
RF Acceleration in Linacs

Part 2

Lecture 4



Outline

• Traveling-wave linear accelerators

• Longitudinal beam dynamics

• Material from Wangler, Chapters 3, 6



Guided Electromagnetic Waves in a Cylindrical 

Waveguide 

• Can we accelerate particles by transporting EM waves in a 
waveguide?

• Consider a cylindrical geometry.  The wave equation in cylindrical 
coordinates for the z field component is
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• Assume the EM wave propagates in the Z direction.  Let’s look for 
a solution that has a finite electric field in that same direction:
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• The azimuthal dependence must be repetitive in :
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• The wave equation yields:
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Cylindrical Waveguides
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• Which results in the following differential equation for R(r) (with 
x=kcr)

• The solutions to this equation are Bessel functions of order n,  Jn(kcr), 
which look like this:



Cylindrical Waveguides

• The solution is:

• The boundary conditions require that

• Which requires that 

• Label the n-th zero of Jm: 

• For m=0, x01 = 2.405 
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Cutoff Frequency and Dispersion Curve
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• The cylindrically symmetric waveguide has
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• A plot of  vs. k is a hyperbola, 
called the Dispersion Curve.

Two cases:

•  > c: kz is a real number and 
the wave propagates.

•  < c: kz is an imaginary 
number and the wave decays 
exponentially with distance.

• Only EM waves with frequency 
above cutoff are transported!



Phase Velocity and Group Velocity

• The propagating wave solution has
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• The electromagnetic wave in cylindrical waveguide has phase 
velocity that is faster than the speed of light:  

• This won’t work to accelerate particles.  We need to modify the phase 
velocity to something smaller than the speed of light to accelerate 
particles. 

• The group velocity is the velocity of energy flow:
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• A point of constant  propagates with a velocity, called the phase 
velocity, 
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Traveling Wave Structures
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• Recall that in the cylindrical waveguide, the electromagnetic wave 
has phase velocity that is faster than the speed of light:  

• A “disk-loaded waveguide” can be made to have a phase velocity 
equal to the speed of light.  These structures are often used to 
accelerate electrons.

• The best and largest example of such an accelerator is the SLAC 
two-mile long linac.

• This won’t work to accelerate particles.  We need to modify the phase 
velocity to the speed of light (or slower) to accelerate particles in a 
traveling wave.

• Imagine a situation where the EM wave phase velocity equals the 
particle velocity.

• Then the particle “rides the wave”. PARTICLE
v

P
v



Disk-loaded waveguide structure
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Energy Gain in a Disk-Loaded Waveguide

Define

• Ea: longitudinal accelerating field amplitude

• U: stored energy per unit length

• Pw: traveling wave power

• dPw/dz: power dissipation per unit length

• Shunt impedance per unit length
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We have two choices for the accelerating structure, considered 

now in turn:
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Constant Impedance Traveling Wave Structure

• Consider a disk-loaded waveguide with uniform cell geometry along the 
length, then Q, vg, rL, 0 are independent of z:

z

w
ezP 02

)(




aa
EdzdE

0
/ 

z

a
eEzE 0

0
)(




• Power decays exponentially along the length of the structure.

• The Electric field amplitude is

• At the end of a waveguide of length L
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• The energy gain is
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Constant Impedance Structure Parameters



Constant Gradient Traveling Wave Structure
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• A more common design keeps the gradient constant over the length, 
which requires that the attenuation 0 depend on z

• Which can be integrated to yield

• The attenuation factor is
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• The energy gain 
is

• To achieve a constant gradient, the 
SLAC linac structure tapers from a 
radius of 4.2 to 4.1 cm, and the iris radii 
taper from 1.3 to 1.0 cm over 3 meters.



Constant Gradient Traveling Wave Structure

• The group velocity is

• The filling time is

• For typical parameters, the filling time is 

~1 µsec, and the beam pulse is 1-2 µsec.
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Constant Gradient Structure Parameters



SLAC Linac

• Largest in the world.  
Reached energies of 
50 GeV.



Synchronicity condition in multicell RF 

structures

TM010 Cavities
Drift spaces

• Suppose we want a particle to arrive at the center of each gap at =0.  
Then we would have to space the cavities so that the RF phase 
advanced by 

– 2 if the coupled cavity array was driven in zero-mode,

– Or by  if the coupled cavity array was driven in pi-mode.

l1 l2 l3 l4 l5

1 2 3 4
5



Synchronicity Condition

Zero-mode: 
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• RF gaps (cells) are spaced by , which 

increases as the particle velocity increases.
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• RF gaps (cells) are spaced by /2, which 

increases as the particle velocity increases.



Longitudinal Dynamics
• The drift space length between gaps is calculated for a particular particle with a very 

specific energy.  This is the reference particle, or the synchronous particle.

• What happens to particles slightly faster or slower than the synchronous particle that 
the linac was designed to accelerate?

• Linacs are operated to provide longitudinal focusing to properly accelerate particles 
over a range in energies or arrival time.

• Slower particles arrive at the next gap later than the synchronous particle.
– They experience a larger accelerating field.

• Faster particles arrive at the next gap earlier than the synchronous particle.
– They experience a smaller accelerating field.



Equations of Motion I

• Consider an array of accelerating cells with drift tubes and accelerating gaps.

• The array is designed at the n-th cell for a particle with synchronous phase, kinetic 
energy, and velocity sn, Wsn, sn. Note that the synchronous phase is not zero!

• We express the phase, energy and velocity for an arbitrary particle in the n-th cell 
as n, Wn, n.

• Assume that the particles receive a longitudinal kick at the geometric center of the 
cell, and drift freely to the center of the next cell.

• The half-cell length is
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Equations of Motion II

• The RF phase changes as the particle advances from one gap to the 
next according to
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• The phase change during the time an arbitrary particle travels from 
gap n-1 to gap n, relative to the synchronous particle is

�where we have used

• Using

• We get



Equations of Motion III

• Next, derive the difference in kinetic energies of the arbitrary particle 
and the synchronous particle:
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• To figure out the dynamics, we could track particles through gaps on 

a computer using these difference equations.

• To get a feeling for the dynamics “on paper”, we can convert these 

difference equations to differential equations by replacing the 

discrete action of the fields with a continuous field.

• So we replace 
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Equations of Motion IV

• Assume acceleration rate is small, and that E0T, s and s are 
constant.

• We arrive at the equations of motion:

 

2

0

33

s

2

qE
B      

2
A         and              with  

         and        coscos

mc

T

mc

WW
w

Aw
ds

d
B

ds

dw
w

s

s

s















• Finally

 
s

AB
ds

d



coscos

2

2




 HB

Aw
s
 )cos(sin

2

2


HVAw 

2

2

1

• Where V is the potential energy term, and H (the Hamiltonian) is total 
energy. Technically,       is the canonical conjugate of w.
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Stable RF Bucket

• There is a potential well 
when - <s< 0.

• There is acceleration for      
-/2 <s< /2.

• The stable region for phase 
motion is 2 <  < -s.

• The “separatrix” defines the 
area within which the 
trajectories are stable.

• The stable area is called the 
“bucket”.

• Stable motion means that 
particles follow a trajectory 
about the stable phase, with 
constant amplitude given by 
H.



Hamiltonian and Separatrix Parameters

• We can calculate the Hamiltonian to complete the discussion.

• At the potential maximum where,  = -s ,  ’=0 and w=0
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• The points on the separatrix must therefore satisfy

• We can calculate the “size” of the separatrix.  We will do the energy width.  

The maximum energy width corresponds to  = s
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• Giving for the energy half-width of the separatrix.  The energy acceptance

is twice this value:
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Phase Width

• The maximum phase width is determined 

from the two solutions for w=0.  One 

solution is 1= -s. The other solution 2 is 

given by

• The total phase width is

• The phase width is zero at s=0 and 

maximum at s=-π/2, giving ψ=2π (see 

Wangler figure 6.4).
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Small Amplitude Oscillations

• Look at small amplitude oscillations.  Letting -s be 
small, 

• This is an equation for simple harmonic motion with an angular 

frequency given by
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• Note that as the beam becomes relativistic, the frequency goes to 

zero.

• From the equation of motion we can calculate the trajectory of a 

particle:
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• This is the equation of an ellipse in w, -s phase space.

• Particles on a particular ellipse circulate indefinitely on that 

trajectory.
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Longitudinal Phase Space Motion

 = const   const

• We studied the approximation of small acceleration rate, and constant 

velocity, synchronous phase, etc.

• In a real linac, the velocity increases, and the phase space motion and 

separatrix becomes more complicated.

• The “acceptance” takes a shape called the “golf-club”.



Longitudinal Dynamics: Real data from SNS 

Drift Tube Linac

• Longitudinal “Acceptance Scan”

FWHM=24 deg

Simulated DTL1 

Acceptance

Data



Measurement of SNS SC Linac Acceptance (Y. 

Zhang)

SimulationMeasurement



Adiabatic Phase Damping

• Louiville’s theorem:

The density in phase space of non-interacting particles in a conservative 

or Hamiltonian system measured along the trajectory of a particle is 

invariant.

• Or, if you prefer: phase space area is conserved.

• Area of ellipse:
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• Since area is conserved an initial 
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after acceleration:
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The End

• That concludes our whirlwind tour of 

Linear Accelerators

• Now, on to Rings….


