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Analytic Solution of  Hill’s Equation 

So far we have solved the homogenous Hill’s equation for piecewise 
constant magnetic strengths K. But it is useful to solve the full Hill’s 
equation with the s-dependence:

The best thing is to make an intelligent guess: 
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Position-dependent amplitude and phase (since k=k(s))



The Twiss Parameters and Particle Phase Advance 

From the analytic solution, we find the identify the following 
important relations: 
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Phase advance is related to Beta 
function, (s)

Beta function, (s), is determined 
exclusively by magnetic lattice, 
K(s)

We can also define useful quantities 
related to the Beta function:
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(**Derivation**)



Units

• φ dimensionless {radians}

• ε length {meters×radians or 

millimeters×milliradians }

• β length {meters}

• α dimensionless {radians}

• γ length-1 {meters-1}



Equation of an Ellipse

Now, taking our solution and its derivative, and eliminating the phase 
variable, we find the following important relation: 
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This is the equation for an ellipse with area ! Thus our original 
choice of an ellipse to represent a beam in phase was not arbitrary. 
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The solution to Hills equation 
represents a particle tracing 
out an ellipse in phase space. 

(**Derivation**)

“Betatron Motion”



Representation of the Beam 

Even though our solution to Hill’s equation is for a single particle, if 
we take the outermost particle, i.e, highest emittance (max) particle, 
then all other particles trace out smaller ellipses of the same shape 
inside the outermost ellipse. Therefore the outermost ellipse can be 
used to represent the whole beam: 
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max321

max > 3 > 2 >1

The Twiss functions 
((s), (s), (s)), govern 
the shape of the ellipse 
at any location, s. 

The emittance, , 
together with (s),  
determines the beam 
size. 



The Beam Envelope

In practice, we often care most about the outermost particle on the 
outermost ellipse – this one is the most likely to be lost. 

In other words, we care about the “Beam Envelope”, given by the 
amplitude term in our solution to Hill’s equation: 
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  is a constant in linear 
transport systems.

 (s) is the “beta function”, 
and is also often called the 
“envelope function”

 Together,  and (s) 
determine the beam size.
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Example Betatron Function 

Once we know  and (s), we can determine the beam size and 
requisite aperture of the machine. 

Horizontal and Vertical Beta Functions for the SNS Ring

s[m]

Beam pipe 
aperture 
scales with 
beta function.
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The Whole Picture

The whole story is more complicated. As the ellipse transforms along 
the beam line, the particle executes oscillation on the ellipse.

The motion of the particle in real space, u, is “quasi-harmonic”.
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The Beam Envelope

u’

As the beam follows its trajectory, different particles occupy the 
beam envelope. In reality, we don’t much care which particles are 
on the envelope, we care about the shape and extent of the 
envelope itself.



Transfer Matrix in Terms of Twiss Parameters 

It’s often the case that we have knowledge of (s) instead of K(s). In 
this case, it is possible for us to write a general transfer matrix for 
(u, u’) in terms of the Twiss parameters, and their initial conditions.

Initial condition (s=0): 0)0(  ;)0(  ;)0(   oo

Then the transfer matrix from 0 to location s is: 
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This matrix gives the same result for (u,u’) as the general M matrix in 
terms of K(s), found earlier. We choose which one to use based on 
whether we know K(s), or (s).

(**Derivation**) Note: φ is the phase advance from 0 to s.



Symmetric Periodic FODO Lattice

The symmetric and periodic FODO lattice is a case where we can 
analytically determine the beta functions. We enforce periodicity by 
requiring that the input Twiss parameters be equal to the output Twiss 
parameters. 

Starting with the assumption of periodicity we can derive:
• The shape of the beta function.
• The value of the beta function through the FODO cell.
• The optimum phase advance of the FODO cell in order to minimize 
the peak beta function.
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Periodic FODO Cell Revisited

Comparing the Twiss representation of M with the thin lens, piece-
wise constant transport matrix for a FODO cell:
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Observations:

•  at beginning and end of FODO must be zero (symmetric 
diagonal terms)

•  is proportional to the derivative of  ->  must be an extremum 
at ends. 

• There must be another extremum in  at the defocusing quad.

• In between the quads,  evolves according to the drift equation.



Twiss Transformation Matrix for FODO cell

With these facts, our transformation matrix reduces to: 
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This is the complete transformation 
matrix through a periodic FODO cell!



Beta Function in a FODO Cell

The Betatron function in a FODO cell is symmetric in the two planes, 
and reaches the maximum and minimum values in the center of the 
quads: 

FODO FODO FODO

x x

What does the beam envelope in the (x,y) plane look like?



Periodic Betatron Function in a FODO Cell

We can easily find the minima and maxima of  in the periodic FODO 
cell by comparing the two forms of the FODO cell transport matrix.
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Then the maxima and minima are given by + and -: 
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In center of QF, we have:
In center of QD, we have:

(**Drawing**)

(**Derivation**)
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Finding the Minimum Peak Beta Function

In order to keep our beam pipe aperture as small as possible, we would 
like the maximum beta function (+) to be a small as possible. So we 
want to vary  to find the “minima of the maxima”:
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Periodic Focusing Channels

In an accelerator, we often deal with periodic, closed, lattices. These 
include rings and synchrotrons.

period  theoflength   theis L   where),()(

0)()("

ppLsKsK

susKu





For a periodic, closed, system, we must have periodic solutions: 
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Does the particle return to the same phase position on every turn, i.e., 
u(s)=u(s+Lp)?  



General Periodic Transformation Matrix

The transformation matrix is found as: 
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With the usual definitions for , , and γ:
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Particle “Tune” in a Ring

The phase advance in one period is related to the particle “Tune”, .
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The tune is the total phase advance a particle undergoes during one 
turn around the ring, normalized to 360 degrees. 

Equivalently, the tune is the number of “phase space oscillations” a 
particle undergoes in one turn (number of times around the ellipse!).

Though the Twiss parameters return to the same values on every turn, a 
particle does not return to the same coordinates (u, u’). It “phase 
advances” every turn, meaning it shows up on a different part of the 
same ellipse. The ellipse, which depends only on α,β,γ, and ε does return 
to that of the previous turn.



More on the Tune…

For a fixed location in the ring, a particle will appear at different 
places on the ellipse on consecutive turns, according to the tune: 

turn 1

turn 2

turn 3turn 4

turn 5

turn 6

x’

x

Example: =6.33    It means that in one turn around the ring, a 
particle executes 6 and one-third oscillations around the ellipse. 
The fractional piece is the most important!

From this picture we can not tell the 
integer piece of the tune. But it looks 
like the fractional piece is around 1/6 .

Some fractional tunes are allowed (stable), and some are not.  
More on this later…

Tune = integer piece + fractional piece
=n+1/6

What does the turn-by-turn motion look like in 
real space?



The Smooth Approximation

For rings and synchrotrons, a useful approximation for finding the 
average beta function from the tune, or conversely the tune from the 
beta function, is given by: 
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For a ring of radius R, the approximate tune is: 

This is also called a “uniform focusing” approximation. It is useful 
for quick calculations and theoretical analysis.
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Beta Function in a (Nonperiodic) Transport Line

In a transport line, the starting Twiss parameters (beam ellipse) 
determine the initial conditions from which to calculate the subsequent 
values. We can not find (s) for the lattice without the initial conditions:  
(o, o, o) 

(o, o, o)
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Incoming beam
Subsequent transport

The (s) in the lattice is a function of both K(s) (magnetic lattice) 
and the initial Twiss parameters. Some initial conditions will 
produce better solutions than others (smaller beam envelopes).



Beam Mismatch 

A closed, periodic system is a special case where we do not require an 
initial condition to calculate the beta function, (s). In this case, (s) is 
uniquely determined by the fact that we must require the initial and end 
conditions to match (s) = (s+Lp). In the jargon of differential 
equations, transport lines are initial value problems, while rings have 
periodic boundary conditions.

For a periodic lattice (K(s)=K(s+Lp), (s) is uniquely determined. 

In any lattice, the phase space ellipses determined by the beam 
distribution should match those determined by the lattice Twiss 
parameters at the injection point:

(o, o, o)

Incoming Distribution Beam Ellipse

(lattice, lattice, lattice)

Lattice Ellipse

Match shape



Beam Mismatch in a Periodic Lattice

If our initial beam does not match the Twiss parameters imposed by 
the lattice, we say that the beam is mismatched.
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matched mismatched

Though the emittance 
is conserved, the beam 
width and momentum 
spread are larger than 
for the matched case.

Mismatched beams do not return to the same Twiss ellipse turn-by-
turn. Thus they are more likely to intercept the aperture and cause 
loss.



Effect of Mismatch in a Nonlinear Lattice
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So far we have considered only the linear, homogeneous Hill’s equation 
(we set all higher order terms to zero). In reality, some lattices have 
significant higher order terms.  

When nonlinear terms are included, a mismatched beam will dilute in 
phase space, and emittance will grow.. 
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Review of Transport Matrices

In the last two lectures, we have come up with a number of transport, 
matrices, M. We now summarize these.   

Matrix tracking (u,u’) through a piecewise constant lattice:

Specific application to a FODO lattice, with focal lengths ff=-fd=f.
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Review of Transport Matrices

Matrix for tracking (u,u’) through a lattice with K(s), in terms of :

Specific application to a periodic lattice:.
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And for a FODO with symmetry points at the end-points:



Review of Transport Matrices

Finally, we can also transform the Twiss parameters themselves through 
the lattice: 
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where the C and S refer to the cosine-like and sine-like solutions 
found for the piece-wise constant lattice. 



Magnet Errors

So far we have considered only perfect magnetic lattices. In reality 
there is no such thing. A machine has many sources of lattice 
“errors”: 

• Magnet misalignments –offset and roll
• Magnet strength errors
• Magnet field imperfections
• etc, etc… 

For instance, a quad displaced by dX gives rise to a dipole field error:

In general, a magnet of order N can give rise to magnetic error terms of 
order N or less when displaced or rotated.

B=0 dx

There is a dBy 
field difference 
at each location x, 
and By 0 @ x=0



Dipole Errors

A dipole error  is represented by a kick to a beam at a certain location.  
Dipole errors change the closed orbit of the beam, i.e., the reference 
trajectory.  

To find the new closed orbit, we must solve Hill’s equation again, this 
time with a particular solution of a dipole error at a location so.
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And solutions will be of the form:
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Closed Orbit Distortion due to Dipole Error

The new equilibrium trajectory (closed orbit) of a particle in the 
presence of a dipole error  at location so is:
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And in the presence of many such dipole errors we have: 



Closed Orbit Distortion

Recall that the betatron oscillations occur about the reference 
trajectory, or in the case of a ring, the closed orbit. Therefore, the 
new closed orbit caused by the dipole error becomes the origin of the 
betatron motion:

Beta function

Closed orbit with 
dipole errors

Original reference 
trajectory



Closed Orbit Instability

This is called the “Closed Orbit Instability”, and occurs whenever the 
“Integer Resonance” Condition is met: 
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Dipole errors will always be present in any accelerator. Therefore, we 
should never set up a lattice with an integer tune value, as this will 
cause the beam trajectory to be unstable. 

When sin() = 0, the orbit blows up!

Look closely again at the expression for the closed orbit in the presence of 
a dipole error:
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Phase Space for Dipole Error

Consider what is going on in the phase space. The dipole error causes
a change in the u’ variable, at the location s. If the beam has integer 
tune, the kicks add up coherently: 

x’

x

(s1) What would this look like 
if   n ? 
What is the effect of 
(s1) if  =0.5 ?

Turn 1

Turn 2

Turn 3

Turn 4

(**Homework**)



Quadrupole Errors and Tune Shift

As dipole errors affect the reference trajectory (closed orbit), 
quadrupole errors affects the net focusing of the beam and thus the  
the tune and beta function. 

A quadrupole error can be 
represented as a matrix:
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This gives us an easy way to measure the  at a quadrupole:
Vary the quadrupole to produce a small deviation k(s), then measure the 
tune change, and calculate  at the quad.

Including this matrix in the 
one turn map and enforcing 
periodicity gives the quad 
tune shift due to the error:

(**Derivation**)



Beta Function Response to Quad Error

The Beta function in the ring is also altered by a quadrupole error. The 
expression for the deviation of the beta function from nominal:  



(s)

(s)
 

1

2sin(2)
(s1)K(s1)cos(2 o 2(s) 2(s1))ds1

2
or     2

     0)2sin(

n
n 







And this time we have  when sin(2)=0, i.e., whenever the 
tune is a half-integer value:

What does the phase space of a 
particle with half-integer tune look 
like in the presence of a quad error 
at a fixed location s1?

(**Example**)



General Resonance Condition

Hill’s equation is quasiharmonic, and whenever we have a harmonic system, 
the danger of exciting a resonance exists. Multiple sources of resonant 
“driving terms” exist in accelerators:

Tacoma Narrow bridge 1940

• Linear magnet imperfections
• Time varying fields
• Non-linear magnets
• Collective Effects
• etc, etc..

A resonance occurs when the 
frequency of the external force 
approaches the natural frequency 
of the system.

Resonance excitation between wind gusts and natural frequency of the bridge.



General Resonance Condition   

So far we have seen resonances for dipole and quadrupole driving 
terms. We can write a general resonance condition for the tunes in 
both planes:

Where (k, l, m) are integers, and |k|+|l| is the “order of the resonance”. 
For multiple superperiods, mNm, where N= # superperiods.



kx  ly m

k l Driving Field Resonance Name
1 0 dipole “Integer resonance”
0  1 dipole “Integer resonance”
1 1 skew quad “Half-integer”
2 0 upright quad “Half-integer”
0 2 upright quad “Half-ingeger”
3 0 sextupole “Third order resonance”
... … …

In general, the strength of the resonance decreases as the resonance 
order increases.



The Tune Resonance Diagram

A tune diagram is a convenient way to map out the unstable tune areas. 
We draw a line for every important resonance: 

We could populate the diagram endlessly, but since resonances become 
weaker with increasing order gets, it’s not necessary. 

This is a tune 
diagram up to 4th

order for the SNS 
ring.  The main tune 
“working point” is 
(6.23, 6.20).


