Lecture 2

Particle Acceleration
USPAS, January 2011



Outline

» Electrostatic accelerators
« Radio-frequency (RF) linear accelerators
 RF Cavities and their properties

» Material is covered in Wangler, Chapter 1
(and also in Wiedemann Chapter 15)



How do we accelerate particles?

* We can accelerate charged particles:
— electrons (e”) and positrons (e*)
— protons (p) and antiprotons (p)
— lons (e.g. H,Ne?*, Au?*, ...)

* These particles are typically “born™ at low-
energy
— e . emission from thermionic gun at ~100 kV
— p/ions: sources at ~50 kV

* The application usually requires that we
accelerate these particles to higher energy, In
order to make use of them



Electromagnetic Forces on Charged Particles

» Lorentz force equation gives the force in response to electric
and magnetic fields:

F=¢qE+v x B)

« The equation of motion becomes:
dp d
dt — dt

* The kinetic energy of a charged particle increases by an
amount equal to the work done (Work-Energy Theorem)

—(moyv) = q(E + v x B)

AW = | E.dfij E-df+qj(\7xé).df

AW :q_[ E-df+qj'(\7><0dtqj E dl



Ih'“ Electromagnetic Forces on Charged Particles
QLAY

* We therefore reach the important conclusion that

— Magnetic fields cannot be used to change the kinetic
energy of a particle

 We must rely on electric fields for particle
acceleration

— Acceleration occurs along the direction of the electric
field

— Energy gain is independent of the particle velocity

* |n accelerators:

— Longitudinal electric fields (along the direction of
particle motion) are used for acceleration

— Magnetic fields are used to bend particles for
guidance and focusing



Acceleration by Static Fields:
Electrostatic Accelerators



!ﬂ’rs Acceleration by Static Electric Fields

« We can produce an electric field by establishing a potential
difference V, between two parallel plate electrodes,
separated by a distance L.

E =V, /L

« Acharged particle released from
the + electrode acquires an
Increase in kinetic energy at the
— electrode of

AW = jOL F dz = qjoL E. dz = qV,

— L —




The Simplest Electrostatic Accelerators:

Electron Guns
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Some small accelerators, such
as electron guns for TV picture  Génératewr
tubes, use the parallel plate

geometry just presented

Electrostatic particle
accelerators generally use a
slightly modified geometry in
which a constant electric field is
produced across an
accelerating gap

Energy gain:
Accelerating
column in
W =nq Z v, electrostatic

accelerator
Limited by the generator

Vgenerator = Z Vn




Cascade Generators, aka Cockroft-Walton

Accelerators
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Cockroft and Walton’s 800 kV
accelerator, Cavendish Laboratory,

Modern Cockroft- Cambridge, 1932
Waltons are still
used as proton
injectors for linear

accelerators

They accelerated protons to 800 kV
and observed the first artificially
produced nuclear reaction:

p+Li —2 He

This work earned them the Nobel Prize
in 1951




Van de Graafs twin-column electrostatic accelerator (Connecticut, 1932)

Electrostatic accelerators are limited to about 25 MV terminal voltage due to
voltage breakdown



Two Charging methods: Van de Graaff and

Pelletron Accelerators
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Isu's Highest Voltage Electrostatic Accelerator: 24
J MV (Holifield Heavy lon Accelerator, ORNL
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!ﬁ‘,ﬂ Acceleration to Higher Energies

While terminal voltages of 20 MV provide sufficient beam energy for nuclear
structure research, most applications nowadays require beam energies > 1 GeV
 How do we attain higher beam energies?

« Analogy: How to swing a child?

— Pull up to maximum height and let go: difficult and tiring (electrostatic
accelerator)

— Repeatedly push in synchronism with the period of the motion

;




Acceleration by Time-Varying
Fields: Radio-Frequency
Accelerators



« Two approaches for accelerating with time-varying fields

« Make an electric field along the direction of particle motion with Radio-
Frequency (RF) Cavities

Circular Accelerators

Use one or a small number of RF
cavities and make use of repeated
passage through them: This approach
leads to circular accelerators:

Cyclotrons, synchrotrons and their
variants

Linear Accelerators

Use many cavities through
which the particle passes
only once:

These are linear
accelerators



RF Accelerators

In the earliest RF Accelerator,

Rolf Wideroe took the 6 Y A aaan s aaanVa 7
electrostatic geometry we g
considered earlier, but ¢ —s -3

attached alternating !

conductors to a time-varying, _hi = i‘_ Electrostatic accelerator

sinusoidal voltage source

The electric field is no longer
static but sinusoidal alternating ) T~ tsnon
4

half periods of acceleration ‘ ] ‘ ]
and deceleration. _

V (t) =V, sin ot I |
E(t) = (V,/g)sin ot |




RF Accelerators

Electric Field
in Cavity

@&z (@

Time

« This example points out three very important aspects of an
RF linear accelerator

— Particles must arrive bunched in time in order for efficient
acceleration

— Accelerating gaps must be spaced so that the particle “bunches”

arrive at the accelerating phase:

L=vT/2=pc——= 112
2 C

— The accelerating field is varying while the particle is in the gap;
energy gain is more complicated than in the static case



— Efield i
direction

than spged of \

* Resonant Cavity

— Standing waves possible
with E-field along direction
of particle motion

» Disk-loaded Waveguide —

. _ > /| , /\
— Traveling waves possible )i g4 (0 (0 (4
with “phase velocity” equal )i n\n \7 ““\}Q

to speed of light —
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Electromagnetic Waves in Free Space

The wave equation is a consequence of Maxwell’'s equations

.- 1 d%E .~ 1 0°B
VE-———=0

C 81:2 B C 8t2
Plane electromagnetic waves are solutions to the wave equation

E(X,t) = E, cos( k,fi-X — ot)

B(X,t) = B, cos( k,f - X — wt)
Each component of E and B satisfies the wave equation provided

that K, =wlc

Maxwell’'s equations give
nE,=0 f1-B=0

That is, the E and B fields are perpendicular to the direction of wave

propagation and one another, and have the same phase.
A plane wave propagating in the +z direction can be described:

I g — /= iy i(kyz—wt
E (X, t) = E, cos( k,z — wt) E(X,t) = Ee'""

To accelerate particles we need to i) confine the EM waves to a

specified region, and ii) generate an electric field along the direction

of particle motion



Standing Waves

Suppose we add two waves of equal amplitude, one moving in the
+z direction, and another moving in the —z direction:

,[cos( kz — wt) + cos( kz + wt)]

E E
E, = E,[cos kz cos wt + sin kzsin @t + cos kz cos ot —sin kz sin ot]
E 2

E,[cos kz cos wt]= F (z) cos wt

The time and spatial dependence are separated in the resulting
electric-field: g = F (2)T (1)

N

This is called a standing-wave (as opposed to a traveling-wave),
since the field profile depends on position but not time

Such is the case in a radio-frequency cavity, in which the fields are
confined, and not allowed to propagate.

A simple cavity can be constructed by adding end walls to a
cylindrical waveguide

The end-walls make reflections that add to the forward going wave



ISI]] Guided Electromagnetic Waves in a Cylindrical
Jl

Waveguide
 We can accomplish each of these by transporting EM waves in a
waveguide

« Take a cylindrical geometry. The wave equation in cylindrical
coordinates for the z field component is

—t+t——| r—
0z r or or

O°E, 1 a[ aEZ] 1 0°E, 1 9°E,
+
« Assume the EM wave propagates in the Z direction. Let’s look for

a solution that has a finite electric field in that same direction:

E,=E,(r,¢,z,t)=E (r,¢)cos( k,z - wt)
* The azimuthal dependence must be repetitive in ¢:

E = R(r)cos( ng)cos( k,z - wt)
 The wave equation yields:

0°R(r) 1 OR(r ? n°
E)+— SO —k,” - —IR(r) =0
or r or C? r




Cylindrical Waveguides

« Which results in the following differential equation for R(r) (with
X=K_I) ,
d’R 1dR ),
—+——+@-n"/x")R=0
dx X dx
* The solutions to this equation are Bessel functions of order n, J,(K.r),

which look like this:

Bessel functions

(] —

Jx) = = =

0.6

0.4




Cylindrical Waveguides

* The solution is:
E =J (k,r)cos( ng)cos(k,z— wt)
* The boundary conditions require that
E(r=a)=0
* Which requires that
J (k,a)=0for all n

* Label the n-th zero of J,;:  J.(x,) =0
* For m=0, Xy; = 2.405

2 2
2.405
“’—2: K24+ k? = r k2
C a




m‘” Cutoff Frequency and Dispersion Curve

* The cylindrically symmetric waveguide has
ke =k, +k; o’ =w!+k,,c)’

 Anplot of o vs. kis a hyperbola,
called the Dispersion Curve

Two cases:

* o> ok, Is areal number and
the wave propagates

o <ok, Isanimaginary
number and the wave decays
exponentially with distance

« Only EM waves with frequency 0
above cutoff are transported!




!ﬂ’rs Phase Velocity and Group Velocity

The propagating wave solution has

E, =E,(r,z)cos( ¢) ¢ =K,z ot

A point of constant ¢ propagates with a velocity, called the phase
velocity, o

The electromagnetic wave in cylindrical waveguide has phase
velocity that is faster than the §peed of light:

s \/1—6002/602

This won'’t work to accelerate particles. We need to modify the phase
velocity to something smaller than the speed of light to accelerate
particles

The group velocity is the velocity of energy flow:
Pee =V, U

> C

RF

And is given by:

dw

vV = —
° dk



Radio-frequency (RF) Cavities



m“ Radio Frequency Cavities: The Pillbox Cavity

« Large electromagnetic (EM) fields can be built up by resonant excitation
of a radio-frequency (RF) cavity

« These resonant cavities form the “building blocks” of RF particle
accelerators
 Many RF cavities and structures are based on the simple pillbox cavity

shape .

 We can make one by taking a
cylindrical waveguide, and /TR/\ ________
placing conducting caps at z=0 >~ 1 I
and z=L E

* We seek solutions to the wave |
equation (in cylindrical
coordinates), subject to the l
boundary conditions for perfect -,
conductors




bl

Conducting Walls

Boundary conditions at the vacuum-perfect conductor interface are

derived from Maxwell’s equations:

. = X =
n-E =— n-B=0
&

0

—

AixH = K
These boundary conditions mean:
— Electric fields parallel to a metallic surface vanish at the surface
— Magnetic fields perpendicular to a metallic surface vanish at the surface
In the pillbox-cavity case: E,=E,=0 for z=0 and z=1I
E,=E,=0 for r=R
For a real conductor (meaning finite conductivity) fields and currents

are not exactly zero inside the conductor, but are confined to a small
finite layer at the surface called the skin depth

2
5:

Ol (@

The RF surface resistance is

R =1/05 = |22

20




m‘” Wave Equation in Cylindrical Coordinates

* We are looking for a non-zero longitudinal electric field
component E, so we will start with that component.

* The wave equation in cylindrical coordinates for E, is:
0°E, 1 a[ 8EZ] 1 0°E, 1 0°E,
r + =

, T
0z r or

or r’ 0¢° ¢ ot°

«  We will begin with the simplest case, assuming an
azimuthally symmetric, standing wave, trial solution

E (r,z,t) = E,R(r)cos wt
« This gives the following equation for R(r) (with Xx=at/c)

d°R 1 dR
~—+——+R=0
dx X dx

» The solution is the Bessel function of order zero, J,(ar/c)




S‘,ﬂ Bessel Functions

Bessel functions

Note that J,(2.405)=0

or/c




Longitudinal Electric Field

The solution for the longitudinal electric field is
E,=E,J,(wr/c)cos wt

To satisfy the boundary conditions, E, must vanish at the

cavity radius:
E (r=R)=0

Which is only possible if the Bessel function equals zero
J,(w,R/Ic)=J,(k.R)=0

Using the first zero, J,(2.405)=0, gives

w, =2.405c/R

That is, for a given radius, there is only a single frequency
which satisfies the boundary conditions

The cavity is resonant at that frequency



Magnetic Field Component

The electric field is
E,=E,J,(k r)cos ot

A time varying electric field gives rise to a magnetic field
(Ampere’s law) .
- - OE -
[ B-dl = pye,[—-dS
c . Ot

2718, = — 148, [ EgJ (kr')ewsin ot2zr'dr’
0

Using ijO(x)dx = xJ, (X)

We find

B, =—(E,/c)J (k,r)sin ot



The Pillbox Cavity Fields

« The non-zero field components of the complete solution are:

E,=E,J,(k,r)cos wt

Bé’

—(E,/c)J (k. r)sin ot

k= 2.405 /R

Note that
boundary
conditions are
satisfied!

| ¥

|
: Figure 1.17 Fields for a
- TMa10 mode of a cylindrical

1 1 1 1
0.5 1 1.5 2 wr/c (pillbox) cavity resonator.



The Pillbox Cavity Fields

We have found the solution for one particular
normal mode of the pillbox cavity

This is a Transverse Magnetic (TM) mode,
because the axial magnetic field is zero (B,=0)

For reasons explained in a moment, this particular
mode Is called the TMy,, mode

It is the most frequently used mode in RF cavities
for accelerating a beam

We should not be surprised that the pillbox cavity
has an infinite number of normal modes of
oscillation



Normal Modes of Oscillation

of a string in various
simple modes (n = 1,
2, 3,5). (From D. C.
Miller, The Science
of Musical Sounds,
Macmillan, New
York, 1922.)

. . LB l
l MR . . I > I
Fig. 6-1 Vibration




Drumhead modes

Fig. 6-13 Normal
modes of disk.
Shaded area and clear
areas have displace-
ments of opposite
sign, passing through
zero at the nodal lines.
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vy = 2.13v,

v =2.921

Fig. 6-12 Normal
modes of soap film.
(Demonstrated by
Prof. A. M. Hudson,
using a specially
strong soap film solu-
tion compounded of
detergent, glycerin,
and a litile sugar.)




Transverse Magnetic Modes

But, we selected one solution out of an infinite number
of solutions to the wave equation with cylindrical
boundary conditions
Our trial solution had no azimuthal dependence, and no
z-dependence
E, = E,R(r)cos wt

whereas the general solution for E, is

E = E,R(r)cos( mg¢)cos( k,z)cos wt
The wave equation yields

azR(r)_i_l@R(l’)_'_ 4 _kz_m_ R(I’)=0

or’° r or c? r




Transverse Magnetic Modes

Which results in the following differential equation
for R(r) (with x=Kk.r)

d°R 1 dR ,
—+——+@0-m" /x")R=0
dx X dx

With solutions J,(k.r), Bessel functions of order m
The solution is:
E =E,J_ (k.,r)cos( mg¢)cos(k,z)cos wt
The boundary conditions require that E.(r=R)=0
Which requires that
J (k,R)=0for all m



Transverse Magnetic Modes

« Label the n-th zero of J.;:

J (x.)=0

Boundary conditions of other field components require
kK, =pr/l
A mode labeled TM,,,, has

— m full-period variations in 6
— n zeros of the axial field component in the radial direction
— p half-period variations in z

Pillbox cavity has a discrete spectrum of frequencies, which
depends on the mode. The dispersion relation is

2

2 « 2
@ T
e S N I
C R I

There also exist Transverse Electric modes (E, = 0) with

2
w '
—2: krin—|—k22 kmn:an/R kZ — pﬂ/l

C




m‘” Mode Frequencies of a Pillbox Cavity

Each mode has its resonant frequency defined by the
geometry of the pillbox cavity

IEZI'Il'"h"IH

_ %t
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Dispersion Curve

« A plot of frequency versus wavenumber, w(k), is called the dispersion curve

* One finds that there is a minimum frequency, the cutoff frequency, below
which no modes exist

* The dispersion relation is the same as for a cylindrical waveguide, except
that the longitudinal wavenumber is restricted to discrete values, as required
by the boundary conditions

3_
- @
2.5F
2
1.5F
1t
0.5F
i» Figure 1.18 Dispersion
IS T N NN NN NN TN NN N NN NN TN SN S SN AN NN NN SN NN SN NN NN MR SN M CurvefortheTMmpfamilyof
i e - 2 4 modes of a circular cylindrical
p

cavity.



Cavity Parameters

« Stored energy: 1
U :Ej(goE2 + B/ u,)adVv

— The electric and magnetic stored energy oscillate in time 90
degrees out of phase. In practice, we can calculate the energy
using the peak value of either the electric or magnetic field.

* Power dissipation:

2

R 1
Pz—stzds; R,=—; &=
2

o0 oy TING), |

— where Rq is the surface resistance, o is the dc conductivity and o Is
the skin depth

— Power dissipation always requires external cooling to remove heat;
Superconducting cavities have very small power dissipation.



Cavity Parameters, cont’d

Quality factor:

The quality factor is defined as 21T times the stored energy divided by the
energy dissipated per cycle U

Q=0—
P

The quality factor is related to the damping of the electromagnetic
oscillation: du

dt Q
Rate of change of stored energy = - power dissipation

oU

U (t)=U e ™"
Since U is proportional to the square of the electric field:

E(t)= E,e "* cos( w,t + @)

Thus, the electric field decays with a time constant, also called the filling

time
r=2Q/w,



I““ Resonant Behavior of Electrical Oscillators
LA L

The frequency dependence of the electric field can be obtained by Fourier

Transform: 190)?
(o) o D
(0 -w,) +(w,/2Q) o
This has a full-width at half maximum of the power, I", equal to I' = EO
1.2
——Q=1000
1 : —- Q=2000
4\\ Q=10000
0.8 / \
© 06 |
; [
3
" /1A
0.2
O I I I I
497.00  498.00  499.00 500.00 501.00 502.00  503.00
-0.2

Frequency (MHz)



!ﬂ‘rs The Pillbox Cavity Parameters

Stored energy:

T 2242
U =—80|R EOJ1 (2.405)
2

Power dissipation:

£, 2. 2
P=z—RR_E, J,”(2.405)[l + R]
Ho

Quality factor:




kﬂ” Pictures of Pillbox RF Cavities




RF Surface resistance for a normal
conductor:

— copper has 1/6=1.7x108 Q-m

— At 500 MHz, R;=5.8mQ

RF Surface resistance for
superconducting niobium, with
T./9.2K, R,.=107°-108Q

— At 500 MHz, with R .= 108 Q, T=4.2K,

R=9x108Q

Superconducting RF structures
have RF surface resistance ~5
orders of magnitude smaller than
for copper

Removal of heat from a high- duty-
factor normal-conducting cavity is a
major engineering challenge

— Gradients are limited to a few MeV/m as

a result

RF power systems are a
substantial fraction of the cost of a
linac

R.(Q)=9x10"

s | 2[GHZ ]e—1.92Tc/T

T[K] + R

res
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Recap

We found a solution to the wave equation with cylindrical boundary
conditions appropriate for a pillbox-cavity.

This solution has two non-zero field components:

— Longitudinal Electric field (Yea! We can accelerate particles with
this.) that depends on radius, and

— Azimuthal magnetic field (Uh-oh....wait and see.) that depends
on radius.

This cavity has a resonant frequency that depends on the
geometrical dimensions (radius only!).

Because of finite conductivity, the cavity has a finite quality factor,
and therefore the cavity resonates over a narrow range of
frequencies, determined by Q.

An infinite number of modes can be excited in a pillbox cavity; their
frequencies are determined by their mode numbers.

The TM,,, mode is the most commonly used mode for acceleration.



« Design a copper (1/o = 1.7x10% Qm) pillbox cavity with
TM,,, resonant frequency of 1 GHz, field of 1.5 MV/m
and length of 2 cm:

a)
b)
C)
d)
€)

f)

What are the RF surface resistance and skin depth?
What is the cavity radius?

What is the power dissipation?

What is the quality factor?

If instead of copper, the cavity was made with
superconducting niobium at 4K (assume R
what would the guality factor be?

Calculate the frequencies of the TM,,, modes for p=
0,1, 2.

= 109),

res



