Lecture 4

RF Acceleration in Linacs
Part 2



QOutline

* Traveling-wave linear accelerators
* Longitudinal beam dynamics

« Material from Wangler, Chapters 3, 6



Guided Electromagnetic Waves in a Cylindrical

Wavequide

« Can we accelerate particles by transporting EM waves in a
waveguide?

« Consider a cylindrical geometry. The wave equation in cylindrical
coordinates for the z field component is
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« Assume the EM wave propagates in the Z direction. Let’s look for
a solution that has a finite electric field in that same direction:

E,=E,(r,¢,z,t)=E (r,¢)cos( k,z - wt)
* The azimuthal dependence must be repetitive in ¢:

E = R(r)cos( ng)cos( k,z - wt)
 The wave equation yields:
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Cylindrical Waveguides

« Which results in the following differential equation for R(r) (with
X=K_I) ,
d’R 1dR ),
—+——+@-n"/x")R=0
dx X dx
* The solutions to this equation are Bessel functions of order n, J,(K.r),

which look like this:
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Cylindrical Waveguides

* The solution is:
E =J (k,r)cos( ng)cos(k,z— wt)
* The boundary conditions require that
E(r=a)=0
* Which requires that
J (k,a)=0for all n

* Label the n-th zero of J,;:  J.(x,) =0
* For m=0, Xy; = 2.405
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m‘” Cutoff Frequency and Dispersion Curve

* The cylindrically symmetric waveguide has
ke =k, +k; o’ =w!+k,,c)’

 Anplot of o vs. kis a hyperbola,
called the Dispersion Curve.

Two cases:

* o> ok, Is areal number and
the wave propagates.

o <ok, Isanimaginary
number and the wave decays
exponentially with distance.

« Only EM waves with frequency 0
above cutoff are transported!




!ﬂ’rs Phase Velocity and Group Velocity

The propagating wave solution has

E, =E,(r,z)cos( ¢) ¢ =K,z ot

A point of constant ¢ propagates with a velocity, called the phase
velocity, o

The electromagnetic wave in cylindrical waveguide has phase
velocity that is faster than the speed of light:

C
Vp = >
\/1— a)cz |’
This won'’t work to accelerate particles. We need to modify the phase

velocity to something smaller than the speed of light to accelerate
particles.

The group velocity is the velocity of energy flow:
Pee =V, U

C

RF

And is given by:

dw

vV = —
° dk



Traveling Wave Structures

Recall that in the cylindrical waveguide, the electromagnetic wave
has phase velocity that is faster than the speed of light:

c
V_= >

p \/1— a)c2 o
This won’t work to accelerate particles. We need to modify the phase

velocity to the speed of light (or slower) to accelerate particles in a
traveling wave.

Imagine a situation where the EM wave phase velocity equals the
particle velocity.

Then the particle “rides the wave”.

C

v PARTICLE

A “disk-loaded waveguide” can be made to have a phase velocity

equal to the speed of light. These structures are often used to
accelerate electrons.

The best and largest example of such an accelerator is the SLAC
two-mile long linac.



m"s Disk-loaded waveguide structure
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!h'“ Energy Gain in a Disk-Loaded Waveguide

Define

« E_: longitudinal accelerating field amplitude

« U: stored energy per unit length

- P, traveling wave power

- dP,/dz: power dissipation per unit length

« Shuntimpedance per unitlength  r, = E. /(-dP /dz)

* We have Q=wU /[(-dP, /dz)
P, =ng

2
E. =owr P, /Qv,

a

dP,, @
=-—P, =-2a,P,
dz Qv

We have two choices for the accelerating structure, considered
now in turn:



Constant Impedance Traveling Wave Structure

Consider a disk-loaded waveguide with uniform cell geometry along the
length, then Q, v, r, o, are independent of z:

P, (z)=e""
Power decays exponentially along the length of the structure.
The Electric field amplitude is

dE, /dz = —a,E,
E.(z)=E.e "
At the end of a waveguide of length L

P (L)=Pe™" E.(L)y=E.e ™
ol
T, =a,L = 2Qvg
The energy gain is L 1_e %

AW = g cos ¢J‘ E.(z)dz = qE,L cos ¢
0

T

-7,

AW =q./2r P,L 11/67 COS ¢
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m‘” Constant Impedance Structure Parameters
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I““ Constant Gradient Traveling Wave Structure
QLA

A more common design keeps the gradient constant over the length,
which requires that the attenuation o, depend on z

9Py 2a,(2)P
= -2«
dZ 0 w
Which can be integrated to yield P (2) = p{l_ ey
L
The attenuation factor is 1 1_p 2%
a,(2) =

2L 1-(z/L)(1-e %)

The energy gain
IS

L

AW = g cos ¢j E.(z)dz = gE ,L cos ¢
0

AW = q\/rLPOL(l—e_ZTO) cos ¢

To achieve a constant gradient, the 1 i
SLAC linac structure tapers from a
radius of 4.2 to 4.1 cm, and the iris radii : ,

taper from 1.3 to 1.0 cm over 3 meters. o 10 s (o vl s

4 KB a c she /e artic! 3
For a comprehensive article on this subject, sce G. A. Loew and R B. Neal, in Linear
Accelerators, P. M. Lapostolle and A. L. Septier, Wiley, New Y S



I““ Constant Gradient Traveling Wave Structure
QLA

* The group velocity Is

) wL1-(z/L)(1-e")
v, (z) = - 2

2Qa,(z2) Q 1_g 2

* The filling time Is
e T e
v, (z) ol 01— (z/L)1-e %) W

* For typical parameters, the filling time Is
~1 pysec, and the beam pulse Is 1-2 usec.



m‘” Constant Gradient Structure Parameters
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SLAC Linac

Largest in the world.
Reached energies of
50 GeV.




Synchronicity condition in multicell RF

structures

TMO10 Cavities

/ f \\ Drift spaces
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« Suppose we want a particle to arrive at the center of each gap at ¢=0.
Then we would have to space the cavities so that the RF phase
advanced by

— 2mn if the coupled cavity array was driven in zero-mode,
— Or by =t if the coupled cavity array was driven in pi-mode.



Zero-mode: powt=2"p 2 o

A 1 B
| =84

 RF gaps (cells) are spaced by A, which
Increases as the particle velocity increases.

Pi-mode: poot= 2 L
A A CpB,
| =p 212

* RF gaps (cells) are spaced by A/2, which
Increases as the particle velocity increases.
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Longitudinal Dynamics

The drift space length between gaps is calculated for a particular particle with a very
specific energy. This is the reference particle, or the synchronous particle.

What happens to particles slightly faster or slower than the synchronous particle that
the linac was designed to accelerate?

Linacs are operated to provide longitudinal focusing to properly accelerate particles
over a range in energies or arrival time.

Slower particles arrive at the next gap later than the synchronous particle.
— They experience a larger accelerating field.

Faster particles arrive at the next gap earlier than the synchronous patrticle.
— They experience a smaller accelerating field.
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Figure 6.1. Stable phase.
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Figure 6.2. Accelerating cells for describing the longitudinal motion.

Consider an array of accelerating cells with drift tubes and accelerating gaps.

The array is designed at the n-th cell for a particle with synchronous phase, kinetic
energy, and velocity ¢.,, W, fs,- Note that the synchronous phase is not zero!

We express the phase, energy and velocity for an arbitrary particle in the n-th cell

as ¢n’ Wn’ /Bn'

Assume that the particles receive a longitudinal kick at the geometric center of the
cell, and drift freely to the center of the next cell.

The half-cell length is
NlBs,n—lﬂ“

n-1
2
where N=1/2 for Pi-mode and 1 for zero-mode.
The cell length (center of one drift tube to center of next) is therefore

L. =N(B, ., +B,,)A12



Equations of Motion i

The RF phase changes as the particle advances from one gap to the

next according to

The phase change during the time an arbitrary particle travels from
gap n-1to gap n, relative to the synchronous particle is

A(¢ _ ¢s)n — A¢n o A¢s,n = ZENﬁs,n—l\\

2In_1
g, =¢, ,+to——+

ﬂn—lC

[Where we have used
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Using

We get
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Equations of Motion il

* Next, derive the difference in kinetic energies of the arbitrary particle
and the synchronous particle:

AW -W_) =qE,TL, (cos ¢, —cos ¢_,)

« To figure out the dynamics, we could track particles through gaps on
a computer using these difference equations.

» To get a feeling for the dynamics “on paper”, we can convert these
difference equations to differential equations by replacing the
discrete action of the fields with a continuous field.

« So we replace

d(g - dW -W,) S
A(¢_¢S)_)% AW —Ws)—) " n= Nﬂsjd
e giving
753:353 d(¢_¢s) — —27rW — W, dW -W,) = (E ,T (cos ¢ —cos ¢, )

ds mc A ds



Assume acceleration rate is small, and that E,T, ¢, and g, are
constant.

We arrive at the equations of motion:

dw dg¢
w' = — = B(cos ¢ - cos ¢, ) and ¢'=—=—Aw
ds ds
_ W -W_ 27 qE T
with W = > and A=—— B = -
mc By A mc
d’¢

o = —AB(cos ¢ —cos ¢, )
s

Finally

2

+B(sin ¢ —gcos ¢.) =H

L

—AW’ +V, =H,

2
Where V is the potential energy term, and H (the Hamiltonian) is total
energy. Technically, —¢ is the canonical conjugate of w.



There is a potential well
when -t <¢.< 0.

There Is acceleration for
-1/2 << /2.

The stable region for phase
motion IS ¢, < ¢ < -¢..

The “separatrix” defines the
area within which the
trajectories are stable.

The stable area is called the
“bucket”.

Stable motion means that
particles follow a trajectory
about the stable phase, with
constant amplitude given by
H,.

Figure 6.3. At the top, the accelerating field is shown as a cosine function of the phase; the
synchronous phase ¢, is shown as a negative number, which lies earlier than the crest where
the field is rising in time. The middle plot shows some longitudinal phase-space trajectories,
including the separatrix, the limiting stable trajectory, which passes through the unstable fixed
roint at AW =0, and ¢ ¢,. The stable fixed point lies at AW = 0 and ¢ b, where the
ol

ngitudinul potentiol well has its minimum, as shown in the bottom plot



Hamiltonian and Separatrix Parameters

« We can calculate the Hamiltonian to complete the discussion.
« At the potential maximum where, ¢ =-¢.,, ¢$'=0 and w=0

H, =B(sin( —¢,) - (—¢, cos ¢,))

« The points on the separatrix must therefore satisfy

Aw ° i i
» +B(sin ¢ —¢cos ¢.)=—B(sin g, —p_cos @)

« We can calculate the “size” of the separatrix. We will do the energy width.
The maximum energy width corresponds to ¢ = ¢,

2

2”‘“ +B(sin ¢, — ¢ cos ¢ ) =—-B(sin ¢, —¢_ cos ¢ )

« Giving for the energy half-width of the separatrix. The energy acceptance
IS twice this value:

AW \/ZqEOT,nyf/I

W o= . > (¢, cos ¢, —sin ¢_)

mc



Phase Width

 The maximum phase width Is determined
from the two solutions for w=0. One
solution is ¢,= -¢.. The other solution ¢, Is
given by
sin ¢, — ¢, COS . = ¢ COS ¢ —SIN P
* The total phase width is ¥ =-¢, -4,

* The phase width is zero at ¢,=0 and
maximum at ¢.=-11/2, giving Y=21T (See
Wangler figure 6.4).




Small Amplitude Oscillations

Look at small amplitude oscillations. Letting ¢-¢. be
small,
(p—9)' +AB sm( -9 )¢ —¢) =0

This is an equation for simple harmonic motion with an angular
frequency given by

, ®°qE TAsin( —4,)

27me *y B,

Note that as the beam becomes relativistic, the frequency goes to
Zero.

From the equation of motion we can calculate the trajectory of a

particle:
1 W, =

w @-9) _ . . =\/qEOTﬁjyj/1sin( ~¢ ) AP, | 2amc
W, (Ad)’ me

0

AW

This is the equation of an ellipse in w, ¢-¢, phase space.

Particles on a particular ellipse circulate indefinitely on that
trajectory.



!ﬂ”s Longitudinal Phase Space Motion

w
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We studied the approximation of small acceleration rate, and constant

velocity, synchronous phase, etc.

In a real linac, the velocity increases, and the phase space motion and

separatrix becomes more complicated.

The “acceptance” takes a shape called the “golf-club”.
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Longitudinal Dynamics: Real data from SNS

Drift Tube Linac

Simulated DTL1 « Longitudinal “Acceptance Scan”
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% Measurement of SNS SC Linac Acceptance (Y.
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Adiabatic Phase Damping

Louiville’s theorem:

The density in phase space of non-interacting particles in a conservative
or Hamiltonian system measured along the trajectory of a particle is

Invariant.

Or, if you prefer: phase space area is conserved.

Area of ellipse:

Which gives const
Ag

O:

Since area Is conserved an initial
distribution with phase width (A¢);
acquired a smaller phase width
after acceleration:

(A¢O)f _ (IB?/)i3/4
(A¢o)i (By) f3/4

By

Area = 7A¢p,AW

AW, = const x (8.7

f1

3/4
)

AW

B2

Figure 6.8. Phase damping of a longitudinal beam ellipse caused by acceleration. The phase
width of the beam decreases and the energy width increases while the total area remains
constant.



The End

 That concludes our whirlwind tour of
Linear Accelerators

* Now, on to Rings....



