either a longitudinal or a transverse kicker, depending on the mode of excita-
tion. (We note parenthetically that this is not always desirable: An rf cavity, a longitudinal
kicker when excited at its fundamental frequency, may also experience excitation of higher-
order modes, some of which may provide unwanted transverse deflections.) Putting the

/ matter somewhat more concisely: The Panofsky-Wenzel theorem does not predict the
behavior of a electrode system when it is excited as a transverse kicker based on its behav-
ior when it is excited as a longitudinal kicker; rather, for a given mode of excitation, it en-
abies us to calculate its transverse effect on the beam based on its longitudinal effect on it.

Finally, we note the significance of the terms j and to in Eq. 1.14. The presence of
the latter shows that for a given magnitude of transverse gradient, the higher the frequency
at which the kicker is excited, the less of a transverse kick it imparts. The presence of the
former term indicates that the transverse kick occurs 90° out of phase with the longitudinal
one. For a transverse kicker in the form of a standing-wave cavity this is relatively easy to
see: In the TM excitation of such a cavity, the transverse magnetic field, which is usually
the principal agent of the transverse kick, is 90° out of phase with the longitudinal electric
field.

2. The Beam Voltage

Thus far, our definition of 1/e times the energy gain as a beam "voltage" has been a
notational convenience. The fact that the transverse gradient of that quantity is proportional
to the transverse kick suggests that there may actually be a physical basis to regarding it as
a voltage. (In fact, one of the principal motivations for calculating the beam voltage is to
enable ,,is to calculate the transverse kick.) We shall now show that the beam voltage can be
regarded as a two-dimensional scalar field (it has no z-dependence, as may be seen from
Eq. A.2.10 in Appendix 2 ) and is in fact the solution of a two-dimensional equation
which, for highly relativistic particles, reduces to Laplace's equation. Hence, the problem
of calculating the spatial variation of an electrode's effect across its aperture can reduced
from an integration over a three-dimensional distribution of field waves, to the solution of a
two-dimensional boundary-value problem.

As we have seen, under the constant-velocity approximation the energy increment given
to a particle passing through a kicker depends only on the transverse coordinates and the
time, i.e., if expressed as a voltage V it has the form

V(x,y,t) = E •ds . (2.1)

' In the integration, the value of E = Ez must be taken at the time t = ta + (s- a)/flc, so
that the time on which V depends is actually the time that the particle arrives at the kicker,
ta. For simplicity, let us omit the subscript z, and then note that this z- (or s-) compo-
nent must satisfy the wave equation



-10-

V2E 1 _E =0 . (2.2)
c2_t 2

Let us now use the above to find a two-dimensional differential equation for V involving
the quantity

32V 32V
V2V - _ + _. (2.3)

OX2 Oy2

If we differentiate Eq. 2.1 and insert Eq. 2.2 we obtain

V2V =- (V_E)ds = ]as (2.4)

As noted in Appendix 2, any partial derivatives appearing under the integral sign are taken
prior to making the substitution for t in terms of s. After the substitution, E will be a
function of the form J[s,t(s)]. Taking the expression for the total differential of such a
fimction in terms of its partial derivatives, integrating, and rearranging terms gives

ds =f - d_s s + const , _2.5)

Applying this result to the integration of the second term of Eq. (2.4) we obtain

vlv- I a -Eas + at---2+ _c a--s_j- (2.6)

If we again apply Eq. 2.5 to integrate the mixed-derivative term we obtain

I'
a

Substituting using Eq. 2.1 and rearranging terms we get

V2-t"V + (_ _ _ Or2 = - "_s + [:k' -- ,. (2.8)

The notation for the limits is to serve as a reminder that after taking the partial derivatives,
one must substitute the appropriate t(s).

The solution of Eq. 2.8 is the desired function. As was the case with the previous
theorems, it is usually possible to choose the limits a and b to be locations where the
fields are zero (or alike), making the right hand side zero; Eq. 2.8 then simplifies to a
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modified form of the wave equation

. V_V+ 1 °_Zv=0 . (2.9a)

' For the case of fields with a sinusoidal ed'C°tdependence, Eq. 2.9a is further simplified

V_V-(_ V= 0 (2.9b)

where k = a_/#cis the beam wave number.

Recall that the fields which result in the energy gain are produced by the kicker fields,
and are independent of the beam. The only manifestation of the beam is in the presence of
the fly term, which arises from the relation of s and t along the path, in particular, from
the degree to which it differs from c. In fact, for highly relativistic panicles, Eq. 2.9b
approaches Laplace's equation, and determining V reduces to solving an electrostatics
problem.

The solution to an equation such as 2,9b is determined by the values at the boundary.
To understand what this means in practical terms, we shall see in the following sections of
this report that for many electrode systems, the electrodes are located very near the walls of
the beam enclosure. In the case of the prototypical parallel-plate electrodes, such electrodes
might actually form a pan of the wall, albeit electrically isolated from it by thin accelerating
gaps. (Such a wall would perforce be pan of a rectangular enclosure; a more common
configuration would involve a cylindrical enclosure such as a beam tube, with the
electrodes constituting portions of the cylinder.)

Let us consider the somewhat artificial situation of long plates and focus our attention
on either the entrance or exit gap alone. If the end gaps are sufficiently narrow ,,hat they
have a transit-time factor of --1 (see Appendix 2), then a panicle passing very near the
electrode surface (i.e., at the beam-aperture boundary) will experience at the entrance (exit)
gap, a beam voltage change equal to the negative (the value) of the instantaneous voltage
across that gap. In other words, for an electrode essentially flush with the beam tube wall,
the boundary value of the beam voltage i.%apart from a possible transit-time factor, just the
voltage on the electrode, and so the cross-sectional profile of the beam voltage (for a highly
relativistic panicle) is just what we would get by solving a simple two-dimensional
electrostatics problem with that portion of the wall subtended by the electrode set at the
electrode voltage!

Applying the above results in conjunction with Green's reciprocation theorem leads to
the following strikingly simple result: The g-factor, which we originally defined as the
fraction of the beam charge appearing on the electrode, was calculated by finding the
potential at the beam position with the electrode at unit potential. Since that voltage turns

. out to be the boundary value for the beam voltage problem, we see that the g-factor also
represents the fraction of the beam voltage at the wall that is experienced by a particle at the
actual beam position (one more striking demonstration of the reciprocal relation between

. pickups and kickers).
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3. Frequency Spectrum of a Charged.Particle Beam

Having made frequent reference to the frequency domain, and the fact that the beam
currents that enter into many equations are sinusoids, it behooves us to talk about the
decomposition of particle-beam currents into such sinusoids, i.e. to talk about the frequen-
cy spectra of such beams. Excellent and detailed discussions of beam spectra can be found
in Refs [1] and [15]. We will therefore merely summarize the important results here and
accompany them with some quasi-hand-waving in the hope of giving the reader some
physical feeling for them.

a, Single-Particle Spectrum

i. Longitudinal Spectrum. The spectrum of a beam is simply the superposition of the
signals of the individual particles. If we consider a single particle circulating in a circular
accelerator at frequency frev, a longitudir_al pickup at a fixed location will simply see a
current that is a periodic delta function in time, which can expanded as a Fourier series (i.e.
expressed in the frequency domain) to yield

OO @O

i(t)= _ 8(t-mTrev)=efrev _., eJn°_,,,t= ef,,_+2efr,___ cos(,,_,,_)(3.1)
m =...oo n =-_ n = [

The frequency spectrum of such a "beam" will show, along with the expected d.c. current
efrev, a current of peak amplitude 2efrev at every integer multiple of frev.

Eq. 3.1 describes the frequency spectrum characterizing a particle of fixed revolution
frequency, or fixed energy, such would occur for a "coasting" beam, i.e. for motion in the
absence of any r-f bunching (including that due to a stationary r-f bucket). In the presence
of r-f, the revolution frequency of a particle with energy differing by AE from the orbit
reference energy E, will vary over a range of Af= 5:0 frev AE/E due to its synchrotron

motion. (Because this variation occurs at the particle's synchrotron frequency vs, the
revolution frequency is frequency-modulated at rs; hence, the single-particle spectral lines
are not smeared out continuously over the range Af, but are rather split into a series of so-
called satellite lines which span the range Af, and are separated by vs, characteristic of f-m
spectra.)

ii. Transverse spectrum. A transverse pickup (with a linear response to transverse
displacement) will sense the particle's dipole moment, which can have both a time-indepen-
dent part (due to a "dc" offset of the orbit relative to the center of the pickup) as well as a
time-varying part (clue to the particle's betatron motion). The latter is generally of more
interest, and we consider it first.

If the particle's betatron motion is characterized by an amplitude A and tune Q (i.e.
betatron frequency Qfo ), the pickup will see a time-dependent dipole moment given by

oo

d(t) = e f, ev _ ejnC°_ x A cos QOgrevt

= Ae frev COSnCa,_(n+q)+ COS,ta_,4(n--q (3.2)
rl n=l
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where q is the fractional part of Q. Note that in contrast to Eq. 3.1, where the signals at
positive and negative frequencies combined to produce a signal of twice the amplitude at the

• positive (i.e. detectable) frequency, due to the presence of the q term, the negative- fre-
quency terms occta' at different frequencies from the positive ones. Hence, the betatron
motion produces two lines per frequency interval frev in the transverse spectrum. Using
communication theory language, the transverse pickup observes a signal whose amplitude
is modulated at the betatron frequency (see the fin'stline of Eq. 3.2), producing a pair of
a-m sidebands. In addition, if the particle's equilibrium orbit is displaced by an amount
AO from the detector center, there will be additional lines of amplitude 2Aoefrev at each
* * 'lr _ _ .! .1 .,1

integer multiple offJrev. Lt ,_,:,,ariu_u. parlance, to refer, to the former signals as betatron
lines, and the latter, as revoluuon or common-mode hnes. As with the case of the longi-
tudinal signals, the transverse-detector signals will exhibit splitting into synchrotron
satellites.

b. Bunched.Beam Spectrum

If we now consider a beam consisting of a single bunch of N such particles, we may,
to first order, treat it as a giant superparticle of charge Ne, i.e., having the same spectrum,
but with each spectral component having N times the amplitude. In actual fact, the situ-
ation is somewhat more complex. Unlike the idealized delta-function density, the bunch
will have a finite time width 'r, and so the frequency spectrum, rather than exhibiting the
above infinite extent, will begin to roll off at frequencies on the order off- 1/'r. In the
Fermilab Tevatron, where the bunch width is on the order of 1-2 nsec, this so-called
single-bunch roll-off frequency is several hundred MHz; in a machine such as the new LBL
Advanced Light Source, with pulses on the order of 30 psec, the roll-off frequency is about
10 GHz.

As with the single-particle, the bunch will exhibit longitudinal and transverse oscil-
lations. However, the amplitudes of the oscillations will be those associated with the beam
as a whole, the superparticle, and so will be much smaller than those of most of the indi-
vidual particles; hence the spectral linewidths of these coherent signals will be smaller than
those associated with the individual particle signals. This should become clearer following
the discussion in the next section.

If we neglect for the moment the frequency distribution within the individual lines
(equivalent to assuming a detector with a frequency resolution greater than the linewidth) it
follows from Eq. 3.1 that, below the bunch roll-off frequency, at each harmonic of the
;'evolution frequency, a single N-particle bunch generates at each revolution harmonic an
effective current of peak amplitude

lo(co) = 2Nefrev = 2 lac (3.3)

The mean-square current, relevant for questions of signal power, will be given by

_/2(¢.0))= 22-12(to)= 2N2e2f2,v (3.4)t

Were the same N particles to be divided equally into n equally spaced identical
bunches, to a fixed pickup the situation would be identical to having a single bunch of

' N/n particles circulating at frequency nefrev, giving a frequency spectrum with 1/n times
the number of lines (i.e., only at frequencies which are multiples of nf tev), but with the
same peak current per line. Hence the average signal power would be down by 1/n-as
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one can readily see in the time-domain picture. For unequal bunch populations or bunch
spacings, signals of varying amplitude would again appear at the intermediate multiples of
frev, the amplitude distribution depending on the details of the bunch pattern.

Analogously, for a single N-panicle bunch with a coherent betatron amplitude A, the
"dipole current" is given by

do(O;)= Io(¢o)A = ANefrev (3'5)

and the equivalent mean-square quantity is

_/2(t0)a 2)= _2(CO) A__2_2=1 a 2N2e2f2ev (3.6)2 4

c. Schottky Spectrum

In an unbunched, or coasting beam, we find that, as in the case of a bunched beam, for
a beam of N panicles one observes a d-c current which is N times the single-panicle cur-
rent. What is perhaps surprising is that there are also a-c signals (known as Schottky sig-
nals, after the man who first predicted their existence) produced by the fluctuations in this
current, and that these signals occur at the same frequencies as the single panicle signals.

A somewhat oversimplified explanation of this is as follows. In a bunched beam, the
signals from the N individual panicles add coherently (i.e., in phase) to produce a current
which is N times the single-panicle current, and hence will produce a signal power which
is N 2 times that of a single particle. In a coasting beam, _the signals from the individual
panicles are 'ancorrelated and so the phases of their relative signals (except for their d-c
signals, which have no phase) are uncorrelated. Hence when the signals are combined,
they "add" in an rms sense rather than linearly, and so the total signal power will be only
N times that of a single panicle. For this reason one generally refers only to mean-square
quantities when discussing Schottky signals. For such signals, the longitudinal mean-
square current is given by

_2(co)) = 2Ne 2fr2v (3.7)

We have introduced the quantity (/_(o9)) to permit us in subsequent sections to write
formulas for signal power which can be applied to both coherent and Schottky signals.
Similarly we can write the Schottky counterpart to Eq. 3.6

(d2(co))= (/S2(O))x2) = Ne 2 {f2evx 2) (3.8)

Note that the Schottky dipole current depends on the mean-square beam dimensions.

The utility of Schottky signals results from the fact that they reflect the behavior of the
individual particles rather than the beam as a collective entity, and that they are present even
when the beam is in an "unperturbed" state. In the case of Eq. 3.8, the strength of the
Schottky signal seen in a transverse detector reflects the excursions of the individual
panicles, which are present even in a perfectly centered beam, rather than the oscillation of
the beam centroid. Similarly, the frequency spread of the longitudinal signals represents
the energy excursions of the individual panicles, rather than the energy excursions of the
beam centroid, a consequence of imperfect centering in the rf bucket.
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The principal problem in detecting Schottky sig.nals is their relative weakness. In most
accelerators, the beam is bunched, and a comparison of the equations for mean-square
signals (upon which we will see that detector signal power depends) in the above two sec-
tions shows that with N particles in the machine, the coherent signal produces on the order

' of N times the power of the Schottky signal. For a typical accelerator, N will be on the
order of 1010 or greater, and so most attempts to observe Schottky signals from bunched
beams have, despite great effort, been unsuccessful. We present below the results one of
the few successful attempts [16], primarily because it illustrates many of the concepts we
have been discussing.

Observation of a Schottky signal in a bunched beam machine requires suppression of
the coherent signal by many orders of magnitude. In the experiment we describe, per-
formed at the Fermilab Tevatron, use was made of the fact that the coherent signal starts to
decrease above the single-bunch roll-off frequency, the rate of fall-off depending on the
details of the beam bunch shape. Because of the small size of the Schottky signals ".he
pickup, employed needed to be a high-gain device, for which purpose a high-Q resonant
cavity 2 was employed. As noted earlier, the roll-off frequency for the Tevatron is several
hundred MHz, whereas the beam-tube cutoff frequency (the highest frequency at which the
cavity can function as a high-Q resonator) is about 2.5 GHz. The resonant frequency of
the cavity was therefore designed to be roughly 2 GHz.
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Fig.4 ActualSchottkyspectrumobtainedat theFermilabTevatron

The observed spectrum is shown in Fig. 4. Two features should be pointed out imme-
diately: The intensity scale is logarithmic, and the frequency scale has an offset of over 2
GHz, The cavity is excited in a mode which responds to the beam's dipole moment, and
so, because the beam is not perfectly centered within the cavity, one sees revolution lines as

well as betatron lines. The former, the large peaks at roughly 50 and 100 kHz, are actuallyspaced by 47.11 kHz, the Tevatron revolution frequency.

Note that the revolution lines are actually compound peaks--a narrow, intense peak atop
. a broad, weaker one. The former are due to the residual coherent signal; the latter, the

2Wewilldiscussin somedetail the natureof sucha device in Section7 of this report.

3Thetwo peaksactuallycorrespondto revolutionharmonicnumbers42,892 and42,893.
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longitudinal Schottky signal. The relative intensities of the peaks indicate a that at 2 GHz'
the coherent signal has fallen by over 80 dB. Had the beam had a Gaussian longitudinal
profile, this suppression would have been hundreds of dB; the _bserved suppression is
more like what one would expect from a profile resembling a "cosine-squared" distribution.
As noted earlier, the greater breadth of the Schottky line reflects the momentum excursion
of the individual particles within the beam, whereas the lesser width of the coherent signal
reflects only the momentum excursion of the beam centroid.

i

The two peaks appearing between the two revolution lines are the betatron signals.
Their line widths are comparable to those of the broad peaks in the revolution lines, but
there is no evidence of the narrow peak, indicating that they are pure Schottky signals,
uncontaminated by any coherent signal. The reason for the additional coherent-signal
suppression in the betatron lines is that, as seen from Eqs. 3.6 and 3.8, the ratio of
coherent to Schottky mean-square dipole moment also depends on the ratio of the mean-
square coherent betatron amplitude to the mean-square beam size; under the conditions that
the spectrum was recorded, the former that ratio was something less than 50 dB.

d. Summary of Qualitative Results.

We see that the longitudinal frequency spectrum of a beam is characterized by signals
occurring in discrete frequency bands centered about frequencies which are integer multi-
pies of the revolution frequency frev; if the beam is bunched by an r-f system operating at
nfrev and there is a nearly uniform population of the r-f buckets, strong signals will be
present m or near those bands which are integer multiples of nfrev, with weaker signals at
the other revolution harmonics. These signals will begin to roll off at frequencies charac-
teristic of the bunch length. A second set of longitudinal signals, the Schottky signals,
caused by particle-to-particle fluctuations in beam intensity and producing a signal power
reduced in power by a factor of N, is present in both bunched and unbunched beams.

A transverse detector will also see signals at the above frequencies for a beam which is
offset relative to the detector. In addition, it will see signals at pairs of frequencies inter-
mediate to the revolution harmonics, due to the betatron motion of the particles. For
bunched beams, a coherent betatron signal will be observed only if the beam is experi-
encing a coherent betatron oscillation; in contrast, Schottky betatron signals are present for
any beam of finite width. Like the coherent longitudinal signals, coherent betatron signals
roll off at frequencies characteristic of the bunch length.

As a final point we note that although the coherent signals due to the individual bunches
roll off at the above frequency, signals characteristic of motion within the bunch (such as
would be produced by single-bunch instabilities) will appear at frequencies which are
perforce at higher frequencies than this. The presence of such frequencies in the observed
spectrum will therefore be indicative of such intra-bunch oscillations.

4. Figures of Merit for Kickers and Pickups

The parameters which we will use to describe the coupling between the input/output
terminals of a pickup/kicker and the beam are ali defined in the frequency domain. Hence
in the following section, ali currents and voltages are to be understood as complex phasor
quantities, as described above. We begin by discussing the response functions for kickers,
using the Panofsky-Wenzel theorem to relate the longitudinal and transverse behavior. We
then define the response functions for pickups, and finally, relate the two sets of responses
using the Lorentz reciprocity theorem.
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a. Kicker Response Functions

i. The Kicker Constant. Perhaps the most "natural" figure of merit for a longitudinal
, kicker is the quantity known as the kicker constant, which is simply the dimensionless ratio

of change in the beam voltage to the input voltage VK

AE/e_ V (4.1)
KII-= VK VK

The expression for V is given by Eq. 2.1; as shown in Eq. A.2.10 (Appendix 2), Under
the constant velocity approximation and assuming the accelerating field to be a phasor, V
can be written, apart from a phase factor, as

I'V = Es ejk"s ds (4.2)

To reiterate statements made elsewhere: The exponential factor in the integrand results
from expressing t in the time-dependent phasor as a function of the position along the path;
both E and V will generally depend on the transverse coordinates (E will also generally
depend on the longitudinal coordinate; V cannot).

For a longitudinal accelerating device such as an r.f. cavity, it is common to compare
the change in beam voltage with the instantaneous cavity voltage Vo, defined (again, apart
from a phase factor) as

I'Vo = Esds (4.3)

The ratio of the change in beam voltage to Vo is known as the transit-time factor T, which
is then seen to be given by

T = IV/Vol = Kll Vx/Vo (4.4)

As the name implies, T simply represents the reduction in energy gain due to the fact that,
because of the finite transit time of the beam through the kicker, it may not experience the
(time-) maximum field everywhere along its path (see Appendix 2 for a somewhat lengthier
discussion of this factor).

To define a transverse kicker constant, we need a transverse equivalent to the beam
voltage. As pointed out in Appendix 1, under the constant velocity approximation

AE = fit=APll (4.5)
0

lt is therefore reasonable to adopt as the transverse beam voltage tic Ap.t./e, whereupon
we can define the transverse kicker constant as

0

K± - AP'03c (4.6)
eVK
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where is is understood that K.L (and equivalently Ap.L)can indicate either of the transverse
directions. One can calculate K.L directly by substituting into Eq, 4.6 the perpendicular
components of Ap as given by Eq. 1.5. A simpler approach is to calculate the (longitudinal)
beam voltage for the mode in wtu'ch the device is excited as a transverse kicker and use the
Panofsky-Wenzel theorem, Eq, 1.14, to calculate Ap.t, Combining Eqs, 1.14 , 4.1, and
4.6 gives us

K± = __.L V± K'II . (4.7)
jkB

We use the prime symbol ('), here and elsewhere, to indicate transverse excitation, partic-
ularly in those cases where the perpendicularity symbol might either complicate or confuse
the notation. Its presence in K'II is to serve as an explicit reminder that the transverse
kicker constant is not obtained from the transverse derivative the "usual" longitudinal
kicker constant (i,e., the kicker constant associated with the excitation of the device as a
longitudinal kicker). In terms of our paradigm of the pa.,-allel-plate electrodes, the kicker
constant we refer to as KIIwould be calculated from the (longitudinal electric) fields which
result when the plates are excited with equal voltages (of the same sign); K'II, from the
fields when they are excited with equal voltages of opposite sign.

ii. Shunt Impedance The drawback in K as a figure of merit is that it reflects the imped-
ance of the input circuit as well as the intrinsic behavior of the kicker electrodes: One can
make the kicker appear to be, say, twice as efficient (in terms of its K) by quartering its
input line impedance, and building in an internal transformer to attain the same AE (or Ap)
with half as much input voltage; however the true efficiency of the kicker, which is reflec-
ted in the ratio of AE to the voltage on the kicker electrodes (which depends on the nature
of the electrodes themselves, and not on the impedance of the input cable) would be
unchanged.

In seeking a better, if somewhat less intuitive, figure of merit than K, let us borrow
from the practice used for r-f cavities in which a shunt impedance is defined to relate cavity
voltage (Eq. 4.3) and power according to

R = [Vor_/2P (4.8)

For the kicker, we are most interested in the beam voltage, V = VeT, which suggests the
relation

P = [Vo 7]2/2RT 2 = IV 12/2RT 2 (4,9)

in which we call the quantity RT 2 the kicker shunt impedance, For convenience, this
quantity is sometimes shortened to RT 2, or simply R; however, we shall use the expres-
sion RIITz to make it clear that it contains the transit-time factor and refers to the longitudi-
nal action of the kicker we will shortly define a similar quantity related to transverse
motion).

0

lt is this quantity RIIT2 which proves to be the operative figure of merit for a kicker.
The reason is that it relates the change in beam voltage to the input power, a quantity which
is independent of any input transformer, and hence is a measure of the "efficiency" of the
kicker. Moreover, looking back to the individual definitions of RII and T, we see that both
of these quantifies relate to the field within the actual kicker electrodes, and not the details
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of the input circuit; we will see this feature more explicitly when we calculate values of
RIIT'2for particular devices in some of the following sections.

, To relate.the shunt impedance to the kicker constant, we note that the input power is
given by VI_'/2Z_, where Z c is the characteristic impedance of the input line, Substi-
tuting for Vo using, Eq. 4.4, we obtain the result

i

RIIT 2 = Zc _KII12 (4.10)

We can, in like fashion, define a transverse shunt impedance, In this case we relate the
input power to the transverse beam voltage, which we have defined as _c Ap.c/e.
Following an approach similar to that used above, we arrive at the result

R±T2-lz_n.tl3c/e_ /2P=ZcIK.c_ (4.11)

In this definition, the transverse shunt impedance has the dimensions of a resistance, as is
needed for kicker power calculations. This convention is used is the URMEL codes for
calculating cavity responses. However, an alternative, and often used, definition uses the
product R.LT2.ko, which has the dimensions of resistance/length (i.e., displacement).

b. Pickup Respona'e Functions

i. The Transfer Impedance. Referring back to the Introduction, in particular to Fig. 2a,
we can see that for a longitudinal pickup, the "natural" figure of merit would be the ratio of
the pickup output voltage to the beam current. By definition, such a quantity would have
the dimensions of an impedance which, for obvious reasons, is called the longitudinal
transfer impedance, and the defining relation is simply

Zp - Vp/l s (4.12)

For a transverse pickup, the corresponding quantity would be the ratio of the output voltage
to the beam's dipole moment; by analogy it is also called a transfer impedance, although its
dimensions are actually impedance divided by length. The relation for the transverse
transfer impedance is then

Zp' - Vp'/l B Zix (4.13)

where, by definition, lip' is a voltage proportional to the dipole moment of the beam; as
we did previously, we use the prime (3 symbol to denote transverse characteristics.

ii. Relation Between Pickup and Kicker Characteristics. Like the kicker constant, the
transfer impedance suffers from the fact that it depends on the output circuit impedance as
well as on the intrinsic efficiency of the pickup. One could employ the same remedy as in
the kicker case by defining a pickup shunt impedance. However, since any device which
acts as a pickup can also act as a kicker, rather than defining yet another impedance, a more
useful approach is to make use of the relations between pickup and kicker behavior, which
we obtained using the Lorentz reciprocity theorem, to characterize a pickup in terms of the
corresponding kicker shunt impedance.

As a first step, we use that result to relate the longitudinal and transverse transfer
impedances to the respective kicker constants. If we insert Eq. 1.2 in Eq. 4.12, we obtain
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for the longitudinal transfer impedance

f. ,Zc EK • JH d vol (4.14) ,
Zp = 2VK It_ c..,_,,,_,,_

In this volume integral, values of EK and J,Bare taken at a fixed time. The beam, assumed
to be moving in the positive s-direction with velocity/3c, will have an s-dependence e-'Jks.
(As noted in Appendix 2, this term does not arise from substituting the appropriate value of
s into the exponential time dependence, but rather represents the spatial dependence of a
sinusoidal wave propagating in the +s direction.) Furthermore, assuming EK does not
vary greatly over the beam cross section, we may integrate over x and y giving

f EK • JB dxdy = EK" In e "j_ (4.15)

#

whence Zp becomes

Zp = _ ZC2vKfT e'Jks EK" d s (4.16)

This integral differs from that in Eq. 4.2 defining KIIonly in the sense of s. Therefore, it
represents a kicker excited with VK, but with the beam waves traveling in the sense
opposite to that when the device is employed as a pickup. This is not merely mathematical
sleight of hand: For electrode systems which exhibit directional behavior (e,g., striplines)
the direction in which the beam passes when the device operates as a pickup must be
opposite that which it does when the device acts as a kicker. The relation between pickup
and kicker responses for a given elec.trode is therefore

Zp = L2Zc KII (4.17)

with the provision that the beam sense be reversed between the two applications.

The corresponding relation for transverse responses is obtained by differentiating Eq.
4.17 with respect to x,

, 0K'II
Zp = 1 Zc Ox (4.18)

where we again use the prime to note that the kicker is excited in the transversely deflecting
mode. We can then use Eq. 4.7 to obtain

Z'p = -l jkBZcK± (4.19)

Having obtained the relation between the transfer impedances and the respective kicker
constants, we are now in a position to use Eqs. 4.10 and 4.11 to characterize the pickup
output in terms of the kicker shunt impedance. The power from the pickup signal into an
impedance-matched load, Zc is
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pp = #B2)Zp2/Zc (4.20)

' (We have used the notation (/_} for the mean-square cu_ent, rather than the explicit IB2/2
for sinusoidal currents, so that the expressions here may be easily applied to the case of
Schottky signals; see Sect. 3.) We may rewrite Eq. 4,19 in terms of the electrode's

. (kicker) shunt impedance using Eqs. 4.17) and 4,9 to obtain, for the longitudinal pickup,

Pp = </B2)RII T2/4 (4.21)

Here we see that the shunt impedance (modified by the factor 1/4) serves equally well as a
measure of efficiency of that electrode used as a pickup. Similarly, for the transverse
pickup, we obtain the power

Pp = _ x 2)k_ R.LT2/4 (4.22)

The appearance of the beam wave number kB = a)/tic = I/fl_, in the transverse
response means that, when acting as a kicker, a given electrode configuration will exhibit
an efficacy which is reduced at higher frequencies relative to its performance as a pickup.
With this qualification, we see that high shunt impedance relates to high efficiency for an
electrode whether used as a pickup or a kicker.

Finally, having established the shunt impedance as a figure of merit for pickups as well
as kickers, it makes sense to write down the relations between transfer and shunt imped-
ance. Combining Eqs. 4.10 and 4.11 with Eqs. 4.17 and 4.19, respectively gives

and Zp = _/Zc R, T2/2 (4.23)
Zp = kB _/Zc R.LT2/2 (4.24)

A summary of the useful relations for beam electrodes is presented below in Table I.

c. Effect of hnpedance Mismatch

In applying the reciprocity-derived relations, we have assumed that the voltages Vk
and Vp were observed at an impedance-matched connection where no reflected waves
were present. This is not always the case in practice, and mismatch introduces some
modification in the relations we have derived.

Impedance mismatch most often occurs for a resonant electrode such as a cavity.
Without connection to a driver or amplifier input impedance, such an electrode is charac-
terized by an unloaded Q-value, Q u. With driver or load attached, the total circuit
response is widened to Aa)/a) = QL which depends on the load and how it is coupled to
the electrode. (In some applications the degree of loading may conveniently be used to
adjust the response width.]LAt the terminals of a kicker, of course, the driver impedance
has no effect on K or RT z, but the overall efficiency of the driver is affected by any

' impedance mismatch. On the other hand, at the terminals of a pickup the output voltage
(Vp) and power at the unmatched load do depend on the loading.

' Maximum power is delivered from a pickup when a matched load lowers QL by one-
half to Q u/2; this is the condition assumed in the Eqs. 4.17 and 4.19 for the-transfer
impedance, and Eqs. 4.21 and 4.22 for signal output power. For other degrees of loading,
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TABLE I

Transverse

Kickers'

v =KllVx Apaflc/ e = K.LVK .

K'L = -j_k V.L K',

e-Iv /2R,,r= /eF/2R:2

R,r 2=z_F.,,P R.Lr2=z__:±

Relations BetweenPickup andKi¢kers

z, =.¢z_ie,r2/2 z',=t.B4z_Rj.r2/2
Pickups

ze =Vr,liB zt,' ---ve'/la zax

/', =(/_)R,,T2/4 /'; =(/_x2}/tjRI T2/4

aAs noted in Appendix 1, some authors def'me the transverse beam voltage as simply cApA., omitting the
factor of ft. Using this convention, one would simply need to replace ali the kB appeanng in the above

1 formulas by the free-space wave-number k = oolc. The effect of this change will be to re-de fine the
transverse kicker constant and shunt impedance, but to leave the calculated physical quantifies of input

' power and transverse momentum kick unchanged.

it is straightforwargl to show that the pickup signal power is reduced by a factor of
;i 4QL(Qt: - QL)/Qu z. The result for the transfer impedance is slightly more complicated,

as ff dep-ends 5n the origin of the mismatch. The cavity signal is usually coupled out via an

as an impedance The mismatch can be due
antenna or loop which serves transformer.

' either to attaching the wrong load, or incorrectly adjusting the coupling for the correct load.

_i In the former case, one compares the values of Zp with the same coupling but different
loads; in the latter, the same load but different couplings. As with the case of the power,

!i, the results can be expressed in terms of Qu and QL"

:i 7wrong Z, = 2 QL Zp (4.25a),, -P au

i 7wr°ngm 2QL'_/Qu-QL *
-P = a---_ V at, zt_ (4.25b)

:1

:'i
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5. Beam Impedance; A Simple Model

Strictly speaking, the notion of beam imPedance need not be introc.t,uced.in!o a discus-
sion of pickups and kickers. However, doing so serves several pectagoglcai purposes.

' The primary purpose is to provide a simple physical picture for the beam impedance which
also serves as a simple model for the shunt impedance, and hopefully serves somewhat to
demystify both these concepts. It also provides a demonstration of the power and utility of

• both the Panofsky-Wenzel theorem and the concept of beam voltage. Discussion of the
model also provides a natural way to introduce the notion of image charges and currents.

Let us consider a charged particle moving in a conducting enclosure, such as a beam
tube. The electric field lines emanating from the charge terminate on the walls, where a
charge density proportional to the field is induced. For highly relativistic particles, the field
lines are foreshortened in the longitudinal direction so that they are very nearly perpendicu-
lar to the direction of motion, forming what is essentially a two-dimensional field. Hence
the charges on the wall appear at the same longitudinal position as the beam particle and
move along with it, forming an annular "image" of the beam. For a beam centered on the
axis of a circular beam tube, the image charges will exhibit azimuthal symmetry.

The notion of beam impedance arises from the fact that when a particle beam moves
through any portion of an accelerator, it generates electromagnetic fields, primarily due to
its image charges and currents, which then act back on the beam, causing it to lose energy
and/or undergo a transverse deflection. Considering the former case, a reasonable charac-
terization of this self-interaction would be the ratio of the particle energy loss (expressed as
a voltage) divided by the current, in other words, an impedance; it is this quantity which
is defined as the longitudinal beam impedance. (In like fashion one can define a transverse
beam impedance.)

If we now recall the case of a pickup, we realize that the output power derived from
such a device must come from the work done by the beam against the fields which it itself
generates. Moreover, these fields are precisely those which produce the energy loss
appearing in the definition of the beam impedance. Hence, it should come as no great
surprise that the beam impedance turns out to be directly proportional to the shunt imped-
ance. The actual factor relating the two impedances is device-dependent; however for many
devices, Zbeam is simply RTe/2, i.e. the device shunt impedance in parallel with its
(equal) matched load.

The notion of beam impedance is clearly more general than shunt impedance, since it
applies equally well to devices with no external connections, for which devices the notions
of shunt impedance and transfer impedance would be meaningless. Moreover, as defined
in terms of power efficiency, the shunt impedance is intrinsically a real quantity, i.e. it
contains no phase information; the beam impedance, defined in terms of voltage, can
contain such information. However, in the examples given below, we shall assume lt to be
a purely real quantity.

a. Longitudinal Beam Impedance

The models we will use to describe longitudinal impedance are assumed to be one
dimensional, i.e. the fields associated with them are assumed to be plane "waves" which
exhibit only longitudinal variation. Let us imagine that we have a device located in some

• portion of the beam tube; such a "device" could be a pickup electrode, an rf cavity, or even
the wall of the beam tube itself. If we characterize such a device ( or equivalently, its
impedance) as a simple resistance, as shown in the figure below, then any voltage im-
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pressed on that resistance, either induced by the beam or resulting from an extemal voltage
source, will be assumed to produce a uniform 1o_gitudinal electric field in the region
between points a and b (and no field anywhere else). '4

,b

_ ,4 ...... 4- ,

beam a b

Fig. 5 Schematicrepresentationof a beamimpedance

On what basis is this model plausible? Recall our discussion of the beam voltage in
Sect. 2. lt was pointed out there that if one knows the beam voltage V, one knows it all:
The value of V gives the energy change in the beam, and (by Panofsky-Wenzel) its trans-
verse derivative gives the transverse momentum kick it receives, lt was further pointed out
that the boundary condition for that (two-dimensional) field was simply the voltage change
at the wall of the beam tube. What we are doing then, is contriving a simple mechanistic
(electristic?) model for the generation of V. On pedagogical grounds, we have made the
model somewhat simplistic: We assume that the impedance is a resistance, and we idealize
the transverse behavior of the beam voltage by asserting that it is uniform across the beam
tube. (The latter assumption will be replaced by an equally simplistic model when we
discuss transverse effects.)

The creation of such a field by an externally applied voltage is easily understood. An
equally simple model can be constructed for the creation of the beam-induced field. When
a beam current IB passes inside the beam tube, an equal and opposite beam-induced cur-
rent flows on the wall of the beam tube. At the point at which the wall current is inter-
cepted by the resistance R, it will produce a voltage across R given by VR =- IB R.5

Having made that simple statement, it is necessary to qualify it immediately. Recalling
that the beam is actually a sinusoidally varying current IB exp[j(a_t- kz)], the
instantaneous voltage across R at any instant is actually

_ R ineJ(a_t_k.z)d z (5.1)VR(t) b-a

Evaluating the above integral, we see that VR is still a sinusoid, but with a maximum value
of the form

IvRI-/ e (5.2)0

where 0 = k(b- a)/2. We immediately recognize the sin0/0 term as the transit- time
factor T for a uniform field (see Appendix 2); in this case, its appearance results from the

4Clearlya resistancelocatedon one side of the acceleratorbeam tube,as shownin the figure, could not
producesucha one-dimensionalfield,and so the modelis to be understoodas a schematicrepresentationof
anazimuthallyuniformlydistributedresistance.In addition,wehavefurthersimplifiedourone-dimensional
_alOdelby neglectingendeffects,i.e. assumingthe fieldto be uniformbetweena and b.

n our model, we assume that the entire imagecurrent flows throughtRs. The devicemodelledby Rs
may not actually intercept ali the image current;in fact, as we shall see in the case of devices such as
capacitivepickupsand striplines,the valueof Rs mayreflectthis fractionalinterceptionof the beam.
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spatial sinusoidal variation of the current, However, when a particle experiences a self-
field due to the presence of an impedance, the factor T enters twice: once in the voltage
generated across the impedance, and a second time as a reduction of the effective field
experienced by the beam.

e

b. Resonant Cavity/Resisn've Wall Monitor

' There are a number of devices whose impedance in an equivalent circuit may be mod-
elled as a pure resistance; among these are resistive wall monitors and cavities at resonance.
The former are constructed of (an azimuthally symmetric array of) resistors mounted in the
wall of the beam tube-and looking suspiciously like the simple model we have been dis-
cussing--and theirs is a broad band impedance; the latter are resistive only at resonance, and
hence are narrow band.

We now assert, and will shortly provide a hand-waving demonstration, that a cavity
also behaves as though its shunt impedance were similarly located in the beam tube wall;
we further assert that when either type of device is connected to an external electric circuit,
it behaves as though its electrical impedance were identical with its shunt impedance. A
consequence of the latter result is that for such a device to behave as a matched source/load,
it must be connected to the external circuit via an impedance matching device such as a
transformer. The equivalent circuit for such a model is shown in Fig. 6. Note that the
transformer in this model (and in all subsequent models) is assumed to be ideal, i.e. the
only impedance it presents is the appropriately transformed impedance of the loads
connected to it.

/

t-_-- -I
] zo

la
a b

(v-13c)

Fig. 6 Schematicrepresentationofresistiveimpedanceincludingmatchedinput/output
topermituseasa pickup/kicker.

We will now show that, if the value of Rs is taken to be that of the device's cavity
shunt impedance,6 the model yields the correctresult for the longitudinal shunt imped-
ance and kicker constantwhen thedevice is consideredas a kicker, and for the tran;f_r
impedance and signal output power, when the device acts as a pickup. Finally we will use
the model to obtain the beam impedance of the device.

i. Kicker Performance Predicted by Model. The input power to the kicker shown
. above is simply

PK = VK2/2Zc (5.3)

If our mode] givesa valid representationfor Rs, then according to F-xi.4.9, PK should be
6Thatis,thetheslmntimpedancesanstransit-timefactor.
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equal to ((AE/e)2)/R.T2.; From the model, we see that the peak voltage appearing across
the wall resistor is _/Rs / Zc VI(, because of the transit-time effect, the peak energy change
imparted to the beam is

V=,_ft_sVKT (5.4) '
V Zc

From Eq. 4.1, we see that the kicker constant is then given by

Kll = 4Rs T 2 / Zc (5.5)

in agreement with Eq. 4.10. Squaring Eq. 5.4, dividing both sides by Rs T2, and taking
expectation values, we have

Rs LIVK21T2
= (5.6)

R sT 2 R sT 2 2 Zc Q.E.D.

ii. Pickup Performance Predicted by Model. We now wish to see if the model
.predicts the correct output power and transfer impedance. Assuming that the external load
is correctly matched, our model predicts that the peak voltage developed across Rs due to a
(peak) beam current 1B is

VR = IB Rsr/2 (5.7)

This leads to an output voltage

=tB r (5.8)Vp 2 VR,

which in turn gives a transfer impedance of

Zt, = _/Zc Rs T2/2 (5.9)

in agreement with Eq. 4.23. From Eq. 5.8 we can also calculate the output power

2 Z--'_"= ..... 4 (5.10)in agreement with Eq.. .

lt should now be apparent where the extra factor of 1/4 in Eq. 4.21 (relative to Eq. 4.9)
comes from. In the case of the kicker, we compared the (square of the) beam voltage gain
to the power into the kicker (i.e. neglecting any power dissipated in the power supply's
internal impedance). In the case of the pickup, firstly the existence of a matched external
load decreases the device's apparent impedance (and hence the total power dissipated by a
given current) by half; secondly, half of that reduced power is dissipated in the impedance
of the device itself, so that only 1/4 of the power which would have been dissipated in the
unloaded device itself is available to the external matched load. Similar considerations will
be seen to apply to Eq. 4.22 for the transverse case.
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iii. Beam Impedance We have now seen that the longitudinal interaction with the
beam of a cavity at resonance or a resistive wall can be modelled as a series resistance equal
to the device's longitudinal shunt impedance, lt now remains to calculate the beam imped-
ance of such a device.q

Using the expression in Eq. 5.7 for the voltage induced by the beam in the wall imped-
. ante, and recalling that an additional factor of T appears in the voltage which acts back on

the beam, we see that the amplitude of the beam voltage is just (-)I B RsTZ/2. Hence the
longitudinal beam impedance, which is just the (negative of the) ratio of beam self-voltage
to beam current is given by

ZII = RsT2/2 (5.11 )

Note that if the device were unloaded, the beam impedance would simply be equal to the
shunt impedance (using our convention that that impedance includes the square of the
transit-time factor). It might appear that this is a universal result, i.e. true for any device
whose shunt impedance is resistive; however we shall see in the following section that this
is not the case.

c. Transverse Impedance

The model we will be using for transverse impedance is similar to that for longitudinal
impedance, but will of necessity involve two-dimensional, rather than one-dimensional
fields, i.e. the fields must exhibit transverse variation. A simplified model for a transverse
impedance (such as a pickup) is shown below; as with the longitudinal case, the same
model will apply for a transverse kicker as weil. However, we begin by considering its
impedance/pickup behavior, i.e. its response to a beam.

V
+

..................... 2b

Fig. 7 Schematicrepre_ntationof a transversebeamimpedance

The image currents produced by the beam will divide between the two resistances; in
contrast to the longitudinal impedance, if the beam is displaced from the centerline of the
device, the currents will divide unequally, Throughout the discussion, we will assume
that this division varies linearly with the beam displacement, i.e.

• I+ = (Ia/2). (1 + x/b) (5.12a)

I_ = (I8/2). (1-x/b) (5.12b)

Note that if such a device is actually used as a pickup, the difference of the output voltages
V. and V_ will be proportional to IB x, the desired output for a transverse pickup.
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To use the model to describe kicker behavior, one assumes equal but opposite voltages
+VR to be induced across the two resistors. Using the same linear approximation, one fur-
ther assumes that the longitudinal beam voltage in the region between the resistors varies as l

V(x) = VR . x/b (. T) (5.13)
J

Since the longitudinal kicker constant is directly proportional to the longitudinal beam
voltage, and V.I"V(x) = OV/Ox = VRb, we have from Eq. 4.77

,K.t.=___.L.V.I. KII (x)=- | _ 1 R_ T2 (5.14)
j kB j kB b KIl(b)= j kB b Zc

Again, we have used the notation KII'in Eq. 5,14 to emphasize the fact that the longitudi-
nal kicker constant referred to is the one associated with the excitation mode for which one
wishes to calculate K I.. As we shall see, for many "devices" (e.g, resistive walls), the
same resistance can be used to characterize both the longitudinal and transverse imped-
ances; in such a case Kll'(b) will have the same value as KII for the longitudinal mode,
For devices such as striplines, we shall see that this is a reasoneble approximation; on the
other hand, for devices such as resonant cavities, the transverse excitations not only are
almost always associated with impedances different from the longitudinal ones, but occur at
different frequencies.

We can now use Eq. 5.14 in conjunction with Eqs. 4.10, 4.11 and 4.23, 4.24 to obtain
the following simple relations between the shunt impedances and transfer impedances

R.LT2 = RII(b) r 2 [_.Bt_l--b-"! (5.15)

Zp' = Zp(b) /b (5.16)

where in Eq. 5.15 we have dispensed with the "prime" notation, and restored it to its
original meaning in Eq. 5.16. As was the case with Eq, 5.14, for those devices for which
the same resistors can be used to model longitudinal and transverse impedance, the longitu-
dinal impedances in Eqs. 5.15 and 5.16 can be replaced with those corresponding to the
longitudinal excitation mode.

One final note: For a device such as a resonant cavity, the individual resistances have
no physical significance, so there is no actual differencing of two signals (the model simply
says that the cavity "behaves as if" it were taking such a difference). On the other hand, for
devices such as resistive wall monitors and striplines, one can get separate output vol-
tages. For such devices, the sum of the output voltages V+ and V_ will be proportional to
the total current 1B, whereas the difference signal will be proportional to 1# x; in other

words, depending upon how one combines the ou_ut signals for such a device, it can beused as either a longitudinal or a transverse pickup.
iiiii

71t is perhaps worth repeating yet once more the importance of the Panofsky-Wenzeltheorem. By
implicitlytakingintoaccountthe electromagneticrelationbetweenthe longitudinalfieldsand the transverse
deflecting fields, it has made it possible for us to explain transverse electromagneticeffects using a
8]ngitudinal,low-frequencyac-actuallya time-varyingdc-model(plustransit-timeeffects).

n fact, if a 180° hybrid is used to combine the signals, it can provide both sum and difference
outputs,therebyenablingthe deviceto act as botha longitudinalanda transversepickupsimultaneously.
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d.ResonantCavity/ResistiveWall

ThemodelforatransverseresistiveimpedanceisshowninFig.8.Asdiscussedinthe
precedingsection,thev.alueoftheRsusedinmodellingthetransverseimpedancemay,in

, thecaseofanactualresistance,bethesameasthatforthelongitudinalimpedance,9and
thecombinerelementwillbeapieceofactualhardware;inthecaseofacavity,thevalueof

Rsswillalmostcertainlybedifferentfromthelongitudinalvalue,andthecombinerelement, symbolic.As was thecaseforthelongitudinalmodeldiscussedearlier,an ideal
transformerisincludedforpurposesofimpedancematching.

i

?" "Zo ,
V+ ,

'mV+ I
I

_ _ i. , V<P,_)s '---:I-_ t'---C+---

............Ii"'
mY_ ___

V_

Fig. 8 Schematic representation of transverse resistive impedance including matched
input/output to permit use as a pickup/kicker.

i. Kicker Performance Predicted by Model As with the longitudinal case, the input
kicker power is given by

e K = VK2/2Zc (5.17)

Assuming a matched combiner, V+ will be VK/q'Z. For proper impedance matching, m
will be equal to _2Rs/Zc, so that the transverse kick will be given by

Ap±flc = _ L CgVB_ 1 _c VKT (5 18)e jk _x jk b

' Substituting Eqs. 5.17 and 5.18 into the definition of RzT 2 (Eq. 4.11) gives

9With the original resistance split into two parallel branches, each branch has resistance 2Rs.
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° /e) _
v?¢/zo ,I vi:

= _ = Rs T 2 (XB/b)2 (5,19)
k2b 2

Equation 5,19 is susceptible to two interpretations, The most straightforward one is to
to regard the transverse and longitudinal models as independent (as they are, say, for
cavities), and reg.ard Eq, 5.19 as defining the value of Rs required to give the correct
transverse shunt Impedance, On the other hand, for devices for which the same Rs can
represent both the longitudinal and transverse impedances, Eq. 5.19 says that the trans-
verse shunt impedance is the obtained by simply multiplying the longitudinal shunt imped-
ance by a factor of (_b) 2. Note that under either interpretation, if we assume Rs to be
frequency-independent, then Eq. 5.19 says that the device's efficacy as a transverse kicker
falls off with increasing frequency, consistent with the observations made earlier in Sect.
l b when discussing the Panofsky-Wenzel theorem. In fact, as we shall see, the factor is
present in the expression for transverse shunt impedance for a wide variety of devices,

ii. Pickup Performance Predicted by Model From Fig, 8, we see that with the exter-
nal matched load paralleling the device impedance, each resistor present to the beam an
impedance of R s, Denoting, as per Fig. 7, the upper and lower currents as _, we have
for the voltages across the respective resistances I±RsT, and for the voltages in the
respective output lines

V± = _[Zc/2Rs I± RsT = I ±"tZc Rs/2 T (5.20)

whereby, using the linear approximation in Eqs. 5.12a,b for I±, the voltage out of the
(differencing) signal port is given by

Ve=_-_Zc Rs/2 T(I+-I+)=IB Xzb_ T (5.21)

Hence the power output into a matched load of impedance Zc in

4b 2 4_ 2 (5.22)

which is just the expected result; in other words, the value of Rs which gives the correct
transverse kicker shunt impedance properly predicts the transverse pickup performance.

iii. Beam Impedance The standard definition for transverse beam impedance is

Z± =_.j AP±c /e
IBxs (5.23)

J

where Ap± is the transverse kick due to to the fields generated by the beam itself, and xB
is the transverse position of the beam. To calculate ,Sp.i.we need to know the self-induced
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beam voltage at the position of the beam, From Eqs. 5,12a,b we see that the beam induces
across the two resistances equal and opposite voltages of

mV±= 1BxBRs T/(2b) (5.24)

(There is also a "sum" voltage" equal to IBRsT; because this produces a beam voltage with
. no transverse gradient, it is of no interest in calculating Ap./..) From Eq. 5.13, we see that

the voltages in 5.24 give rise to a beam voltage 10

V= IBxB Rs T x T = IBXBx R_ T 2
- 2b b - 2b 2 (5.25)

Applying the Panofsky-Wenzel theorem gives

_..1. OV _I I_XB R_ T2
AP't=" j_"_'= jto 2b2' (5.26)

Inserting this expression into Eq, 5.23 gives

Z± = IRs T2
ko 2b 2' (5.27)

where ko = ogc is the free-space wave number. Comparison with Eq, 5.18 shows that

Z± = 21-Ra.
T2

_.---_ (5.28)

As with the longitudinal beam impedance, the factor of 1/2 is due to the presence of the
(equal) external load. Note that had the factor of fl been included in the definition of Z.I.,
as it is in the definition of the transverse beam voltage, the right hand side of Eq. 5.27
would have simplified to R± T2/2_.B. Similarly, were we to compare with the alternate
definition of transverse shunt impedance R±TZ.ko(see the discussion following Eq.
4.11) which we will define as R±ait, we see that

Xo2
Zj.=21--

air

"'a. X-_ (5.29

i.e. with a consistent convention regarding the inclusion of/3 (or in the limit of fl _ 1),
Z± for the unloaded device would be the same as R±alt.

Two final notes: For devices such as resistive walls, where the same Rs applies in
both longitudinal and transverse cases, we can use Eq. 5.11 to rewrite Eq. 5.28 to a form
which may be familiar to those having some background in accelerator design

f

z±=,,'-olb2Z,= ¢5.30)

10Notethe presence of both an x and an xB term,since this is the beam voltageat any position due to a
beamat xB,
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where k rev is the wave number associated with the particle revolution ti'equency, and no
is the revolution harmonic number corresponding to the frequency of interest; the "1" in the
numerator results from the assumed one-dimensional nature of the transverse field.
Secondly, the use of two resistors has been necessary for modelling transverse kickers
and pickups and relating them to beam impedance, and also simplified the discussion of the
latter quantity. However, for transverse beam impedance alone, a single resistance, distri-
buted aztmuthally as postulated in conjunction with the longitudinal model, would have
sufficed; a transverse self-voltage would have resulted from the non-uniform dismbution of
the image currents in the distributed resistor. Because the resulting beam voltage distribu-
tion would have been two-dimensional, as well as for the other pedagogical reasons cited,
we elected to stay with the two-resistor model throughout the discussion,

C. PROPERTIES OF SPECIFIC DEVICES

Pickups and kickers comprise a wide panoply of electromagnetic devices. The choice
of a given device for a particular application will depend on such things as the required
strength of coupling to the beam (i.e. the shunt impedance), bandwidth, and overall length

" (which may be constrained by the amount of available "real estate" in the accelerator). As
we shall see, the choice of a particular type of device will entail a trade-off of these quanti-
ties against one another, and so the requirements of the application will strongly influence
that choice. For example, r-f acceleration requires high power, i.e. efficient coupling, but
can be accomplished using a single frequency, i.e., narrow bandwidth. On the other
hand, for beam sensors where a large number of devices is desirable, especially for com-
pact rings, smallness in size may be a driving consideration. Moreover, due to the large
peak currents in many electron machines, not only may the beam sensors in such machines
have weaker coupling, but because beam impedance is closely related to shunt impedance,
having many sensors with strong coupling may be positively undesirable.

In the sections which follow we will examine a variety of electrodes that are used as
pickups and kickers. We will describe their basic operation principles, and obtain expres-
sions for their coupling parameters,in many cases giving numerical values for these param-
eters, and mention typical applications, Equally important from the point of view of these
notes, these derivations will illustrate the application of the results of the first part of this
report to calculating properties of actual devices.

6. The Resonant Cavity

Conceptually, one of the simplest electrode systems is the cavity resonator; for simple
shapes its fields are easy to visualize and are approximately calculable in closed form, so
that its response (within its resonant bandwidth) is readily predictable. Because of its very
efficient coupling to the beam, it finds widespread use. One of its most common applica-
tions is as the source of the accelerating r_f voltage, in which it acts as a longitudinal kicker.
lt is well suited for detecting or controlling by feedback particular modes (i.e., modes at a
particular frequency) of beam instability. As a pickup, it finds application in situations
where the beam signals are weak, as was the case for the Schottky signals shown in Sect.
3c.

)

In its function as an accelerating structure, the cavity is excited in its lowest TM mode,
producing nearly uniform longitudinal electric fields, at least in the region traversed by the ,
beam. To function as a transverse kicker, it must be excited in a higher order TM mode 11

11RecallfromthePanofsky-Wenzeltheoremthata transversekickerrequiresa longitudinalelectricfield.
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which, while again usual!y uniform in the longitudinal direction, exhibits a transverse
gradient at the beam location. Used as a pickup it will respond to transverse beam signals
at the frequencies corresponding to those modes at which it can aet as a transverse kicker.

. a. Longitudinal Kicker/Pickup

, _,

_ .,,,,.. _

|..w

qt

....'," f

XlSg gllO-ll_2

Fig. 9. Fields in longitudinal cavity-electrode.

Let us begin by considering the square cavity shown in Fig. 9. From reciprocity we
know we need only calculate its performance as either a pickup or a kicker. It mms out that
the latter is by far the simpler, particularly ff we assume that for moderately sized beam-
tube aperttn'es the cavity can be treated as a closed rectangular box. In particular, ff we go
back to Eq. 4.9, the defining relation for the kicker shunt impedance, we find that ali the
terms are calculable in closed form. Using the conventional expression for the energy input
to a cavity at resonance, we may rewrite Eq. 4.9 as

RIIT2=I/2=1 V2 (6.1)
22' 2 oxu/Qv

where Qu is the Q-value for the unloaded cavity, Wr is the resonant frequency, U is the
stored energy within the cavity, given by

v=½ E'.dvot
(6.2)

and V, the beam voltage is given by the (by now, hopefully, familiar) expression
0

V = / ejn Ezdz (6.3)
J

The lowest cavity mode with maximum longitudinal electric field along the centerline is
mode TMll 0, for which the wavelength is _. = q2--b and the electric field is



mc ny (6.4)
E = Ez= Eo cos-_ cos

uniforminthez-directlon.InsertingthisintoF_xl,6,3atx = y = 0 gives

V=EoA__EoZT (6.5) '
0

where we again see the familiar transit time factor, with 0 = ¢0r/j2v = ko Z/2fl. From Eq.
6.4. we find

U = 81-eoEo2/b 2 (6.6)
¢

(Eq. 6.6 holds for any TMm, 0 mode; however, only those with both m and n odd are
useful for a longitudinal kicker.) Substituting in Eq. 6.1 we obtain

RliT 2 = 4 Zo 1_.aT 2 = 480 --/QT 2 ohm (6.7)
zr l, Z

l .... , . . ,

where Zo = (eoC)- = 1/%/eo///o is the Impedance of free space (sometimes denoted m
electncal engineering texts by 7/). We can generalize this to the case of an arbitrary
TMmno mode by replacing/, = _ b with

Z = 2b/_m 2 + n 2 (6.8)

whereby Eq. 6.7 becomes

RliT 2 = 8 I Zo QT 2 _ 960 1_QT 2 ohm (6.9)
lCA m2 + n2 m2 + n2 ,,%

As an example of another shape, for a circular-cylinder (pillbox) cavity, we find that the
shunt impedance for the lowest longitudinal TM mode (TM010) is given by

= 2 bgc I aT 2 (6.10)
R"T2[poSo(po )]2 Z-

in which POI (the first zero Of Jo(X))= 2.405 giving

1

Ra,T2 = 484 _- QT 2 (6.11)

a result nearly identical with that for the square cavity

Using _-dependence of Qu for a closed box cavity, we find that a broad maximum
value of the quantity J_QT2/Aoccurs for fl=l at 0 = 1.37 radian at which _/,;!,= 0.44 and
T2 = 0.51. At that optimum length, the simple cavity then gives
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RIIT2=, 108 Q ohm . (6.12)

By modifying the cavity shape (e.g,, reducing the longitudinal gap in the region immedi-
. ately surrounding the beam tube), this figure may be increased, principally due to increas-

ing the transit-time factor, by about 25%. In these equations, the unloaded quality factor
Qu is used. Values for this quantity (for a non-superconducting cavity) may be as high as

, 30,000 at 1 GHz, and exhibit a frequency variation of q'IT"_.

One must be able to couple power in or out of the cavity (depending on whether it is
used as a kicker or a pickup), usually done using a loop or stub antenna (represented
schematically by a transformer in Sect. 5). For maximum efficiency, one uses matched
coupling, thereby reducing the Q of the circuit by a factor of 2. As discussed in Sect. 4,
under this matched condition, the power out of a longitudinal cavity pickup will still be
given by Eq. 4.21, where one is to use the unloaded Q in the expression for RIIT2. (The
response width of the cavity will of course be given by the loaded Q, i.e. Aaga_= 2/Q,)

Similarly the transfer imped.ance for a matched cavity is given by Eq. Eq. 4.23, where
again, one uses the unloaded Q m calculating RIIT2. Assuming a standard output imped-
ance of Zc = 50 f_, the transfer impedance will be given by

Ze = 37 _ ohms (6.13)

The effect of impedance mismatch has been described in Sect. 4c.
I

b. Transverse Kicker/Pickup

As with the longitudinal cavity, we begin with the definition of shunt impedance, given
in this case by Eq. 4.11. Inserting the expression for cavity power and using the Panof-
sky-Wenzel theorem, we obtain

(Ap_c/e)2 (._1_c9VI2 auR±T 2 = "_ = kB "_1 2"_U
(6.14)

where again U and V are given by Eqs. 6.2 and 6.3.

The lowest order on-axis x-deflecting mode is the the TMgm; the wavelength is again
given by Eq. 6.8, which for this mode takes the value 2bN'5",an'd"theelectric field is

E=Ez= Eo sin -_-b-_-cos -_ 2 (6.15)

Proceeding as with the longitudinal cavity, we obtain the result

R±T 2 = 32 Zo ft2 1_.aT 2 = 154 ft2 l__QT 2 (6.16)
25n: A A

6

where T has the same definition as in Eqs. (6.5). For the general TMmn0 mode (for an
x-deflecting kicker, m must be even, and n odd) this becomes

Q
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R±T 2=8Z Zofl2 m2 QT2 = 960 f12 L m2 QT 2 (6.17)
,.2 +.2 m2+.2 '(m2 +n2)2

For theTM210 mode (and [_ 1), maximum _QT2/Aoccurs at 0=1.41, for which value

R±T 2 = 33.7 Q f2. (6.18) '

If the cavity is used as a transversepickup, assuming its output is matched into a 50
output impedance, Eq. 4.24 gives for the transferimpedance

Zp'= 20.5 ko_t-_ f2/m (6.19)

It was a cavity su_a as this[17] that was used to obtain the Schottky spectrum shown in
See_. 3. The cavity, nominally 15 cm on each side, was machined of aluminum and had
the following properties

f = 2.045 GHz

RzT 2 = 29 £2
Q
Qu = 9500

Zp' = 81 x 103D,/m

The reduced RIQ (relative to that predicted by Eq. 6.21) is probably due to the fact that
the operating frequency was sufficiently close to the apertm-ecut-off frequency (--2.5 GHz)
that the penetration of the fields into the beam mbe made the closed-box model of the cavity.
only approximate.

7. The Capacitive Pickup
e

1'1"1"E
++++ _I B

XBL 9110-2156

Fig.]0.SchematicRepresentationofSingle-PlateCapacitivePickup

We now consider the behavior of the device we have been using as the illustrative
model of a pickup/kicker electrode, the isolated plate(s) in the wall of the beam tube. For
simplicity we begin our treatment using a single-plate, as shown schematically in Fig. 10.
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Because such a device behaves essentially as a pure capacitance, it cannot act as a matched
load; hence, in its "pure form" it is of limited utility as a kicker. One way around this
limitation is to "resonate" the capacitor using a parallel inductance, resulting in a device,

. like the cavity, which has a high, resistive, shunt impedance over a relatively narrow
bandwidth; we will discuss this technique later in this section The other !s to lengthen the
plate so that it becomes a transmission line, or stripline, with a characteristic impedance;

, this approach will be discussed in the following section.

For a variety of reasons, it is useful to analyze the capacitive pickup using image
currents, rather than by treating it as a kicker and using reciprocity. First, the reciprocity
approach is complicated by the impedance mismatch. Second, for those problems for
which the image-current approach is applicable, situations in which the device is short
compared to the beam wavelength, one can generally employ an intuitive approach to
solving them. Finally, the image-current approach is pedagogically useful in illustrating
some of the complementary aspects of the time- and frequency-domain pictures.

If we imagine the pickup plate in Fig. 10 to be of length ,g, then the image-current
analysis will be valid at frequencies for which _ > Z. Recall from our discussion of
beam spectra from Sect. 3, that for a machine with every bucket f'flled, the lowest frequen-
cy (strong) line in the coherent spectrum is that of the rf itself. Hence the above require-
ment is equivalent to saying that if we wish to observe the beam at the rf frequency, the
pickup must be short compared to the bunch-to-bunch spacing (physically quite reason-
able). If, on the other hand, we want to be able to observe the beam spectrum up to the
single-bunch roll-off frequency, then the pickup must be short with respect to the length of
the individual bunches.

• a. The single-plate capacitive pickup

When the capacitor plate, or button, in Fig. 10 is exposed to the electric field of the
beam, the image charge on the plate will be related to the beam current 1Bby

q = - g llB/flc (7.1)

where q and IB are phasor quantities, _ is the effective electrode length, and the geomet-
ric factor g has the same significance as in Green's reciprocation theorem (Sect. la) of
fractional image charge (per unit length). The latter two quantities are determined by the
electrode size and distance from the beam IB of positive particles; if the electrode complete-
ly encircled the beam, the factor g would be unity.

Associated with q is a charging current IC = Oq/& = jo)q which flows through the
series combination of R and C, causing a voltage across R of

o9l RR - lM g-- (7.2)
V =- jarl 1 +ja_C tic 1 +ja_C

which, from Eq. 4.12, yields a transfer impedance of

R (7.3)
Zp = j g lk, 1 + ja_RC

Although with an unmatched load the equations for shunt impedance are not strictly appli-
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cable, we can use them to find an effective RT2 for this pickup case:

RT2 = (glk,)2 , 4R (7.4)
1 + (o)RC) 2

At low frequencies, the signal is proportional to the rate of change of beam current, but
above mRC = 1, the capacitance is said to "integrate" the signal and the resulting response
is

Zp_ g Z/flcC (7.5)

just the result we would haxfe obtained had we assumed that the voltage across C (and R)
was simply qC, i.e. that the charge on the grounded plate of C instantly equilibrated to the
image-current charge. Note that for all the above equations, for an arbitrarily shaped
electrode of area A at a distance a from the beam, we can approximate the product g_ by
A/2zra, so that we can rewrite Eq. 7.5, for example, as

Zp-_ A (7.6)
2xa flcC

and similarly for Eqs. 7.3 and 7.4. This region of flat response is often used for the
observation of beam current versus time with a wide frequency range; however, because it
calls for RC > 1/o9, extending the region to lower frequencies usually entails raising C,
i.e. reducing the flat-region gain.

Capacitive pickups are used at the LBL Advanced Light Source (ALS) as beam-position
monitors. The ALS is a 1.5 GeV, high-current electron synchrotron storage ring, requiring
a large number of such monitors, and so, as mentioned earlier, these conditions dictated a
small-sized, low-impedance pickup. The electrodes are in the form of roughly 1 cm diame-
ter discs located approximately 2.5 cm from the beam, and having a capacitance of approxi-
mately 25 pf. The output is fed directly into a 50 ohm coaxial line (which therefore serves
as the load "resistor"), so that the low-frequency roll-off point is roughly 125 MHz, which
is low enough to permit observation of the strong coherent line at the fundamental of the rf
frequency, 500 MHz. A rough estimate of the transfer impedance using Eq. 7.5 gives .07
ohms, in reasonable agreement with the measured value of 0.1 ohm. The corresponding
shunt impedance (based on the latter number) gives 0.8 mfL so that even with hundreds of
such electrodes in the machine, their total beam impedance of only a fraction of an ohm.

b. The Resonated Capacitive Pickup

By placing an inductor in parallel with C, as in Fig. 11, we not only get a stronger
response (albeit over a narrower frequency band), but we obtain, at resonance, a resistive
device which can be made to serve as a matched load, and hence used as a kicker. Under
these circumstances, the external resistor is no longer an intrinsic part of the circuit (e.g.,
necessary to provide a charging path for C, and so R in Fig. 11 will be used to represent
the total circuit losses due to the combination of the pickup and the inductor. We begin our
discussion by considering a long-plate device, in some sense a prologue to the stripline
electrode described in the next section, and then consider the limiting case of a resonated
button capacitor.

Let us consider the capacitor plate as a center-driven open transmission line of total
length .g and characteristic impedance ZL. From standard transmission line theory we
find that the open line presents at its center an impedance of- (j/2) ZL cot (kL_/2) (plus
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losses), i.e. for kt../< _:it behaves like a capacitance. If we denote the unloaded quality
factor of the ctrcuit by Q, at the resonantfrequency, Q --RCOrC,so that

R = 2_ QZt, cot (kt./2) (7.7)

where in Eq. 7.7, kL is now the transmission-line wave number at the resonant frequency.
.....
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Fig. 11. ResonatedCapacitivePlate

If we excite the plate as a kickerwitha voltage Voat the centerpoint, the voltage at the
ends of the line (i.e., the plate) will be _/osex:(kLrf2). If we assume that the longitudi-
nal fields at theends of the plate areconcentratedin a distance shortcomparedwith 1/kL
so that the transit time factor associated with themis negligible, the beam voltage at the
outer wall, as defined by Eq. 4.2, earlbe approximatedby

Vwatt= E_eJ_"ds--_Vo see (kL_2) [..e-j_,.a2+ ejt,272] (7.8)
,l<-,a2

where the inequality signs in the above integrals are merely to indicate that the integration
limits are sufficiently beyond the ends of the plate to include the full effect of the end-gap
fields. Using the arguments made at the end of Sect. 2, we can now obtain the beam
voltage at the location of the beam which, after some rearrangement of terms gives

sin (ka_2)
V = g Vwatm2j g Vo (7.9)

cos (kt.,_2)

We can now use Eq. 4.9 to obtain the shunt impedance, by noting that the power to the
kicker is simply the power dissipated in R, namely Vo2/2R, whereby

RIIT2 = 2 QZLg2 sin2 (ka/./2) (7.10)
cos(/ez,Z/2)sin(/ez,Z/2)

from which, using Eq. 4.23 with Zc = Ro, we obtainq,



.4O-

_t_ = g sin (kB/J2) .,/ RoZt. Q (7,11)
"V cos kL1,/2 sin kL 1

To f'md the short-plate or button limit, we apply the usual small angle approximations to
Eq. 7.11 and convert the line impedance to the total capacitance using

ZL = ,g/VLC (7.12) '

to obtain

gl _/Wr Ro Q (7.13)Zt, = _- C

Comparison with Eq. 7.5 shows that the transfer impedance for the resonated capacitive
button is a factor of Q_J2greater than the high-frequency limit of the resistively loaded one.

Because the single-plate g-factor is position-dependent, it is customary to use a pair of
plates, adding their signals to obtain a longitudinal signal, and differencing them to obtain a
transverse one. We will defer a detailed discussion on sum and difference behavior,, as
well as the relevant g-factors and methods by which they can be calculated, until the fol-
lowing section on stripline electrodes.

A recent application of tuned-plate detectors for measuring the position of small extrac-
ted beam currents at Fermilab [18] has been able to resolve transverse beam position to
within 0.1 mm at a beam current of 1.7 x 10--8ampere using plates one meter long. The
circuits operate at 53.1 MHz (the Tevatron rf frequency, and hence a frequency at which
there is a strong coherent signal) and have an unloaded Q of about 380.

8. Stripline Electrodes

We have referred earlier to the use of stripline electrodes as pickups/kickers, and
mentioned that in a sense the stripline pair can be thought of as a realization of the parallel-
plate pickup in which the electrode structure has a characteristic (real) impedance. We
begin this section with a description of the electrode structure and the electromagnetic
fields. Following this we will calculate the various response functions; for pedagogical
purposes, we will analyze the pickup behavior directly using the image-current approach,
as well as obtaining it from the kicker performance using reciprocity.

a. Stripline Geometry and Electromagnetic Fields

A schematic model of a stripline electrode pair is shown in Fig. 12. Each of the
stripline plates with its adjacent ground plane (walls) forms a transmission line (for TEM
waves) of characteristic impedance ZL. The output signal line is likewise assumed to be of
impedance ZL; typically the output line impedance will subsequently be transformed to
some standard output impedance Z c. In the center (away from the ends) of these short
lines the fields are purely transverse and propagate at a line velocity vL. That velocity
would be the velocity of light for smooth two-dimensional conductors, but may be reduced
by the presence of magnetic or dielectric media or by longitudinal variations in the cross
sections of the conductors. Excitation of/by the beam takes place at the gaps at the ends of
the line, where longitudinal fields occur.
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Fig. 12. Schematic representationof a pair of stripline electrodes. The left-hand figure views the
structure looking along the beam; the right-handfigure,looking perpendicularto it.

Although concentratedin the regionof the plates, the fields of each line extend into the
regionbetween them (as of coursetheymust, in orderfor the electrodes to interact with the
beam) where they overlap, The resulting coupling of the two lines produces two
characteristic modes of joint excitation, as shown in Fig. 13. In the f'u'stof these, the
voltages on the upper and lowerstriplinesareof equal magnitude and are in phase; in the
second, they arc also of equal magnitudebut 180"outof phase. The former mode, as we
shall see, is associated with thedevice's use as a longitudinalpickup/kicker;the latter, as a
transverseone. Because of the relativephases of the individual signals, these two modes
arcfrequentlyknown as sum anddifference modes,respectively. It generally turnsout that
the two modes have slightly differentcharacteristicimpedances, a complication we shall
usuatly ignore in the following discussion.12 Because in either the sum or difference
mode equal signals appear on both striplines, if they are symmetrically driven and/or
loaded, we can treat the two striplines as independent transmission lines, each with a
characteristic impedance twice thatof the combined line, rather than as a single bi-filar line.

Fig. 13. The sum (left-hand figure) and difference (right-hand figure) modes of a stripline pair. The
"field" lines represent equipotentials of the beam voltage, or more accurately, equipotentials
of the equivalent two-dimensional electrostaticproblem (see text).
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b. Pickup Analysis Using Image Currents

Let us depart from our usual practice, and regard the current shown in Fig. 12 as being
a short pulse in the time domain, iB(t). We assume that each of the plates intercepts a
fraction g of the image current (we neglect for the moment any possible distinction
between the g's associated with the two modes of excitation).

When the pulse reaches the upstream end of the stripline, it repels positive charges into
the output line and along the stripline. Since both lines are of impedance ZL, half the
image charge goes into each, and a signal of ½g!B(t)ZL propagates both in the output line
and downstream (with velocity = c) on the smplme. At time Z/c later the beam, also
assumed to move at c, and this latter pulse both arrive at the downstream end, where the
departing beam releases a negative current pulse of- giB. As at the upstream end, the
pulse divides, with the downstream half cancelling the positive pulse from the upstream
end, and the other half propagating upstream, 13 where it enters the output line at time
2Z/c, and is seen as a negative pulse of voltage -½ giA(t)Z L. Hence the pulse emerging
from the output line is a bi-polar pulse whose two lobes as separated by time 2 Z/c. If
one Fourier analyzes the response to an infinitely sharp pulse of unit amplitude, one obtains
the the response function for a single stripline

Zt, = _ ZL (1 -e -J "_) = g ZL ej(,e2-**zO sin koZ (8.1)

The single-plate g-factor is (transverse-) position sensitive, However, to fin'st order
the sum of the g-factors of the upper and lower plates, which we will define as g[I, is
constant. Hence by summing the output of the two plates, we obtain a relatively posmon-
independent longitudinal signal which is simply proportional to (1/_/'2-)gjl.14 If we then
transform the signal to a "standard" output impedance Zc (e.g. 50 ohms) _beobtain for the
longitudinal transfer impedance

Zp = _ gll eJ (nl"2-k_) sin koZ (8.2)

Because the difference in the g-factors of the two plates is to first order proportional
to the transverse position of the beam, we can obtain a transverse signal by taking the dif-
ference of the signals from the two striplines. To obtain a position-independent transverse
g-factor g±, we would need to divide the difference in the individual g-factors by x; to
keep g± dimensionless, we divide instead by x/b, where b - h/2 is the half-gap. Using
the definition of transverse transfer impedance (Eq. 4.13) and again transforming to an
output impedance of Zc ohms, we obtain the result

Zt' = _ g--&beJ (rC2- _ zOsin
koZ (8.3)

We will defer discussion of Eqs. 8.2 and 8.3 until the next subsection.

] _ certainamountof confusionmar arise _romme facte_at8t is defined for me'combinationof the two
striplines,yet Z! is definedfor a single line. The logicbehindthisdisparate treatement.isthat we want alongitudinal g-/actor to be position independent (which means defining it for the pair of striplines),
whereasfor impedancematching,the relevantquantityis the impedanceof tlieindividualstriplines.
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c. Analysis Based on Kicker Behavior

To calculate the kicker constant (see Eq. 4.1), we must evaluate the integral tbr the
, beam voltage along the strtpline, Recall from our discussion in Sect. 4b that for directional

devices, the beam direction when the device is used as a kicker must be opposite that to its
direction when the device is used as a kicker. 15 Hence, for a stripline kicker the beam

. must move in the direction opposite that shown in Fig. 12, If we define the coordinate of
the right-hand gap as s = 1, and the left hand as s = 0, and define t(s = 0) = 0, then the
time along the path in the integral for the beam voltage (see Appendix 2) is t-- s/v,
giving for the beam voltage integral

<0 ' <0

V= I Es(s) e JaXds : I Es(s) e "#ss d$ (8.4)1 t

As previously, we use inequality signs to indicate that the integration limits are sufficiently
beyond 0 and I to include the full effect of the end-gap fields.

If the end gaps are short compared with the relevant wavelengths, we can separate the
integral in Eq. 8.4 into two pieces, one for each gap, over each of which the factor e-jka s
is approximately constant. The beam voltage at the outer wall, across the gap at s = 0, is
just the the stripline voltage at that point, VL(O), multiplied by the unit phase factor e#/_ 0
(times a transit-time factor which, for short gaps we assume to be unity)16; for the _ap at
s = Z it is just-VL(Z) multiplied by the phase factor e '-jkal. Since the wave m the
stripline is moving from left to fight, we have

VL(1) = VL(O) e-jkl.t. (8.5)

we have for the integrated beam voltage at the outer wall

V(x=b) = VL(0) (1-e -j(k, +_)z_ = 2VL eJ0rt2- o) sin 0 (8.6)

where 0- (kL + kB)/2.

Based on the arguments made at the close of Sect. 2, the value of the beam voltage at
x = 0 is just g(O).V(x=b), where g is the pickup g-factor for a beam at x - 0. Using
arguments similar to those made for the stripline pickup, we see that if we put equal volt-
ages on both the upper and lower striplines, then to first order the longitudinal voltage will
be position-independent, and given by

V li= 2 gll VL eJ(nt2-o) sin 0 (8.7)

For the (only slightly) idealized stripline geometry in Fig. 12, the solution near the
lateral centerline of the electrodes can be obtained in closed form:

' g" = 2 tan'l (sin_2_ff-h)n: , (8.8)

15At.theconclusionof this discussionit may be useful to the reader to convincehimselfthat in the case
in whtchthe waveandbeamvelocitiesare exactlyequal, fora beammovingin the directionshown in Fig.
|_, thereis no net kickto thebeam, analogousto the earlier-notedpickupresult._°Referto ourearlierdiscussionat the conclusionof Sect.2.
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an expression whose value exceeds 0.95 for w/2h > 1,

In general, g-factors need to be calculated empirically. If we neglect the transit-time
factor in the end-gaps, or at least assume it to be independent of lateral position, then the
longitudinal mid-point of the stripline plate defines an equipotential of the beam voltage,
Hence at the longitudinal mid-plane, the electrical surfaces shown in the left hand figure in
Fig. 12 serve as a suitable boundary for solving Eq. 2.9b,, the beam voltage equation. As
noted in the discussion following that equation, for highly relativistic particles, that
equation reduces tO Laplace's equation and so we can calculate V using, for example, a
numerical electrostatic solver. From our discussion of the Green's reciprocation theorem,
we see that g(x,y) for a given electrode is simply the calculated V(x,y) when that
elec_ode is placed at unit potential, gtl(x,y)is V(x,y) when both electrodes are at
positwe unit potential, and g.L(X,Y) is V(x,y)/(x/b) when the electrodes are at equal
and opposite unit potentials, lh fact, the equipotentials in the left and right halves of Fig.
13 were obtained by solving the electrostatic field problems with boundary conditions
appropriate to calculating gll and g.L, respectively.

To power a.pair of striplines of impedance Z L at voltage VI., from a single line of
some standard input impS, using a matched transformer and splitter, requires an
input voltage VK = VZ,42 Zc/ZL. inserting this expression into Eq. 8,7 and using Eq.
4.1 we obtain for the longitudinal stripline kicker constant

Kit = 2_Zc 2 gll e_(_" 0) sin 0 (8.9)

Inserting Eq. 8.9 into Eq. 4.17, we in mm obtain the longitudinal transfer impedance

Z/, - _/_ glle)(n/z- o) sin 0 (8.10)

As expected, this is the same as Eq. 8.2, under the assumption made in deriving that
equation that both vL and vB are c.

amplitude

0 "', _ 2n ",, 3_

,, ,, (+,,,, ',,,,O=.2k + 1
" phase

X_L g1|0-2167

Fig. 14. Amplitude of the longitudinal kicker/pickup response function for stripllnes.



-45-

The amplitude of the kicker/pickup response function is shown in Fig, 14 which may
be regarded as the response to either frequency, length, or velocity. If both beam and line
velocities equal c, then K u (or Ze) is maximum at i = _./4; for this reason, the electrode
is often called the "quarter-wave loop". The reason for the maximum under this condition

' is quite straightforward, In a pickup, the (sinusotdal) voltage from the downstream gap
arrives in phase with that from the upstream gap: There is a delay of _/2 tn generating the
downstream signal, an additional _2 for it to propagate back to the upstream end, and an

' additional phase shift of n"due to its opposite polarity. Similarly, under this condition, in
the kicker the voltage kicks experienced at the upstream and downstream gaps will be in
phase (they will be n:out of phase if the beam passes through in the same direction as in
the pickup). From the (square of the) response function it can be seen that the strtpline is a
broad-band device that provides a bandwidth of one octave width at 1.25 dB down from
the maximum, or a 3-to-1 range at 3 dB down.

Power for broad-band, high frequency operation is expensive, motivating one to
maximize the shunt impedance which is, using Eq. 4.10

RIIT2 = 2ZL gl2 sin2 0 (8.1 i)

Note that as mentioned before, in this more fundamental figure of merit the source (or
terminal) impedance Zc does not appear, At frequencies below about 100 MHz, the use of
ferrite is very effective for increasing ZLand shortening the electrode length. On the other
hand, because it is necessary to make the electrode width less than 2/4 in order to avoid
parasitic modes, at very high frequencies, a lower ratio w/h may reduce gll; another
problem at higher frequencies is that so-called waveguide modes may propagate in the gap
h and modify the response.

Typical stripline electrodes [19,20] have single-line impedance in the range 25-to-100
ohms and g 2 _, _, giving at maximum response

R iiT2 ,, 25 - 100 fl
Zp= 18- 35 f_
KII =,0.7 - 1.4

A recent application of stripline electrodes in which weak signal and costly power were
concerns was in the stochastic cooling systems in the Fermilab antiproton accumulator./21]
Stochastic cooling systems require large bandwidth, and, because they require the detection
of Schottky signals, also require high-efficiency electrodes. At GHz frequencies, the one-
octave bandwidth of striplines meets the former requirement, and as a result of their
reduced length (proportional to the wavelength)at these frequencies, the relatively modest
shunt impedance could be compensated for by employing la,:ge numbers of such loops.
(The response of the individual electrodes was itself raised by using a relatively high
stripline impedance of ZL = 100 ohms.) Electrodes having a response range of l-to-2
GHz were used in 128-element arrays, giving RIIT2 - 128× 130 = 16.6 k.f2 and Zp = 40

=450 f_.
0

We now examine the behavior of the same stripline electrode configuration used as a
transverse device. As is our wont, we shall calculate the response by applying the
Panofsky-Wenzel theorem to the longitudinal fields which are present in the excitation
mode for which the device is used as a transverse kicker. Not surprisingly, that again
involves exciting the two striplines with voltages of equal magnitude, but with the polarity
of the lower being the negative of the upper.
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Following the arguments that led from Eq, 8,6 to Eq, 8,7, and invoking the definition
of g.t. (see the discussion preceding Eq, 8,3) we can obtain an equation analogous to Eq,
8,7 for this mode of excitation,

V j.(x) = 2 gzg_ Vr,eJ('C2-O)stn 0 (8,12)

Note that in this excitation mode, Es, and hence the beam voltage, are zero for x = 0; also,
by Green's reciprocity, to the extent that the transverse pickup signal varies linearly with

the transverse position, so does the longitudinal k!cker voltage in this mode, As with gll,
one can obtain a closed-form expression for g l, near the centerline, where the linear
approximation is accurate, we have

tan 21_-h ' (8.13)
g.l.

The coupling between the two striplines also changes producing a lower value of ZL.
Following the arguments leading to Eq, 8,9, we obtain for the longitudinal kicker funcuon
K'IIfor this excitation mode

Applying Eq, 4,7, we obtain for K.I.

K± = --_2_c2g.u-ff--de-Jo sin 0 (8.15)

This result is very similar to the longitudinal K in Eq. 8.9, but the factor 1/hr.o further
penalizes (i.e., over and above its adverse effect on g) large aperture, and shifts the fre-
quency for maximum response downward to r.o= O, confirming our earlier observation
that, unlike the longitudinal case, a transverse kicker can have a dc response.

In fact the transverse kicker response is much like a typical sin0/0 transit-time
response. This will be more recognizable if we rearrange Eq. 8.15 using the definition of
0 given following Eq. 8.6

gj.= _c 2g±-_(1 +_-{)e-J °sin O . (8.15a)0

Applying Eq, 4.19 to Eq, 8,15, we obtain the transverse transfer impedance

Note that transverse transfer function does not contain the 1/m factor and, except for the
small difference between g and g / (and numerically different ZL) is the same as the
longitudinal case divided bythe hal_'-gap, so that, unlike the longitudinal case, the trans-
verse kicker and pickup exhibit different frequency responses.

The transverse shunt impedance is obtained by applying Eq. 4.11 to Eq. 8.15
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--2-) 2 sin2 0 (8 17)Ra.T2= 2ZL ga. knh

As expected, like its longitudinal counterpart, Rj.T 2 is independent of Zc, The frequency
dependence of R±T 2 m'[rrors that of K_; it is interesting to note how the kB2 in the

, numerator of Eq. 4.24 removes that fre_[uency dependence from the transverse pickup
output power,

Finally, as we noted earlier, an interesting feature of the stripline pickup is that, if the
beam velocity v equals the line velocity v/_,no voltage appears at the downstream end. In
principle, this allows !hat end to be electrically connected to any impedance, including a
short or an open circmt, with no effect on the picked-up signal. However, the output l!ne
will then not be back-terminated to absorb reflections in the circuit, so in practice this
apparently spurious resistor is generally present. (In the case of the stripline kicker, the
far end of the line [in this case, the upstream end] must be terminated in a matched load to
avoid reflection of the usually sizable kicker signals.)

d. Stripline Beam Impedance

Because it gives a result different from the resistive-wall case, it is of pedagogical
interest to look at the beam impedance of the stripline electrode. We will restrict ourselves
to the case of the longitudinal impedance at the frequency of m;aximum response, i.e. the
quarter-wave condition; we will leave it as the proverbial "exercise for the reader" to work
out the result for the full band, as well as for the transverse case.

Referring to our earlier image-current analysis, and denoting the upper and lower plates
with subscripts 1 and 2, respectively, we see that when beam passes the upstream gap, it
induces a voltage g]IB ZL/2 (.T) in !he upper stripline which propagates both downstream
and out the signal line. The beam reduces an equal and opposite signal (plus a rc/2phase
delay) at the downstream gap, which, when it arrives at the upstream gap is in phase with
the upstream-gap signal, thereby doubling it. The beam voltage at the beam location for the
upstream gap, which will bring in another factor of gT, is therefore

VluP = -gl 21B ZLT2 (8.18)

On the other hand, when the upstream signal reaches the downstream gap, its phase is such
that it will exactly cancel the gap voltage induced by the beam at that point, so there is no
beam voltage kick at that gap.

_lnlike manner, the total beam voltage due to the signals induced in the lower stripline is
-gI'IBZL T, giving a total beam voltage for the two lines of

V = -(g 12 + g22)lB ZLT2 (8.19)

Dividing by the beam current, and noting that gll2 = (gl + g2) 2 _ 2 (gl 2 + g22), we
• obtain for the longitudinal beam impedance

ZII = glr2 ZLT2/2 (8.20)

Comparison with the maximum shunt impedance given by Eq. 8.11 shows that



-48-

z,=R:2/4 (8,2I)

i,e,itisone.fourththelongitudinalshuntimpedance,ratherthanone halfit,aswas the
casefortheresistivewallorresonantcavity,(ltisnotmeaningfultocomparetheresults
for the unloaded devices, where the resistive-wall beam impedance is the same as the shunt
impedance, because without a terminating load on the stripline, there would be reflected
waves from, the upstream end, invalidating the above analysis, In fact it is just this absence
of any dissipative load within the stripline which is responsible for the difference in the two
results,)

9. Sl.nding.Wave Devices; A Summary

Ali the devices considered thus far can be categorized as standing-wave electrodes
because (regarding them for the moment as kickers) the electromagnetic fields they generate
remain localized in space, rather than propagating along with the beam, 17 We can com-
pare expressions for the peak shunt impedances of a variety of standing wave devices
(some of these expressions are derived in this note; for others, see Ref, 22), If we intro-
duce the 3-dB bandwidth A_ (for resonant devices, this means replacing the Q in the for-
mulas by agAr0), and use zPfor the overall length, we get the relations shown in Table
II,

TABLEII

Longitudinal

StriplinePair

R,,:''° z :,,,o 8zd
length ,g= 2/4 "_ = )_ "_ = _-_TI

Resonant', RIIT 2Aw_ = 3"2--ZIIgI_ Z-" R'I"T2 A°J--d"= _'Z't'g21 --Z(xB]2'--ff'length zt= 2/4 /1: Z /1: Z

Inductivelyresonated', RII T2 ACO 4_ ZIIgl_ ,E R.I. T2 AW nx z.i g_ 'g (_;B/2
length .g<</114 _ = _ _ = _ _T/

SquareCavity RIll 0 T2 AO)= 4 Zo T 2 _ RIlO T2/Xo)= .._..2 Zo T 2 -_'
co n' ,_ ¢.o 25x

The similarities of the functional forms of these gain-bandwidth values can be expected
from general considerations of energy storage and flow, (we will discuss these in more
detail in Sect. 10); what is notable is that this variety of practical devices shows only a
small range in the value of ct (typically ,-250-1000 f_) as defined by Eq. 9.1, (For the
transverse shunt impedances, there is an additional factor of [kNb]Z.)

i,, m

'I7Thestripline is in somesense a mixedcase. However,becauseits fields travel in a directionopposite
that of thebeam, it is usuallyregardedas an SWdevice. This shouldbe clarifiedby the discussionin Sect.
10
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R,T2 =a (9,1)

Note that in Eq. 9.1 we consider the product of shunt impedance and fractional band-
width, per un!t fractional length (of wavelength). To understand better the "normalization"

. of the bandwidth to the frequency and the length to the wavelength, consider the stripline.
It has a roughly 1.5 octave bandwidth irrespective of frequency, and is always (at
midband) 1/4 wave long. If we put Eq. 9.1 into the alternate form

RIIT 2 Aco
= a' to2 (9.2)

,L

we see that, on the one hand, the gain-bandwidth product per unit length increases as the
square of the frequency; again thinking of the stdpline, this arises because the absolute
bandwidth of the octave increases with frequency, as does the number of quarter wave-
lengths per absolute length. On the other hand, Eq. 9.2 says that, at a given frequency, the
overall factor is pretty much the same for all the devices shown. The reader may recall that
we mentioned at the beginning of this portion of the report that choice of detector necessi-
tated a trade-off among these quantities; Eqs. 9.1 and 9,2 dramatically illustrate the point,
There is one possible exception to the rule, which has thus far had limited p:-actical use with
accelerator beams, and that is the subject of the following section.

10. Traveling-Wave Devices

Let us imagine the following two scenarios: Assume that we have a total length ,L
which is occupied by, in one case, a (properly phased) array of standing-wave (SW)
kickers, and in the other, by a device capable of generating a voltage wave which moves in
the same direction and with the same velocity as the beam; it is standard parlance to refer to
this latter as a traveling-wave (TW) device. Let us further assume that the longitudinal
fields in both kickers are comparable or, more simply, that they produce the same voltage
gain per unit length, 18 V', and that both the individual SW devices and the TW device
each require the same input power, Pi" For both devices, the total energy gain in length
,L will simply be V' .L. However, the TW device will require an input power of only
Pi, whereas, assuming n SW devices are required to span the length Z, the array will
require an input power of nPi.

From the definition of shunt impedance (Eq. 4.9), we see that for the TW pickup, RT2
will be proportional to/'2; in contrast, for the SW array, it will be proportional to .LZ/n,
or since n *, Z, simply to Z, consistent with the results from Eqs. 9.1 and 9.2. (As
implied by the former equation, the SW device actually scales as Z/X, rather than Z; the
reason for this is that, as a result of transit-time effects, the length of a SW device is
perforce limited to being only a fractio_ of a wavelength).

A similar argument can be made for the efficacy of TW pickups. As we pointed out in
the introduction to Sect. 5 (beam impedance), the output power from a pickup comes from
the work the beam does against the fields which it itself generates. If we have an array of
such pickups, the power will simply be proportional to the overall length, since as the beam
moves from pickup to pickup, it must regenerate that self field in each element of the array.
If, on the other hand, the self field were to propagate along with the beam, the self-field

18i.e.,weneglectthe packing-fractionproblemassociatedwith the arrays
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would increase (more or less linearly) as the beam moved constantly added energy to it as it
moved along the device (not possible with a standing wave device where, by definition, the
field remains in one piace), then the self-field would be proportional to the length, and
hence the signal power, to the square of the length.

A principal practical problem with TW devices is the difficulty in matching the field
wave's (phase) velocity to that of the beam. Because of dispersion, it is not possible to
match these velocities exactly over any frequency band; the effect on the bandwidth of the
resulting (frequency-dependent) phase slip between wave and beam is what usually limits
the length of such devices. Because the phase-slip factor is dependent on the transit time
through the device, it is frequently referred to as a transit-time factor (it usually exhibits the
familiar sin /9/0 form associated with SW devices) even though its physical origins are
somewhat different (the 0 for TW devices depends on the difference between two wave-
lengths, whereas for the SW device it depends on only a single one).

An additional difficulty with TW devices is the problem of coupling to them the input
and output power. On the other hand, an additional attraction of TW structures (relative to
SW ones) is their lesser complexity as rf structures, particularly at frequencies in the multi-
gigahertz range.

We begin our discussion of TW devices by describing three such devices, and present-
ing their relevant figures of merit. Following this we present a gain-bandwidth scaling law
for .'SWdevices somewhat analogous to Eq. 9.2 for SW ones.

a. The Helical Line

Fig. 15. Beamon theaxisof a helicalline

A helical line (Fig. 15) is a device in which a wave travelling at c on the periphery of a
helix produces an on-axis longitudinal field travelling at reduced velocity flLC.[23,24] The
shunt impedance of this electrode treated as a sheath helix is shown in Ref. 23 to be given
by

R,IT2= Zo (lh 2IKo(ha) Ko(hb) (sin 0/2,7,t_ (10.1)

in which _ = 1/(1 -/3z_), h = ko/_L_'L, and O = (kB -kL)f./2. The modified Bessel
functions Io and Ko for small arguments, that is, tor _LYL2o > b reduce to the form

Iii
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RIIT2 Zo ln _ kLl" _O )2
= _ _ (10.2)

2_3L 7L2

" In this we recognize (Zo/2_) In(b/a) as the impedance of a coaxial line of radii a and b.
Also, we see sin/9/0 as the transit-time factor in which 0 is a measure of the phase slip
between beam and traveling wave. To avoid large dispersion in the wave velocity in this

' periodic structure, flL_o (the wavelength of the slow on-axis wave) must be greater than
twice the pitch of the fielix. In an example use, [25] the helix was effective atf--- 200
MHz and fl = 0.5. However, the factor 7L--4 makes the device ineffective for very rela-
tivistic particles.

b. The Slotted-Coax Coupler

XBL 9110-2169

Fig. 16. Slotted-coaxcouplerattachedto a beamtube

The slotted-coax coupler shown in Fig. 16 communicates with the beam tube through a
row of holes or slots in the outer wall of a coaxial line parallel to the beam. There is a net
energy transfer from a beam particle to the coaxial line until either an equilibrium is reached
(there is an equal energy flow back from the coax wave to the beam), or a sufficient phase
difference develops between beam and coax signal (the slots that provide the coupling also
reduce the phase velocity in the coax and cause dispersion in that velocity). Perturbation
calculations [26] for the geometry of Fig. 16 show that the coupling and the velocity are so
related that the pickup impedance becomes simply

koA r
Zp = -J---W- q-Z-LRoe -j° flit_O_ (10.3)

• 27_b 0

where ZL is the impedance of the coax and 7L and 0 are as in Eq, 10.1. The shunt
impedance is then
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Cor )2R, 72-z,/- - (10.4)
This is very similar to the result for the helix, but here a very small velocity reduction intro-
duces dispersion that limits the use of the slotted coupler as a broad-band device to til >
~ 0.95. Although it is a weak coupler, it is a good high-frequency structure and is useful
where strong coupling is not demanded. In this role it has been used in cooling the anti-
proton stack in the CERN AA ring. [26]

c. The Wall-loaded TM Waveguide

r-t' l............................ _ ........ 1

•1 [ f ...................................... [Itol, I

XBL, 9110-2170

Fig.1'7.Downstreamendof acorrugated-wall-waveguidepickup

The phase velocity of a TM waveguide can be reduced to correspond to beam velocity
by loading its walls with a dielectric liner or with corrugations. Linacs employ such struc-
tures. A corrugated guide has been developed [27] for experiments on stochastic cooling in
the CERN SPS. This difference pickup is sketched in Fig. 17. It has a bandwidth of
about 1 GHz at an operating frequency of 11 GHz. The aperture is 16 x 22.9 mm and the
length of the guide is 0.3 meter. Its relevant figure_ of merit are

R±T 2 = 1.76 x 104 ohm
and

Z'p = 108 ohm/mm.

If we compare the product of shunt impedance and bandwidth per unit lzngth for the
TW device with what could be realized with a SW device such as a stripline [21], we find
that the former outperforms the latter by roughly a factor of 2.5, and has the additional
virtue of being able to operate at high frequency without the penalty for large aperture that
the (¾a/b)2 term imposes on transverse SW devices. Designing such a loaded guide is
rather straightforward; the major development effort has gone into the transition from the
waveguide to the output coaxial signal line.
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d. The Gain-Bandwidth Product for TW Devices

We can inquire if the TW structure, like the SW (see Eqs. 9.1 and 9,2), has a gain-
bandwidth product proportional to length. But for reference, let us f'wst consider the origin
of that factor for a typical SW device, say a cavity with bandwidth Aco- co/Q. Its
kicker power is given by Eq. 6.1 as

w

e- V2 _cou (10.5)
2R T 2 Q

where U is the field energy contained within the device's volume. From these relations,
we find

V2
RliT 2 Aco= 2"-U" (10.6)

which is proportional to length (U is proportional to length, and as we have already
discussed, Ve is proportional to length-squared).

To obtain an equivalent starting point for the TW structure, if the field propagates
within the device at group velocity v, exiting at the downstream end into a matched load,
then the input power is just g 'the energy per umt length times the group velocity

p = vg U (10.7)

V21

RIIT2 = 2vg U (10.8)

which, as expected, is proportional to z¢2. We shall then define the bandwidth by obtain-
ing the frequencies + Aco/2at which the transit time factor drops to 1/q'2-. T is given by

r = e#._ e-#_ ds = _ (10.9)
za 0

where 0 = (kL -kB)112. At :t: _co/2, 0 has the value 0 = 01 = :t: 1,39 radian. If
we assume 0 varies linearly with co,then to ftrst order we have

Ac0 Ac0Z(a L I
O1 _ --_2--dco= _ _dco - dco ! (10.10)

Using k = co/vB and dkL/dco = 1Vg, we find

" Z vg

Combining this with Eq. 10.8 and the value of 01, we get
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RjlT2 AO)= V----_-22,8 (10.12)
U 1-vJvB

Hence we see that, due to transit time effects, the product of gain-per-unit-length and
bandwidth is proportional only to length, as is the case for SW devices; however, compari-
son with Eq. 10.6 also shows that because the denominator in Eq. 10.12 can (in principle,
at least) be made quite small, the TW structure can reesonably be a much stronger pickup
than the standing-wave type. This last relation stands as a guide for the further
development of TW devices as beam detectors.
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APPENDIX 1: REVIEW OF RELATIVISTIC DYNAMICS

, One difficulty in writing for a broad audience is the variety of backgrounds of the
readers. Instrumentation engineers may find some of the following material helpful in
understanding some of the derivations and approxitnations given in the text; on the other
hand, re-cycled particle physicists may find much of it trivial.

The two important dynamical quantifies we will be dealing with are the momentum and
the energy, whose relativistic definitions are

p=myv (A.I.1)

E = rn)t_2 (A.1.2)
where

y [] _/1 - v2/c 2 (A. 1.3)

In the non-relativistic limit where v << c, y--_ 1 + v2/2c 2, and so p reduces to the
classically familiar mv, and E becomes mc 2+ 1/2 my 2, the familiar classical kinetic
energy term, augmented by the now famous Einstein mass-energy term.

In virtually ali the situations we will be dealing with, the transverse (x,y) velocities
will be negligible with respect to the longitudinal velocity. Several consequences follow
from this. The quantity y will depend only on the longitudinal velocity, i.e. it will be
unaffected by changes in the transverse momentum. The direction s, defined by the
particle's motion, will be regarded as identical to the z direction, defined by the
longitudinal axis of the beamline hardware (which, incidentally, also defines the transverse
directions), lt is customary in relativistic parlance to define fl as the ratio v/c; for highly
relativistic panicles fl = 1, implying that changes in energy and longitudinal momentum
are reflected primarily in changes in y, rather than in particle speed. Consequently, it will
be assumed that in the course of traversing a kicker, along the straight line which the
panicle moves, s and t are related by v - tic= dsldt and v is assumed to be constant;
we will refer to this assumption of straight-line trajectory at constant speed as the constant
velocity approximation. We should probably note explicitly that the approximation of
local horizontal straight-line motion within a kicker is not inconsistent with a deflection on
the order of a centimeter some tens of meters downstream, as a result of the relatively
small transverse momentum imparted by the kicker.

In common parlance, Newton's second law is expressed as F ---ma. A non-
relativistically equivalent form, which unlike the above one, generalizes correctly to the
relativistic case when the relativistic form of p (Eq. A. 1.1) is used, is

F = dp/dt (A.1.4)

whereby we see that the total kick imparted by a force F acting along the path traversed by
a particle as it moves from point a to point b is given by

Ap = F(s(t),t)dt (A. 1.5)
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where we have explicitly allowed for the variation of the force with position as well as
time, showing that in that case it will also be necessary to know the position as a function
of time. If we now invoke the constant-velocity assumption, we can convert s to a scalar
variable and substitute dt= ds//_, enabling us to rewrite the integral in the form

b

t b

Ap/ffc = J, F(s)ds (A.1.6)

For the longitudinal component of the momentum, Eq. A. 1.6 gives

['_p,_c = F_(s)as (A.1.7)

If we now consider the energy change over the same path, it is given by

I' I'AE= F*ds = Fsds (A.1.8)

Comparison of Eqs. (A.1.7) and (A.1.8) shows that

AE = _ ApiI (A, 1.9)

lt is left as an exercise for the reader to show that the same result could have been obtained
by using Eq. A. 1.3 to show that

d (py) = (p + y_-_y)dy= d__y (A.I.10)

and calculating the differentials of energy and momentum directly from Eqs. A.I.1 and 2.

For longitudinal motion, the two quantities AE and _cAp turn out to be physically
equivalent. Because the former form is more intuitive, and because of its ready
identification with the beam voltage, we use it to define the performance of longitudinal
kickers. The two quantities are not physically equivalent for transverse motion, and it
proves to be only the latter form which is physically meaningful for transverse devices.
(For highly relativistic particles/_ = 1, and so some authors, particularly those writing on
beam impedance, define the transverse beam voltage as cAp.l.. The only effect of this is
to redefine slightly some of the figures of merit for pickup and kicker performance [see
Sect. 4]; the actual values of physical quantities calculated using these re-defined quantities,
such as transverse momentum changes, will be unaffected by such change in definition.)
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APPENDIX 2: INTEGRALS INVOLVING TIME-VARYING FIELDS

1. Defining the Variables
r

Consider the integral given in Eq, 1,5, reproduced below, which describes the
momentum change imparted to a particle by a kicker, Integrals such as this, as well as their

. time derivatives, appear throughout the text, The form in which the equation appears is
actually a shorthand version; not only does it not show that that the position and time
coordinates along the integration path are interrelated, it does not even show the explicit
dependence of the fields on those coordinates.

Ii'Ap=e (E+vx B)dt (A.2.1)

Because fully expanded versions of equations such as this are cumbersome to write
out, we will generally employ the above shorthand form. A principal purpose of this
appendix is to show the reader how to translate from the shorthand to the fully expanded
form so that he can use the equations in this lecture to do his own calculations.

Taking into account that each of the fields in Eq. A.2.1 depends separately on space
and time, andrecalling our earlier assumption that the particle moves along a trajectory of
constant x,y, we can rewrite the equation in the more general form

AF = s,t) dt (A.2.2)

Despite the separate dependence off on s and t, the s and t appearing in the integrand
are related by the trajectory of the particle. In particular, if we assume the uniform,
straight-line trajectory described in Appendix 1, and assume that the entrance and exit
points a and b are separated by a distance .L we have for the points along the path

s = a + v(t-t a) t = ta + (s - a)lv (A.2.3.a,b)

whereby
ds=v=-ds (A.2,4)
dt dta

and
tb = ta + Z/v (A.2.5)

Hence we can write Eq. A.2.2. in the form

. AF = f[s(t, ta),t]dt (A.2.6a)
a_

• where we have used s(t.t a) to indicate the time dependence of s given by Eq. A.2.3.a.
Because of the relation between s and t, we could just as easily have expressed the
integrand, as well as the integration limits, as functions of s, in which case Eq. A.2.2.
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would have taken the form

b,,d.1

AF = l f[s,t (s,ta)] ds (A,2,6b)
L 1

2. Time-dependence of the Integrated Quantities

From a casual examination of an equation such as Eq. (A.2.1), it might appear that the

time dependence of Ap has been "integrated away," Yet from simple physical considera-
tions, we see that this conclusion is manifestly incorrect, A kicker with time-varying fields
will impart a momentum change which varies with time.

The answer to the apparent paradox can be seen by examining the more explicit
expressions given by Eqs. A.2.6a,b; in those equations, t, the time along the path, merely
serves as _e parameter characterizing the infinitesimal kick dp which the particle receives
at each point; integrating over t is simply adding up the kicks. The time variable on which

the total momentum change depends is a "real-world" time, e.g., !he actual time at which
the particle enters (or, equivalently, emerges from) the kicker, l.e,, ta. Hence the time
variation of those quantities is obtained by differentiating with respect to, in this case, ta.

When obtaining the time dependence, it is generally easier to convert the integral to the
form A.2.6b, where ta appears only in the integrand, and not in the limits as well. (In the
case of the v × B integrand, this conversion occurs naturally since v × B dt =ds × B.)
In that case the time derivative takes the form

d AF = 1 O c9 [s,t(S,ta)] ds (A.2.7)"_f[s,t(S,ta)]-C_ ds =1v --_fdta dta

lt is an instructive exercise--one we leave to the reader-to demonstrate that the same result is
obtained when one differentiates the expression for AF in the form it appears in Eq.
A.2.6a (where one must differentiate the limits as weil), In fact, the reason we have
included the apparently trivial intermediate step in Eq. A.2.7 is to remind the reader that
when differentiating under the integral sign in Eq. A.2.6a, ta appears in the s term, and so
the partial derivative must be with respect to s.

We should also mention an important caveat when applying Eq. A.2.7 to electromag-
netic fields. When using the Maxwell Equations to relate partial space- and time-deriva-
tives, one must not take into account the trajectory relation between s and t when taking
the derivatives; rather one treats them as independent variables when differentiating, and
only afterwards relates them in order to carry out the integration.

Finally, note the following bit of sleight of hand. If we convert Eq. A.2.7 back to an
integration over time, we can write it in the form

0

_.d_.AF = -_ f[s,t] dt (A.2 8)dta ' .

making it appear that we simply got the result by (illegally) differentiating Eq, A.2,6a under
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the integral sign with respect to the integration vtuSable, In fact, that is not what F-xi,
A,2,8 implies, In Eq, 2,6a, s is a function of both t,and ta, whereas the form of the
integrand in F-xi,2,8 is intended to Imply that differentiation takes piace with respect to only
the explicitly time-dependent part of f, and that the substitution of s = s(t,t,,) takes

' piace only after differentiation, In fact the outcome of Eq, A,2,8 is somewhat fo'rtultous
(note that the derivative on the left hand side is with respect to ta, not t), and results from
the independence of ds/dt on ta, a consequence of the constant-velocity approximation,

3. Integrals Involving Phasors

In the course of these notes, we encounter a number of integrals involving phasor
quantities, i,e, quantities whose time-dependence takes the particularly simple form e.j_,,
to which we can specialize the results of the preceding sections, In many of these integrals
there appears, at some point, the related factor elks, We will see that, despite the
simtl .a_,ty of appearances, this latter factor may arise from different causes, and therefore
have different physical significance,

a, Total Energy Gain, and Related Integrals

The energy gain for a particle in a kicker is generally written in the form

t b

V = J. E •ds (A.2,9)

where E is a phasor of the form E(x,y,z) eJ_t. Under the constant-velocity assumption
and using Eq, A.2,3b, we can write Eq, A.2,9 in terms of distance alone

V= E(x,y,z) • ds eJ"_=eJ"_u-"_) EseJkmsds (A.2.10)

i

where kB is the beam wave number kB = _o/v.

Note that the "spatial" exponential factor e.JkBs has nothing to do with the (instantane-
ous) spatial dependence of either E or of the beam. In fact, E may have a spatial, i.e., an
s-dependence: In the event that it has none or is a purely real function of s, the E field
will simply be a standing wave. On the other hand, for, e.g., a travelling wave kicker, the
E field will have its own e±JkFs dependence (the respective signs depending on whether
the field is propagating upstream or downstream); in this case kF = _o/vF is the field
wave number, where vF is the wave velocity of the field (usually different from c).

Note also that either by applying Eq. A.2.8 to the first integral, or differentiating the
second with respect to ta we get for the time derivative

' O---_V=jw E(x,y,z). ds eJTM=jo) eJ_t.-a/v) EseJk,sds (A 2,11)
O3ta

L

In addition to the eJa'(to- v/s) term, an additional phase factor may emerge as a result
of the integration, In bunched-beam machines, the overall phase of the kicker is generally
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adjusted so that the field maximum coincides with the arrival time of the beam bunch; hence
we will in general implicitly set this phase factor equal to unity, i,e,, for purposes other
than calculating the time derivative, we will generally ignore it, The following section may
help clarify this point.

b, Transit.Time Factor

It is informative to compare the integral in Eq. A.2,10 with that which would result
from calculating the instantaneous "voltage" (i.e., integrating at constant t)

b

Vo = e/TM Esds (A,2,12)

appearing across the kicker. The ratio of the magnitudes of these two quantities is defined
as T, the so-called transit-time factor.

IV/Vol _ T (A.2.13)

As the name implies, T simply represents the reduction in energy gain due to the fact that,
because of the finite transit time of the beam through the kmker, it may not experience the
(time-) maximum field everywhere along its path. The following example serves to
illustrate this point.

Longitudinal kickers with a voltage gap are excited in a mode in which the longitudinal
field is essentially constant, i.e. Es(s) = Eo, If the accelerating gap in such a kicker is of
length Z, we see from Eq. A.2.10 that the 'voltage gain of such a panicle is given by

,I,X

V = eJ°Xt'"atv) Eoe/ksds = EoeY(a_+tootle)(e#_t/2_ e-#2/2) (A.2,14)

Defining 0--- k,d/2, and rearranging terms, we get

V = EoZ eJ(o_+ kZ/7)sinO (A.2.15)
0

N e ' ' ' ,ot that ignonng the overall phase factor ts equtvalent to asserting that the phase of the
field is such that it reaches its peak value at the point when the particle is at the center of the
accelerating gap (i.e, setting ta =-Z/2v),

The EoZ term in Eq. A.2.15 is just what we would get if the field were not time-
varying, 1.e., apart from a phase factor, it is Vo. Hence, from Eq. A.2.13 we get the result
that, for a uniform field in the s direction,

T = _ (A.2.16) ,
0
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For most devices that employ nearly uniform longitudinal fields, it is common to assume
that, unless stated otherwise, the transit time factor is given by Eq. A.2. I6: For devices
such as striplines (see Sect. ) with short field gaps, T for each gap is approxlmately unity;
for devices such as accelerating ff cavities, where the accelerating gap is a non-negliglble

' fraction of the wavelength, T may be on the order of 0,5.

c. Integrals' of Phasor Products; the Reciprocity Theorem

The reciprocity theorem as applied to kicker/pickup behavior took the form

VB = - Ze2vKI,_ EK- JB d vol. (1.2)

and it was noted that, unlike the integral in Eq, A,2,9, this one was to be evaluated at a
fixed time. lt was further noted that JB was a sinusoida! wave of beam current, i,e, it is a
term of the form J(x,y)eJ(°J_ks), the sign, as previously noted, depending on the
direction of beam motion,

Two parenthetical notes: Although ali the abo.ve integrals in Section 3 of this Appendix
are for the frequency domain, this. latterpoint did not arise in connection with the others;
despite the fact that ali but the one in Eq. A,2.12 related the time and position by the particle
trajectory, none of them involved a beam-current term. Also, as we have seen from Sect. 3
in the main text, an actual beam contains not just a single wave of this form but is actually
represented by a superposition of such waves,

Since the integral is to be evaluated at fixed time, the first term in the exponential
assumes the role of (arbitrary) phase factor, to be treated in the same fashion as in the
previously discussed integrals, and Eq. 1.2 takes the form

Zcf rasf._axdyEK.Jae-Jk* (A.2.17)
vB: - 2w----f

If we assume that EK does not vary over the beam cross section and make use of the fact
that JB, and hence IB , define the s direction, we can integrate over the beam area and
rewrite Eq. A.2.17 in the form

v,-  =vrf..EK" as e-J ks (A,2.18)

The form of the integral is strikingly similar to that of Eq. A.2.2, As in that equation,
ks. = cov, the beam wave number. However, not only is the origin of the exponential
different (it results from the wave nature of the beam, rather than the frequency dependence
of the field), but it has the opposite sign. (The physical import of this sign change is
discussed in Sect. 4). Finally, as with Eq. A.2.10, we have made no assumptions about
the s-dependence of EK, and the discussion in the paragraph immediately following that
equation is equally applicable to Eq. A.2.18.
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