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Transverse Defocusing in the Acceleration Gap

The electric field pattern in an accelerating gap looks like  this:

We know that for longitudinal focusing that the
bunch enters the gap when the field is still rising,
so the late particles get an extra kick to catch up.

Ions get kicked along the electric field lines, so they get a small kick inward upon
entering the gap, but a larger kick outward as they leave because the field is rising
to produce longitudinal focusing.

This is a fundamental relationship.   Focusing in all three planes (x,y,z) simultaneously
is barred by the fact that in the absence of free charges, the field cannot have a
local minimum (Earnshaw's theorem): at best, it can be a saddle-shape.
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Radial Defocusing

The radial defocusing in the accelerating gap is very significant, particularly at
the low-energy entrance region of a linac.   It, along with the technologically
feasible focusing strength, determines the injection energy of a linac.

The profile of the accelerating field Ez in the gap is

There is also a radial component to the field, Er

To find Er in the gap, expand Gauss' law (with no charges ) in cylindrical coordinates.

∇⋅E=0 
1
r

d r E r 

d r


d E z

dz
= 0  E r = −

r
2

d E z

dz

At the ends of the gap, a radial field exists,
that is proportional to r and to Ez.

Er increases in time as the ion crosses the gap, 
and the polarity is such to defocus the beam.
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Radial Momentum Impulse in the Gap

We will calculate the equivalent of a thin defocusing lens for the entire gap.  The
defocusing strength will depend on the phase of the particle crossing gap with
respect to the phase of the RF field.

Let the gap field have the form

E z gap z , t  = E z  z cos t = E z  z cos kz

E r = −
r
2

dE z

dz
, k=

2


The transverse momentum impulse is  pr = ∫ e E r dt

Which produces an angular kick r', equivalent to a defocusing lens of focal length fgap

 r '
r

=
1
f gap

= − qe E0

mc2  T2 sin

A unitless variable         is usually defined asgap

gap =   qe E 0

mc2  T 


sin0 as 0

gap = −
 r '
r

Lcell = −
 r '
r



This is proportional to 1/2, and 
strong at the beginning of the linac.
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Grid Focusing

Earnshaw's theorem is based upon Laplace's equation with no free charges.
Charges may be present in the form of a grid or foil in the gap, altering the
field lines.

The field lines do not diverge at
the exit of the gap, and the 
converging lines at the entrance
focus the beam.

This scheme was used in early
linacs before the invention of
strong focusing.

What is wrong with this scheme?

The grid intercepts a fraction of the beam.   If 97% of the beam gets past
the grids, after 100 drift tubes, only 5% of the beam is left.   In addition,
the small grid dimensions generate high local fields around them which
promote sparking, which may vaporize the grid itself.
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Focusing Stability Plot
We have previously seen how an alternating gradient focusing sequence can be
represented by an averaged external restoring force.

We have just seen how the gap defocusing field can also be represented by
a thin lens.

These two representations are combined in a stability plot diagram, whose
axes are the smoothed external focusing force, represented by          
and the defocusing lens strength, represented by gap

0
2
~B' quadrupoleThe parameter                         is

proportional to the quadrupole 
strength.

There is a region of stability between 
the phase advance of 0 and 180 
degrees per focusing period.

Gap defocusing requires an external 
restoring force to maintain stability. 
Gap defocusing is maximum at the 
low-energy  end of the linac.

Space charge forces also act to 
defocus the beam.
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Using the Focusing Stability Plot

This aid can be useful in choosing the injection parameters for a drift tube linac.

The focusing strength is constrained by the length of the quadrupole that is
included in the first drift tube.

The defocusing parameter is determined by the input energy and the average
axial acceleration field E0, as well as the choice of stable phase s.

Linac design codes, such as PARMILA, allow the user to enter the average focusing
strength q0

2 directly, and compute the quadrupole gradient, and will calculate
the gap defocusing force as a function of the cell parameters.   The plot permits
an informed initial guess of a set of parameters.

The first cell in the linac will be the most 
critical.   The cells will trace out a locus of 
points in the plot, all of which must be in 
the stable regime.

Space charge defocusing is not 
represented explicitly, but has the effect 
of further reducing the external focusing 
force.
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Alternating Phase Focusing Structure

It is possible to eliminate the focusing quadrupoles altogether?

We have already seen that a series of transverse focusing and defocusing lenses 
can have an overall focusing effect.   

The same thing may be applied to longitudinal beam dynamics.   We saw that a 
negative stable phase (s < 0) resulting in longitudinal focusing along with 
transverse defocusing.  A  positive stable phase (s > 0) will cause longitudinal 
defocusing but transverse focusing.

By alternating the stable phase between negative and positive values, net 
focusing may be achieved in all phase planes.   This technique has been 
successfully tried in linacs, but the acceptance is small and electric field gradients 
are high.

One design alternates s

between +30 and -30 degrees,
and a period length of 2.
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Quadrupoles in Drift Tubes

Drift tube sequence at the low-energy
end of an Alvarez linac

The gap-to-gap Lcell spacing is bil.

Typical geometry:
Lgap  = ¼ Lcell

LDT   = ¾ Lcell

Lquad = ½ LDT 

Usually, the integrated quadrupole strength B'Lquad is nearly constant 
throughout the structure.   In later drift tubes, the length of the quadrupole is
held constant, the gradient B' is constant, which simplifies the construction
and the powering of the quadrupoles.

The critical area is at the beginning of the linac, where the quadrupole length
is necessarily short, and the gradient B' must be very high.   This is usually
the defining factor for the selection of the particle energy at the entrance of
a quadrupole-focused linac.
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Drift Tube Quads Engineering Considerations

Among the constraints and trades involved are:

The length of the quad must fit within the drift tube

The maximum pole tip field is about 2 Tesla

The outer radius of the quad must be smaller than the drift tube outer radius

Enough cooling must be provided through the stem

The current leads must also fit into the stem

The drift tube bore usually has a sleeve, which increases the pole tip radius a

The wire insulation must be radiation resistant

The quad magnetic center must be precisely aligned to an external fiducial

The drift tube assembly (welding) must not destroy the quadrupole

The quad gradient B' = dB/dr = B/a, where B is the pole-tip field and a is the
distance of the (hyperbolic) pole tip from the axis.
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Permanent Magnet Quadrupoles

Recent developments in permanent magnet materials and understanding how they
may be configured to give excellent field purity (K. Halbach, LBNL) have led to their
introduction to many accelerator-related applications.

Bars of magnetized material with the proper 
orientation of the field are arranged to produce a 
quadrupole field within the bore of the magnet.

Advantages:

High field strengths possible
No electrical excitation needed

Disadvantages:

Not tuneable
Difficult to manufacture (e-beam welding)
Magnetic center may be off-axis
Radiation hardness unknown
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Components of a Drift Tube with Permanent Magnet

This is one of the drift tubes for the SNS drift-tube linac.  The outer dimensions were
machined from the green to the orange profile after assembly.
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Collective Effects  (Space Charge)

The design of modern linacs must include the collective effects of the fields of the 
ions in the bunch on each other (space charge). 

We will ignore the interaction of the beam on the accelerating cavity (wakefields, 
etc), as they are less important in low-energy hadron accelerators than they are in 
electron linacs, and is not a subject of this course.

We will introduce many approximations  as we cannot deal with the fields within the 
bunch in a microscopic level.  

We will introduce the concept of the macroparticle, reducing the computational 
effort by substituting a few particles with large mass and charge representing large 
ensembles of individual hadrons in the bunch.  The charge-to-mass for the 
macroparticle is the same as for the individual ion being represented in the bunch.

We will also introduce the concept of the smooth approximation, where the 
charges in the bunch produce an average field within the bunch, which adds linearly 
to external guiding fields.
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Smooth Approximation

Here, we will assume that the distribution of particles in the bunch give rise to linear 
defocusing fields.   This implies that there are no non-linear effects and 
therefore the beam emittance is constant.   The space charge force has an
equal footing with the linear external restoring forces.

Furthermore, we can collect the external restoring force, usually provided by
a FOD lattice, into an averaged external restoring force.   The beam envelope
flutter is then ignored.

The beam emittance can be interpreted as an outward pressure, along with
the space charge forces, that act against the linear external restoring forces.

This approach involves many approximations, but it is useful in investigating
the parameter space of beam space charge, emittance, and strength of
external restoring force with a semi-analytic expression.

This type of approach is used, with much more sophistication, in programs
such as Trace3-D, which use the actual focusing lattice instead of an averaged
restoring force.
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Macroparticle Approach

A bunch may contain N=1023 particles, and calculating all the interactions between 
the particles would require almost N2 operations.   The quantity q/A occurs in the
calculations, q = charge on a particle and A = the mass in AMU.   

Macroparticles with much larger mass A and charge q with the same q/A allows one
to use a much smaller set of particles in the bunch.   The number of macroparticles 
is chosen so the same current is carried by the beam consistent with the statistical 
noise acceptable.

An older approach in calculating the interaction of each particle in the bunch with all 
the others is to directly calculate the force term, which is numerically intensive.   
Instead, the PIC (Particle in Cell) approach superimposes a 3-D grid over the bunch 
and deposits charge on the nodes proportional to the particle density in the region of 
each node.   The fields from this charge distribution are easily calculated, and then 
act on each charge, changing its trajectory.   The boundary conditions usually do not 
include the beam pipe (open boundary).

Recent improvement in codes include intelligent gridding of the problem and 
application of realistic boundary conditions.   Most of the modern codes use this 
approach.
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Envelope Equation with Space Charge (Smooth Approximation)

We will start off with Newton's law               and change to spatial derivative.

Separating out three separate force terms, we get the second-order ODE:

F=m ẍ ∂
∂ t

=c ∂
∂ s

x ' ' − k  s  F e  F s = 0

x'' is the spatial derivative of the beam envelope
k(s) represents the external restoring force
Fe represents the outward emittance pressure of the beam
Fx represents the outward space charge force

Wangler (p.273-4) gives the derivation of the second moment (width) of the envelope:

a' '  k sa −
2

a3


x F s

a
= 0

where a =  x =  x2

 k s =

L p

is the focusing phase advance per focusing period, which gets rid 
of  the details of the actual focusing lattice.

The last term represents the space charge force.
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Fields Inside/Outside a DC Bunch

The electric field Er is linear inside
the bunch.

The charge density is calculated for a current I
moving along z for a beam of radius a.   Over
a time t the beam moves a distance L.

 =
charge
volume

=
I t

a2c t
=

I

a2c

Find the radial field: ∇ D = 0 ∇ E =  = 0
1
r
d
dr

r E r

E r r  =
I

a2c
r

20

=
 r
20

Inside the bunch linear with r.
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Matched Beam in a Periodic Channel

We saw previously that a beam that is mismatched
to a periodic channel exhibits envelope breathing.

In the smooth approximation, the space charge
and emittance pressures are exactly balanced
by the external restoring force.   This results in a matched beam condition where
there is no envelope breathing.   If the envelope is smooth,

a' '=0 k s a−
2

a3


x F s

a
= 0

We can substitute for the focusing and space charge term (see Wangler for details)

0 = 

L 
2

a−
2

a3
− 60 [ohms ] e

m p c
2  I

3

1

a

Solve for the mean beam size at zero current

L = FODO period

a =  

L
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0 = 

L 
2

a−
2

a3
−60 [ohms ] e

m pc
2  I3

1

a

Current for Matched Channel, DC Beam

Hard to solve this one for a, but easy to solve for I, the current that
gives a matched beam size a

Sidelight: the top equation is

0 = 

L 
2

−
2

a3
−

1
20 

e

m p c
2  I

3c

r

a2

But

0

0
= 377 ,

1

00

= c , 
1
0c

= 377 ,
1

20c
= 60

(What are the
units here?)

I =
1

60 ohms m p c
2

e  3 [

L 
2

a
2
−  a 

2

]
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Bunched Beams

As linacs operate at RF, beams must be bunched to be accelerated.  We must 
then calculate the fields of a 3-dimensional bunch.

The smooth approximation approach is modified to include the effect of a bunched
beam.

The bunch frequency, fb, is the same as or a subharmonic of the linac frequency f0

f b =
f 0

N
, N=1,2, ...

The free-space wavelength of the linac operating frequency is 0 =
c
f 0

The distance a bunch travels in one linac RF cycle is  z = 

For a 1 MeV proton in a 200 MHz linac, 

 =  2T

m p c
2
= 0.0462, =

c
200 MHz

= 1.5m ,  = 0.0693meters

For N = 1, the bunch center-to-center spacing is 6.93 cm.
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Bunch Length

The distance between bunches
is . 

The length of an individual bunch
is Lb.   This definition is a bit fuzzy,
as the distribution of charges through the bunch is not constant.   The length is
often taken at the half-intensity points, or is a rms value.

The current I carried by a bunched beam is always the average current, integrated
over the bunches.   It is sometimes handy to specify the peak current as

I peak = I average  bunch spacingbunch length  = I average


Lb

As the phase of the RF wave in a linac is a frequent reference, the bunch length
is often expressed in terms of RF phase of half of the bunch.   This is consistent
with expressing the transverse bunch size as a radius, not a diameter.

 =
2
2

Lb


The bunch length is usually expressed in degrees.
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Bunched Beam in the Smooth Approximation

We saw that for DC beams, the space charge term in the smooth approximation is

60  e

m pc
2  I


3
a

Let's define the half-length of the bunch rz = Lb/2

The transverse field of the bunch (and the longitudinal field) of the bunch gets
modified by a form factor f, which we will define empirically with a best-fit recipe.

E r , DC beam = 60
I r

 a2Recall that for a DC beam

For a bunched beam E r , bunched = 60
I r

 a2

3
4 r z

1− f 

E z , bunched = 60
I z

 a2

3
2 r z

 f

For a good enough approximation, f = a
3 r z

(See Wangler, p. 276 for further discussion.)
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Where to Apply These Estimates in the Accelerator

These equations are recipes to give reasonable estimates of the space
charge limit at various places in the accelerator chain.

The beam usually enters the accelerator unbunched, so the peak charge
density is equal to the average charge density.

Bunching increases the peak charge density, increasing the effects of
beam space charge, but the beam must be bunched to accelerate it.
Optimal solutions that maximize the beam acceptance trade bunching
and acceleration in a way to minimize loss:  this is the primary optimization
condition when designing an RFQ accelerator.
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What  Do These Equations Really Tell Us?

These equations represent the first approach to designing an accelerator
to satisfy a set of requirements.

The accelerator physicist starts with a set of user requirements:
ion species
energy and energy variability
intensity or average current
spot size, energy spread (transverse and longitudinal emittance)
duty factor
size of accelerator installation
cost constraints

Estimates are made of types of accelerator structures, availability of 
off-the shelf RF source designs (the most expensive component),
transition energies between accelerator structures, etc.   

These equations help facilitate these decisions.  They are at best 
estimates to be obtained before more quantitative results are obtained
by running detailed codes.   We have not yet considered the effects of
the beam density distribution, generation of halos, beam loss and
activation of the accelerator itself.   These answers will come after 
running the more detailed codes.
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Beam Transport Codes

The design of beam transport systems is perhaps the most difficult, as there
exist more options than designing an accelerator.   A beam transport system
becomes a work of art, as it is usually the product of a single designer.

Many transport design codes exist, and we will consider a small subset of
them.
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Very Partial List of Transport Codes

Code Method Space Charge? Distributions?

Transport matrix
Turtle rays yes
Trace 3D envelope yes
Parmila macroparticleyes yes

Pro Lab Transport matrix
Pro Lab Turtle rays yes
Pro Lab Trace 3D envelope yes
Pro Lab Marylie Lie Algebra yes

Lattice matrix
Marylie Lie Algebra yes
COSY Lie Algebra yes
MAD Matrix, Lie yes
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Types of Codes

Most codes are based on the matrix element representation of transport elements. 
This can be extended to higher-order with difficulty.   Some codes integrate the particle 
paths through the fields directly.   This may be more accurate, but requires accurate 
representation of the fields.

Some of the codes include collective effects (space charge) between the particles.   
This may be with an envelope integrator, such as Trace-3D, which assumes a simple 
distribution, or with a macroparticle code such as Parmila, which allows any 
distribution of particles. 

Codes that propagate macroparticles or rays, such as Turtle, allow apertures to 
simulate beam loss and evolution of emittance growth due to nonlinearities or collective 
effects.

Applications that require very high accuracy, such as millions of turns in a storage ring, 
use Lie algebraic techniques to insure that the transport elements are simplectic.
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Using PARMILA to Simulate Transport Lines

PARMILA has the facilities to model transport lines, usually to carry a beam
to or from a linac, but it can model transport lines by themselves.   PARMILA
includes a space-charge routine, so it is a counterpart to TRACE-3D, which
is based on an envelope model with space charge, and PARMILA is based on
a macroparticle model with space charge.

PARMILA is one of a few macroparticle codes that includes an array of element
types and the ability to include space charge.   The transport capability is an
add-on to the original code, originally used to calculate transport systems to
and from linacs, and it can be used as a stand-alone.
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A Simple Quadrupole Transport Line

The beam enters from the left.
Two quadrupoles, one focusing
the other defocusing in the
x-plane are 1 meter long.   The
drifts are 1, 2 and 1 meter long.

The horizontal and vertical beam
envelopes are shown above and
below the axis.

The Twiss parameters are printed
out after each element.

elemt     lth   sum_l   betax  alphax  etax  eta'x  psix   betay  alphay  etay  eta'y   psiy
  -       (m)    (m)     (m)     -      (m)  (rad)  (deg)   (m)     -     (m)   (rad)  (deg)
                  0.00  10.00   0.00   0.00   0.00    0.0  10.00   0.00   0.00   0.00    0.0
o         1.00    1.00  10.10  -0.10   0.00   0.00    5.7  10.10  -0.10   0.00   0.00    5.7
f         1.00    2.00   8.93   1.21   0.00   0.00   11.6  12.02  -1.91   0.00   0.00   11.0
o         1.00    3.00   6.80   0.93   0.00   0.00   19.0  16.23  -2.30   0.00   0.00   15.2
o         1.00    4.00   5.21   0.66   0.00   0.00   28.7  21.22  -2.69   0.00   0.00   18.2
d         1.00    5.00   6.09  -1.65   0.00   0.00   39.5  18.58   4.99   0.00   0.00   21.0
o         1.00    6.00  10.00  -2.26   0.00   0.00   46.9  10.00   3.59   0.00   0.00   25.2
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Minimum PARMILA Input for a Simple Quadrupole Doublet 

; Transport example
Run 1 1
Title
  Transport example
;linac W0,     Fbunch, Ibeam, Mc^2,     Nq
linac  46.8 100 0 938 1

;--------Beam Particle Distribution Spec---------

Input -8 -1000  0 1000 .001 0 1000 .001 0 180 0.001

;------------------------------------------------
;Structure id,Nlast,F0,Fsf,deltaphi
Structure   1 0 100 100 0
Transport 0
Bore 10
drift   0 0 1 1
drift 100 0 1 1
quad  100 0 1 15 0
drift 100 0 1 1
drift 100 0 1 1
quad  100 0 1 -38 0
drift 100 0 1 1
scheff .00 .05 20 40 0 0 3
begin
end

This is for a OFOODO sequence, each 
element 100 cm long, with the quad 
gradients of 15 and -38 gauss/cm.

The input beam emittance is 1 p cm-mr, 
and the input Twiss parameter is
b = 10 m, a = 0 for a 46.8 MeV proton 
beam whose rigidity is 1 T-m.

The first drift has zero length, to check 
on and print out the initial beam 
statistics.

Note that a frequency must be specified 
in the linac and structure lines, even if 
the beam is unbunched.

Even if space charge is neglected, the
scheff routine must be included, with
zero current.
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TRACE 3-D
TRACE 3-D, written by Ken Crandall, calculates the envelope of a bunched
beam including space charge.   It is one of the earliest programs that uses
a graphical interface and is still one of the only programs that incorporates
linear space charge in an envelope code along with an optimizer.

The Pro Lab version of TRACE 3-D includes a more friendly interface that
eases the learning and use of TRACE 3-D.

Despite its age, TRACE 3-D continues to be useful in cases where space
charge is significant and matching (optimization) is required.

Input example for the quad doublet problem:

&DATA
 ER = 938.236, Q=1.0, W= 46.731, XI= 0.0
 EMITI= 10.0000, 10.0000, 1756.2623
 BEAMI= 0.0000, 10.0000, 0.0000, 10.0000, 0.00, 1.00
 FREQ= 100.00, ICHROM=0
 XM= 50.00, XPM= 50.00, YM= 50.0000, DPM= 50.00, DWM= 50.00, DPP= 50.00
 N1= 1, N2= 6, SMAX= 2.00, PQSMAX= 1.00
 CMT(  1)='o         ' NT(  1)=  1, A(1,  1)=1000.0,
 CMT(  2)='f         ' NT(  2)=  3, A(1,  2)= 0.1500, 1000.0
 CMT(  3)='o         ' NT(  3)=  1, A(1,  3)=1000.0
 CMT(  4)='o         ' NT(  4)=  1, A(1,  4)=1000.0
 CMT(  5)='d         ' NT(  5)=  3, A(1,  5)=-0.3802, 1000.0
 CMT(  6)='o         ' NT(  6)=  1, A(1,  6)=1000.0
 COMENT='Quadrupole Doublet'
&END
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TRACE 3-D Plot for Quadrupole Doublet Problem

The appearance of this version 
differs from the Windows version.

The initial and final beam phase 
space ellipses are shown (always 
considered to be elliptical), and 
the  beam envelope is plotted.

Caveat:  for the space charge 
algorithm to work correctly, the 
beam emittance is specified as 5 
times the rms emittance.


	Slide 1
	Transverse Defocusing in the Acceleration Gap
	Radial Defocusing
	Radial Momentum Impulse in the Gap
	Earnshaw's Theorem can be Subverted
	Focusing Stability Plot
	Using the Focusing Stability Plot
	Alternating Phase Focusing Structure
	Quadrupoles in Drift Tubes
	Drift Tube Quads Engineering Considerations
	Permanent Magnet Quadrupoles
	Components of a Drift Tube with Permanent Magnet
	Collective Effects
	Smooth Approximation Approach
	Macroparticle Approach
	Envelope Equation with Space Charge
	Fields Inside/Outside a DC Bunch
	Matched Beam in a Periodic Channel
	Current for Matched Channel, DC Beam
	Bunched Beams
	Bunch Length
	Bunched Beam in the Smooth Approximation
	Where to Apply These Estimates
	What Do These Equations Really Tell Us?
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

