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(similarities & differences, comparable & contrasting features, lasers or beams?) 



Plasma-based accelerators for 
future colliders 
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•   PWFA-linear collider: 
•   two-beam accelerator geometry 
•   25 GeV drive beams 
•   19 plasma stages (1 TeV) 
•   n=1017 cm-3 (set by 30 um driver 

   bunch length) 

•   LPA-linear collider: 
•   50 stages (1 TeV collider) 
•   10 GeV/stage 
•   requires ~10 J laser (at 
tens of kHz, hundreds of kW) 
•   n=1017 cm-3  (set by laser 

   depletion) 

Leemans & Esarey,  
Physics Today (2009) 

Schroeder et al., PRSTAB (2010) 

Seryi et al., Proc. PAC (2009) 



  Plasma wave excitation 
  Transverse wake structure 

  Beam-driver - space-charge fields: extends plasma skin depth 
  Laser-driver - local ponderomotive force: extends laser spot size 

  Regimes of operation: quasi-linear and non-linear 
  Energy gain: operational plasma density 

  Driver propagation in plasma 
  Driver diffraction/divergence, self-guiding, and head-erosion  
  Plasma wave phase velocity ~ driver propagation velocity  

  Slippage - taper for laser-driven plasma waves 
  Self-trapping for low phase velocities 

  Driver-plasma coupling  
  Staging for high-energy physics 
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Plasma wave: 
electron density 

perturbation 

Ponderomotive force 
(radiation pressure) 

Common features: 
  Wave excitation efficient for driver duration ~ plasma period 
  Bucket size ~ plasma wavelength: 
  Large waves excited for nbeam/n0 ~1 or a~1 

  Characteristic accelerating field: 

  Phase velocity of wave determined by driver velocity 
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Plasma acceleration:  
ultrahigh accelerating gradients 

Space-charge force 
of particle beam 
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Tajima & Dawson, PRL (1979) 
Chen et al., PRL (1985)  



Transverse wakefield structure 

Beam driver (a=0) 

Wakefields of a narrow bunch (kprb<<1) 
will extend to skin depth ~kp
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Transverse wakefield structure 

Laser driver (nb=0) 

Wakefields determined by local laser 
intensity gradient: extend to laser spot ~rL 
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Beam driver (a=0) 

Wakefields of a narrow bunch (kprb<<1) 
will extend to skin depth ~kp
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Transverse wakefield structure 

Laser driver (nb=0) 

Wakefields determined by local laser 
intensity gradient: extend to laser spot ~rL 
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  Blow-out/Bubble/Cavitated regime: 
  Highly nonlinear  
  Expulsion of plasma electrons and formation of co-moving ion cavity: 

  Focusing forces for electrons linear (determined by ion density) 
  Accelerating fields for electrons transversely uniform 

Nonlinear regime: ion cavity formation  

Beam driver: 

density 

nb/n0=5 

conditions for cavitation:  nb>n0 
kpL<1 
kpRb<1 

Rosenzweig et al., PRA (1991) 
Lu et al., PRL (2006)  

condition for cavitation:  
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  Bubble/Blow-out/Cavitated regime: 
  High field (a2>>1) 
  Highly asymmetric and nonlinear  

  Increasing intensity increases asymmetry 
  ion cavity: 

  Focuses electrons 
  Defocuses positrons 

   positron acceleration on density spike 
  Nonlinear focusing forces  
  Non-uniform accelerating forces   

   Self-trapping may be present for laser driver 
(low phase velocity of wake) with a>4  

  staging difficult 

density 

accelerating field 

radial field 

Ultra-high laser intensity:  
ion cavity formation 

a=3.5 
k/kp=20 
kpL=1 
kpR=5 

phase region 
for e+ 

C. Benedetti (INF&RNO) 
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  Quasi-linear/weakly-relativistic regime 
  a ~ 1 
  Nearly-symmetric regions for electron/position 

acceleration/focusing  
  Dark-current free (no self-trapping) 
  Stable propagation in plasma channel 
  Allows shaping of transverse fields 

Quasi-linear laser intensity regime:  
allows for e+ acceleration 

density 

accelerating field 

radial field 

a=1 
k/kp=20 
kpL=1 
kpR=5 
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Shaping transverse laser intensity allows 
tailored transverse wakefield (focusing force) 
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Add Gaussian modes:  
(all modes guided in parabolic plasma channel) 

   Allows additional (independent) control of 
focusing forces (and matched beam spot) 

Cormier-Michel et al., submitted for publication  



  Subject to filamentation instability:   
   

  Growth rate:   

Broad beam-driver allows shaping 
transverse fields of beam-driven wake  
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  Shaping transverse field of beam driver requires beam transverse size to be 
many plasma skin depths:  kprb>>1 

  Return current flows in beam: 

kprb>>1 

kpLb~1 

electron 
return 
current  
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Keinigs & Jones, Phys. Fluids, (1987); Bret (2009)  
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Operational plasma density  for 
nonlinear PWFA 
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Lu et al., PRL (2006) 
Lotov (2005)  

  Higher gradient 
achieved for ultra-short 
drive bunches 
(operating at higher 
plasma densities). 

  For large accelerating gradient, operate 
in the nonlinear blow-out regime: 

  Operational density determined by length 
of (unshaped) bunch (for fixed charge):  
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Linear regime of beam-driven wakefields  

Conditions for linear regime: kpL<1 kpRb<1 
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   Linear regime accessible for low 
plasma density (for fixed bunch charge) 
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PWFA: Energy gain and transformer ratio 
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  Energy gain in beam-driven plasma wave given by transformer ratio: 
•  Drive beam losses energy after distance: 

•  Energy gain of witness bunch: 

  General considerations (e.g., symmetric bunches): 
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  Higher transformer ratios can be achieved using shaped (asymmetric bunches) 
•  Triangular longitudinal bunch 

•  Ramped bunch train 

•  Nonlinear blow-out regime:  
 ramped bunches for high R 

Lu et al., PAC (2009)  
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Drive beam hose instability 
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   Hose instability:  

   Long bunches (or train of bunches) subject to electron-hose instability 
€ 

Γhose ~ choseγ b
−1/ 6 ω pt( )

1/ 3
kpL( )

2 / 3

Huang et al., PRL (2007)  

Instability growth: 



Operational plasma density for 
laser-driven plasma accelerators 

  Laser-plasma interaction length limited by 
laser depletion length: 

  Excited wake: 

  Energy gain (single-stage): 

Shadwick et al., Phys. Plasmas (2009)  
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Laser-driven plasma accelerators: 
triggered-injection for low densites 

  Phase velocity of laser-driven plasma wave function of density: 

  Plasma electron self-trapping threshold increases as plasma wave phase velocity increases 
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2 ω 0
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1/ 2

  Low densities require triggered-injection techniques:  
  Density gradient injection  
  Ionization injection 
  Colliding pulse injection 

  generate ultra-short (fs) bunches 
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Esarey et al., PRL (1997); Schroeder et al., PRE (1999)  

Faure et al., Nature (2006)  



  Plasma wave excitation 
  Transverse wake structure 

  Beam-driver driven by space-charge fields: extends plasma skin depth 
  Laser-driver driven by local ponderomotive force: extends laser spot size 

  Regimes of operation: quasi-linear and non-linear 
  Energy gain: operational plasma density 

  Driver propagation in plasma 
  Driver diffraction/divergence, self-guiding and head-erosion  
  Plasma wave phase velocity ~ driver propagation velocity  

  Slippage - taper for laser-driven plasma waves 
  Self-trapping for low phase velocities 

  Driver-plasma coupling  
  Staging for high-energy physics 
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Driver propagation 

  Focused e-beam diverges  
  Characteristic distance ~β  
  Beam body may be self-guided in blow-out regime 

   Head of beam outside cavity, continues to 
diverge  beam head erosion:  

  Solution: Low emittance beam:  
long beta-function ~ beam-plasma interaction 

length:  

density 

€ 

β =σ r
2 ε e.g., β=1 m for ε =10-10 m and σr=10 um  € 

rate∝ε n

  Focused laser diffracts 
  Characteristic distance ~ Rayleigh range: 

  Beam body may be self-guided in ion-cavity 
   Head of beam outside cavity, continues 

to diffract  laser head erosion 
  Emittance fixed by laser wavelength € 

ZR = πσ r
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density 

e.g., ZR = 2 mm for λ=1 um and  σr=25 um   
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Laser diffraction controlled by 
plasma channel 

21 

RZ

ZR"

r"

Plasma density, n(r)"

€ 

dη
dr

=
d
dr
1−

ω p
2

2ωL
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ < 0Guiding: "

Laser diffraction: (L ~ZR) 
Solution: tailor plasma profile to form 

plasma channel 

Durfee & Milchberg PRL (1993) 
 Geddes et al., PRL (2005) 

electrode

gas in

0V+V

bellows

sapphire 

channel

laser 

in

electrode

gas in

0V+V

bellows

sapphire 

channel

laser 

in

gas in

0V+V

bellows

sapphire 

channel

laser 

in

Capillary discharge plasma waveguides: 
  Plasma fully ionized for t > 50 ns 
  After t ~ 80 ns plasma is in quasi-

equilibrium: Ohmic heating is balanced by 
conduction of heat to wall 

  Ablation rate small 
  ne ~ 1017 - 1019 cm-3 

Hooker et al.  



Experimental demonstration: 1 GeV 
beam using Laser Plasma Accelerator 

H-discharge capillary technology:  
plasma channel production (~1018 cm-3) 

22 
Leemans et al., Nature Physics (2006);  Nakamura et al., Phys. Plasmas (2007)  

3cm 

1012 MeV 
2.9% 
1.7 mrad 

1.5 J 
46 fs 
3x1018 cm-3 



Beam driver propagation velocity 

density 

vp vb 

  Phase velocity of the wake approximately driver propagation velocity 

  Beam driver velocity typically ultra-relativistic: 
  Eg. 10 GeV, γb = γp ~ 104 
  No trapping of background plasma electrons 

(dark current free) 
  Negligible slippage between drive and 

witness bunch 
  Stiff driver  stable propagation 
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Laser driver propagation velocity 

  Laser driver velocity approximately the laser group velocity (function of 
plasma density):  

  For typical underdense plasmas using 1-micron laser: 

  Trapping of background plasma electrons (beam generation) present for 
sufficiently large plasma waves: 

  1D theory: 
  Bubble regime: 

  Slippage (between beam and wake) can limit energy gain: 
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Taper to phase-lock beam to wake 

Katsouleas,  PRA (1986) 
Bulanov et al., (1997) 

Sprangle et al., PRE (2001) 
Rittershofer et al., Phys. Plasmas (2010)  
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  To lock phase of accelerating field, plasma density must 
increase (plasma wavelength decrease) as beam slips 
with respect to driver: 
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Tapering yields enhanced energy gain and 
efficiency in weakly-relativistic regime 
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  In weakly-relativistic regime:  
  dephasing length << depletion length: 

  Significant energy gains can be realized with plasma tapering: 

Optimal longitudinal density profile:  Energy gain: 
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Rittershofer et al., Phys. Plasmas (2010) 

  In plasma channel, focusing and accelerating wakes have different phase 
velocities: varying density and channel radius to phase lock both.  
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  Plasma wave excitation 
  Transverse wake structure 

  Beam-driver driven by space-charge fields: extends plasma skin depth 
  Laser-driver driven by local ponderomotive force: extends laser spot size 

  Regimes of operation: quasi-linear and non-linear 
  Energy gain: operational plasma density 

  Driver propagation in plasma 
  Driver diffraction/divergence, self-guiding and head-erosion  
  Plasma wave phase velocity ~ driver propagation velocity  

  Slippage - taper for laser-driven plasma waves 
  Self-trapping for low phase velocities 

  Driver-plasma coupling  
  Staging for high-energy physics 
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Plasma-based accelerators for 
future colliders 
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•   PWFA-linear collider: 
•   two-beam accelerator geometry 
•   25 GeV drive beams 
•   20 stages (1 TeV collider) 
•   1017 cm-3 (set by 30 um driver 

   bunch length) 

•   LPA-linear collider: 
•   50 stages (1 TeV collider) 
•   10 GeV/stage 
•   requires 10 J laser (tens 
of kHz, hundreds of kW) 
•   1017 cm-3  (set by laser 

   depletion) 

Seryi et al., PAC09 (2009) 

Leemans & Esarey,  
Physics Today (2009) 

Schroeder et al., PRSTAB (2010) 



High-energy physics applications: 
Staging plasma-based accelerators 

  For fixed driver energy, increasing beam 
energy will require staging 

  Accelerator length will be determined by 
staging distance (technology) Lstage 

plasma 
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Laccelerator Lcouple 
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Laser in-coupling using plasma mirrors 
allows compact staging 

  Conventional optics approach: stage length determined by damage on 
conventional final focus laser optics 

Laser 

Laser 
~10 m 
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  Plasma mirror in-coupling: 
  “Renewable” mirror for high laser intensity  
 Relies on critical density plasma production 
 Thin liquid jet or foil (tape) 
  Laser contrast crucial (>1010) ~10 cm 

plasma 
mirror 

Plasma density, n (cm-3) 

Lcouple =0.3 m 

Lcouple =1 m 
Lcouple =10 m 

L t
ot

al
 (m

)   Short in-coupling distance for plasma 
wave driver [high average (geometric) 
gradient] 

 Laser driver: Laccelerator~ n-3/2 



Summary 
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  Laser or beams use different excitation mechanisms 
  Transverse field structure  
  Access to linear/non-linear regimes 
  Wake phase velocity  

  Driver propagation: 
  Driver divergence 
  Driver-plasma interaction length and coupling length 

  Driver technology: 
  High power, high efficiency, high rep rate beam-drivers available.  
  High average laser drivers under development 
  Laser footprint small: <10mx10m for 10’s J delivering 1-10GeV beams 
  Beam-driver footprint potentially small: e.g., use X-band technology with 

high transformer ratio (asymmetric bunch) 

  Many of these physics issues will be addressed at existing and 
future facilities:  


