Coordinate System for
Circular Accelerator



Curverlinear coordinate system

» Coordinate system to describe particle motion in an
accelerator.

» Moves with the particle

Set of unit vectors:
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Equation of motion
ds(s) 1

x ——Xx(s
o PO
dx(s) 1.
Y (5 _ L,
50 ds p
s n
dy(s) _
ds

» Equation of motion in transverse plane

F(s) =T, (s) + xx(s) + yy(s)



Equation of motion
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Equation of motion
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Solution of equation of motion

» Comparison with harmonic oscillator: A system with a
restoring force which is proportional to the distance from
its equilibrium position, i.e. Hooker’s Law:

d’x(t
F = y g ) = —kx(t) Where k is the spring constant
!

Equation of motion:

d’x(1)

o+ k() =0 x(1) = Acos(vkt + x)

Amplitude of the Frequency of
sinusoidal oscillation the oscillation



transverse motion: betatron oscillation

» The general case of equation of motion in an accelerator

x"+kx =0  Where k can also be negative

» Fork>0
x(s) = Acos(Vks+x)  x'(s) = Ak sin(\ks + %)

» Fork <0

x(s) = Acosh(Wks+ %) x'(s)=—-Ak sinh(+/ks + x)



Transfer Matrix of a beam transport

» The transport matrix from point | to point 2 is
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One Turn Map

» Transfer matrix of one orbital turn
(cos2nQ +o, sin2aQ ) B, sin2aQ,

)C(S0+C) 3 1+ a X(SO)
xX'(s,+C)) - 20 sin 270, (cos2mQ, -, sin270,) || x'(s,)

X80

Stable condition

Tr(M,,,.)=2cos2nQ, — |,

» Closed orbit: (X(S + C)) — ( X(S))
x'(s+C) x'(s)

(x(s + C)) _ M(s+ C,S)( x(s))
x'(s+C) x'(s)

Tr(Ms s+C)




Stability of transverse motion

» Matrix from point | to point 2
M. =M MM,

» Stable motion requires each transfer matrix to be stable, i.e. its
eigen values are in form of oscillation
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Focusing from quadrupole

» Equation of motion through a
quadrupole

qu 0
ym

» For a thin quadrupole, i.e. beam position
doesn’t change or x = x, but with a
change in slope of the particle’s
trajectory, i.e.

!
Ax'= 48 lx
ymy



Focusing from quadrupole

X

» Required by Maxwell equation, a single quadrupole has
to provide focusing in one plane and defocusing in the
other plane



Transfer matrix of a qudruploe

» Thin lens: length of quadrupole is negligible to the
displacement relative to the center of the magnet

B !
Ax'=—i=—lq - =—ﬂx=—kx

P ymy ymy




Transfer matrix of a drift space

» Transfer matrix of a drift space

X] (. AT




Lattice

» Arrangement of magnets: structure of beam line

Bending dipoles, Quadrupoles, Steering dipoles, Drift space and
Other insertion elements

» Example:

FODO cell: alternating arrangement between focusing and

defocusing quadrupoles
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FODO lattice
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» Net effect is focusing

» Provide focusing in both planes!



Dispersion function

» Transverse trajectory is function of particle momentum.

Momentum spread

A
Define X = D(S)—p

/ P

Dispersion function



Dispersion function

» Transverse trajectory is function of particle momentum.
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Dispersion function: cont’d

» In drift space

l=0 and p'_() = D'=0

0
dispersion function has a constant slope

» In dipoles,

1.0 and B'=0 D" +[ 1221?0_])]D=l

p p° p o




Dispersion function: cont’d

» For a focusing quad,

l=() and p's () =>D"+B'&D=O

P P

dispersion function oscillates sinusoidally

» For a defocusing quad,

l:() and B () :D"—B'&D=O

P P

dispersion function evolves exponentially



Path length and velocity

» For a particle with velocity v,

AL _Av AT Av _AB_ 1 Ap
L=vl 7 T v B 7P

I 1A
=(a-—p) (-
r A A (R R

» Transition energy y, : when particles with different energies
spend the same time for each orbital turn

— Below transition energy: higher energy particle travels faster

— Above transition energy: higher energy particle travels slower



Compaction factor

» The difference of the length of closed orbit between off-
momentum particle and on momentum particle, i.e.

e A gﬁ(p+ DAp)dH -~ pd6
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Chromatic effect

» Comes from the fact the the focusing effect of an
quadrupole is momentum dependent

1 q Il = Particles with different momentum have

— /

f D " different betatron tune

— Higher energy particle has less focusing

» Chromaticity: tune spread due to momentum spread

Tune spread

g, = Lo
xy Ap/p momentum spread




Chromaticity

» Transfer matrix of a thin quadrupole

I O 1 0
M=|_1 1= —l(l—%) 17| -
f fp

» Transfer matrix
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Chromaticity
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Chromaticity
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P

Assuming the tune change due to momentum difference is small
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Chromaticity of a FODO cell
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Chromaticity correction

» Nature chromaticity can be large and can result to large
tune spread and get close to resonance condition

» Solution:

— A special magnet which provides stronger focusing for particles
with higher energy: sextupole




Closed orbit distortion

» Dipole kicks can cause particle’s trajectory deviate away from
the designed orbit
— Dipole error .
— Quadrupole misalignment :

» Assuming a circular ring with a single
dipole error, closed orbit then becomes:

x(s) Y ‘M x(s) O]
X'(s) = M(s,s,) (Sy,9) X'(s) + 9



Closed orbit: single dipole error

» Let’s first solve the closed orbit at the location where the
dipole error is

()~ s ol Z600) ()
x'(sy) x'(sy) v,

x(sy) = P.(Sy) o costQ,

2sin O,

0
nJstQ

X

x(5) = ~/B.(55)B.(5) Y cos[y(s,s,) — 0, |

» The closed orbit distortion reaches its maximum at the
opposite side of the dipole error location



Closed orbit distortion

» In the case of multiple dipole errors distributed around the
ring. The closed orbit is

x(8) = /B, (s) 2\//3 (s,

» Amplitude of the closed orbit distortion is inversely
proportion to sinTiQ, ,

2 an cos|yY(s;,s,) — 70, |

— No stable orbit if tune is integer!



Measure closed orbit

» Distribute beam position monitors around ring.
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Control closed orbhit

» minimized the closed orbit distortion.

» Large closed orbit distortions cause limitation on the
physical aperture

» Need dipole correctors and beam position monitors
distributed around the ring

» Assuming we have m beam position monitors and n
dipole correctors, the response at each beam
position monitor from the n correctors is:

FEE

COS[I/J(S”SO) — JTQx]

2smn



Control closed orbhit

» Oy} (8

0,

=)

\ X/ \0,)

» To cancel the closed orbit measured at all the bpms, the
correctors are then

(6, [ x,)

(o)




