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Basic Topologies !5"13

e Basic circuits

e Hard tube

e Line-type
— Transmission line
— Blumlein

— Pulse forming network
« Charging circuits
e Controls
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Basic Circuits: RC !ﬁrﬁ
o Capacitor charge

» Capacitor discharge
» Passive integration — low-pass filter

L
— 1 << RC: integrates signal, R i
Vour = (1/RC) | V, dt IN ¥ QUT
— 1>>RC: low pass, T
Vour = Vin * *
» Passive differentiation — high-pass
filter . |/ .
— 1 >> RC: differentiates signal, ‘C\
Vour = (RC) dV /dt [N R ouT
— 1 << RC: high pass,
Vour = Vin * *
* Resistive charging of capacitors
g ! ‘ h f\ Power Conversion
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RC Charge !5"13

Capacitance
Limits
Voltage Rise

R-C Charging

Energy Stored?
w= [pat

at t=4RcC=4‘C
Ve = =2§2E

or Charging
is 98% Complete

Lad
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RC Discharge !5"13

R-C Discharge Current

[gr0

-t e
t=Lgle s - g ghs
initial voltage =0
=3
io(t)= ]‘,’,%e ReC , 7=R.C

\\

'l | + Power Conversion
o e ™ '\.' June 13 - 17, 2011 USPAS Pulsed Power Engineering  TTU PPSC 5 U T

NATIONAL ACCELERATOR LABORATORY




. _ _ R
Resistive Charging of a Capacitor !ﬁrﬁ

PSpice Circuit for RC Charging

RC-Charging

R1
@)\3‘\ A out f

)
W

10k

It is resistive charging if charging current, 1.= AV/R, through
full charging cycle

g ! A _ﬁ f\ Power Conversion
i H\.! June 13-17,2011  USPAS Pulsed Power Engineering Burkhart & Kemp 6 \j’”"””"’ i i

NATIONAL ACCELERATOR LABORATORY




. _ _ L
Resistive Charging of a Capacitor !ﬁrﬁ
PSpice Solution for RC Charging

E; MicroSim Probe - [RC Charging.dat]

Capacitor Energy

Energy Losses in charging Resistor

In resistive charging a minimum of 50% of the energy is
dissipated in the charging resistor

g ! A _ﬁ f\ Power Conversion
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I i
LR Circuit; Inductive Risetime Limit ]|

o At t=0, close switch and apply V=1

to LR circuit O C

* Inductance limits di/dt 1 R

* Reach 90% of equilibrium current, g V _
VIR, in~2.2 L/IR

900m |

700m

500m

Inductor Voltage/Current

300m

100m

500m 1.50 250 3.50 4.50
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LR Circuit: Decay of Inductive Current I

o Att=0, current I=1 flowing in LR

circuit EENGNPNS
e Fall to 10% of initial current in R
~2.2 L/R L ‘
I
;g 0 /:__‘:—:E a
e
5_40%5 ‘/

time in LIR

g ! A h f\ Power Conversion
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- i
LRC Circult J
» Generally applicable to a wide number of circuits and sub-circuits
found in pulsed power systems

» Presented in the more general form of CLRC (after NSRC formulary)
— Limit C; — oo, reduces to familiar LRC with power supply
— Limit C, — oo (short), reduces to familiar LRC
— Limit R — 0, reduces to ideal CLC energy transfer
— Limit L — 0, reduces to RC

g ! A _q {\ Power Conversion
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CLRC Circuit !h"rﬁ

Where: L Switch L .
r=— o o LY Aan
R
C, = .G 1+ L
Cl + C2 C— i(t) —_ ©
] =

L
Cq
Z
Q=="" = (Circuit Quality Factor)

Z, =

20

V, =initial charge voltage on C,
0 = initial charge voltage on C,

g ! A _ﬁ f\ Power Conversion
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W
Underdamped CLRC !h%

For underdamped case: R<2Z,

i) =Yoo

ezf sinawt

—t
V, (t):VO—Cl 1+e? (isin ot —Ccos wt
T 1, 201
o @1, = %tan‘l(Zmr)
-4 1,
= gz = Yoz Vo
peet L Z, Z,+0.8R
Ceg

C, (t)peak =

el Ay
of b NN\
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VoCy [1+ g2or
C,+C
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- | A
Highly Underdamped: Energy Transfer Stage )|

WhenR << Z, (almost always the
preferred situation in pulse circuits)

NATIONAL ACCELERATOR LABORATORY

Switch L

e 00000 AR

i ~ Vo C,— ( 0 > — o
peak — —
ZO
T T =
| oo @t =——=—_/LC
peak 2&)0 2 eq
VOC1 Lossless Energy Transfer
Ve, ()= "L (1 cos(ogt)
Cl + 2
: ™A
V. (peak)@t = —=r,/LC,, / <
Wy 5 / N
V,C, L/ 21N
ch ( peak) = 5 / 4 \
Cl + C2 // N
]
'l | A IS Conversion
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. !'l'l'l
Highly Underdamped: Enerqy Transfer Stage (cont. hlh

» Peak energy transfer efficiency
achieved with C,= C, 1

\

o
=)

o
IS

Energy Transfer Fraction
o
[+>]

e
[X)

o

0.5 1 15 2 25 3 35 4 45 5
Capacitance Ratio

o

2
« If C;>> C,, the voltage on C, will P
go to twice the voltage on C, 15
1/
0.5
00 2 4 5 . "

Cl'i

Capacitance Ratio

g ! A h f\ Power Conversion
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Overdamped CLRC !5"13

Overdamped case R > 27,

t

V. e 2
i t — 0 eaI _e—a)t
( ) 2wl [ ]
V. 200 —
V. (1) =——=2 —e ¥
e ® 20LC, | w?
A IS
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W
General LRC Solution !h%

» General solution from TTU Pulsed Power Short Course

— Level of damping defined by
e > 0: underdamped
* [ =0: critically damped
* B <0:overdamped

Circuit for Numerical Solution using PSpice

L1 R1

Tl . Tl Y A A A
L YAYAY.

100uH
@D\Q\ |C=2000A !
b

. 1600uF
| 1C=1000V

T

g ! A _h f\ Power Conversion
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W
General LRC Solution (cont.) !h%

Definitions for Analytical Solutions

Analytical Solutions -» 3 Possible Cases: Ringing, Critically Damped, and Overdamped

Determining if Circuit is Ringing, Critically Damped, and Overdamped:

g = 1 Undamped %= kil Neper Bi= m,jz - u.z 5= U ringing
LT Fesonant 2L Frequency i

1 Radian 3 1 forseries p=0—70

g = 2500 sec Freguency a=25x10 sec RLC Circuit 53.32

1
@ = ﬁ:‘fﬁ}ﬂ w=0sec— o] = [oo+y-p if B0 = |l -f-p f PE0
sec
0 otherwise 0 otherwise 0 otherwise

] =25 1[13 sec-l oy =25x% 1EI3 sec-l

2
cht) =0 Feit = 2- Fopit = 050 Resistor for Critical Damping
c

(]
ower Conversion
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1
o Lﬂu June 13 - 17, 2011 USPAS Pulsed Power Engineering TTU PPSC

NATIONAL ACCELERATOR LABORATORY




W
General LRC Solution (cont.) !h%

Analytical Solution for all 3 Cases

(Vo C-1y) |
CVo0 'Sm(m't):| i =t Expression for the Voltage in all 3 Cases:

?D-e_ m-t_{ cos(m-t:l +

[C-(o1 - 2]

—D'.-]_-t —Obg-t .
B e + Ve if fp=0

(Vo - R+ oL
LIy

Ipe u't|: coslo 1) +

(IoLeg + Vo - RIy) ot (Vo - RIp+ g L) et -
L-I:mg - ml) [L- [0;1 - o:g)]

Vo-RI -t - oget
(ID-&2+ DL D]-t-e 1+Io-e : if =0

-si.n(m-t:]:| if p>0 Expression forthe Current in all 3 Cases:

ad_ T

— = ) . .
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W
Hard Tube Modulators !h%

» Pulsers in which only a portion of the stored electrical energy is delivered to the
load. Requires a switch that can open while conducting full load current.
— Switch must open/close with required load voltage and current
— Voltage regulation limited by capacitor voltage droop
— Flat output pulse — large capacitor/large stored energy

e Cost
e Faults

« Name refers to “hard” vacuum tubes historically used as switch

» Today'’s fast solid-state devices are being incorporated into designs previously
incorporating vacuum tubes

e e

= .
+ — Echg
S 7
load R|0ad
Vg
| and ! A _Q {\ Power Conversion
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W
Hard Tube: Topology Options I\%

» Capacitor bank with series high voltage switch - gives pulse width agility
but requires high voltage switch

Total Loop High Voltage Iﬁte Drive Circuits and Controls
e - o—
#1 #2 #n
apacitor + Load Load
Bank - Impedance £ —— Storage Impedance
- — DC Capacitor
Power
Supply
L I

e Variations
— Add series inductance: zero current turn on of switch
— Series switches: reduces voltage requirements for individual switches
e [ssues:
— Switches must have very low time jitter during turn-on and turn-off
— Voltage grading of series connected switches, especially during switching
— Isolated triggers and auxiliary electronics (e.g. power, diagnostics)
— Switch protection circuits (load and output faults)

— Load protection circuits
g ! ‘ A p * Power Conversion
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Commercial Series Stack Modulator

™

PowerMod

LW ERSLFTED TECHNGLOGIES IV,

B

‘The Power You Need

PowerMod™HVPM 100-150

Diversified Technologies, Inc. (IYTT) has applied its ex-
tensive background in high power electronics to design
and build a 100 k¥, 150A solid-state modulator for use in
demanding commercial applications. The Powerhod™
HWEM 100-150 utilizes DT1's patented solid-state tech-
nology. The configuration shown fits in an oil tank ap-
proxcimately 507 x 367 x 647

DITs HVPM 100-150 utilizes the same breakthrough
technology found in the HVPM 20-150 which received
an Ré: D Magarine award as one of the 100 most techno-
logically significant products of 1947, ITT's Powerhod ™
high voltage, solid-state modulators are available from 1-
200 kY, and up to 2O00A peak.

High power, high current modulators based wpon DT1s
design offer customers increased efficiency, enhanced re-
linbility, increased pulse flexibility, and cost-effective high
power switching capability.

ITT has pioneered the state-of-the-art n solid-state elee-
tronics since 1987, Our modulators have become essen-
tial components in applications for ion mmplantation (P8I0,
particle accelerators, and semiconductor and flat panel
display manufacturing.

M Paa: 78005
TrTTTTTITYY

Tek Ju @Hnul
C E 3 T 1

L. 1
CHI o0y CHE 100 M I 5us CHI W

HVPA T00-0 50 Palee, SORF 904 Jato Wier Resistor

g —
e

[ wem:fl]_

Solid model of the 500 kV hard switch —
note the spiral wrap of the series string of switch
modules to reduce effective parasitic capacitance.
The output (pulsed) end of the modulator is on the
axis, and the input (DC) end is on the outer surface.

PowerMod™ HVPM -0 50 Solid-Stare Meodidator

Control Voltage 120V AC

High Valtage Input: 1-100 kY DC peak
Average Pulse Current: T3A

1 ps Peak Current 150A

Hise Time*: T

Fall Time*: =1 |5

Mominal Pulse Wiilth: | s - 100 15
Wominal Pulse Frequeney:  0-3000 He

*into resistive load

(TR1) 275-9444 Fax: (781) 275-6081

1
@l e

)
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W
Hard Tube: Topology Options !h%

e Grounded switch — simplifies switch control
) |
| - :
c I%:hg
|
SW - ) I L_—__ Eong
— R
Vo

1

B

e [ssues:
— Only works for one polarity (usually negative)
— HVPS must be isolated from energy storage cap during pulse
— Loose benefit with series switch array

g ! A _q f\ Power Conversion
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W
Hard Tube: Topology Options I\%

» Pulse Transformer - reduces the high voltage requirements on switch

1:N Pulse
Large Transformer
Capacitor g — —— -
Bank :
+ | : i
] ’ |
: [
! i
| i Load
High Voltage [ ; Impedance
Switch | |
T | I
| i
I
I I
L |

e [ssues:
— Very high primary current (N*I,,.4) and large di/dt for fast rise times

— Requires very low primary loop inductance and very low leakage
inductance: exacerbated by high turns ratio; L, C, Z scale with N2

— Fast opening switch required capable of interrupting primary current
— Distortion of waveform by non-ideal transformer behavior

g ! A _Q {\ Power Conversion
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W
Hard Tube: Topology Options I\%

» Bouncer modulator — compensates energy storage capacitor droop

Initially, SW2 is closed, voltage on C3 is transferred to C2
Then SW1 is closed, applying output pulse to load

Energy transferred from C3 to C2, during linear portion of waveform,
compensates for voltage droop of C1

After output pulse is finished, energy from C2 rings back to C3, low loss

o Used for XFEL and ILC (baseline) klystron modulators

e |ssues: ) | |
— Extra components l C1 Z
— Timing synchronization /5W1 load
— Bouncer frequency low ———————— .

— large L and C’s | J) I ( (VVLL | —
L
| C3 I
|¥sw2 c2 = |
| |
_T_ i e N
= BOUNCER

1 As>»
e | Y e\

N

Power Conversion

Solutions for Challenging Problems
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W
Line-Type Modulators !h%

» Based on the properties of transmission lines as pulse generating devices

» Advantages

— Minimum stored energy, 100% — load (neglecting losses)
» Voltage fed, capacitive storage (E-field), closing switch
» Current fed, inductive storage (B-field), opening switch

— Fault (short circuit) current < twice operating current (matched load)
— Relatively simple to design and fabricate, inexpensive
— Switch action is closing OR opening, but not both

» Disadvantages
— Fixed (and limited range) output pulse length

— Fixed (and limited range) output pulse impedance
» Output pulse shape dependent on relative modulator/load impedance
*  Zy5ad< Lpuiser — Voltage reversal, may damage switch or other components

— Switch operates at twice the voltage (or current) delivered to load
— Must be fully recharged between pulses: may be difficult at high PRF

g ! A h f\ Power Conversion

Solutions for Cnaﬁlenging Problems
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o . R
Transmission Line Modulator !hlﬁ

C=C~p. &= O,

e Square output pulse is intrinsic

» Pulse length is twice the single transit time of line: t = 20/(ce”)
— Vacuum: 2 ns/ft
— Poly & oil: 3 ns/ft
— Water: 18 ns/ft
» Impedance of HV transmission lines limited:
- ~2Q<7<~200Q
— ~30Q <Z <~100 Q for commercial coax
— However, impedance can be rescaled using a pulse transformer

e Energy density of coaxial cable is low (vs. capacitors) — large modulator

» Fast transients (faster than dielectric relaxation times) stress solid dielectrics
— Finite switching time and other parasitic elements introduce transient mismatches
— Modulator/load impedance mismatches produce post-pulses

g ! A _¢ f\ Power Conversion
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m
10 Q. 40 ns TL Modulator: Load Matching 515

8.00 -
[ Matched Load

6.00f
o
g |
S 400}
Z [
o
o
-

2.00

of r
20.0n 60.0n 100n 140n 180n
time in seconds

8.00 |-

6.00f
Q
g
= [ Load Impedance 25% High
> 4.00
5 s
®
o
-

2.00

of r
20.0n 60.0n 100n 140n 180n

1 m
-

NATIONAL ACCELERATOR LABORATORY

£y
ad

(-

time in seconds

June 13 - 17, 2011

6.00

|‘Malched" Load w/ 20 nH Series Inductance

Load Voltage
~
o
o

2.00F

v
6.00f
20.0n 60.0n 100n 140n 180n
time in seconds
8.00 |
6.00f
Load Impedance 25% Low
2
°
>
£ 4.00
E
200f
of r
20.0n 60.0n 100n 140n 180n

time in seconds
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W
Blumlein Modulator !h%

« Major limitation of TL modulator: switch voltage twice load voltage
e Blumlein Line

— Requires Two Transmission Lines

— Load voltage equals charge voltage

— Switch must handle current of V /Z,, twice the load current

RZZ% Vload l

Tof
N N
a a
\—JF/
S S
o

%
(é

o

Circuit on left - unfolded

time

<— T —>< 27T >
0

\oltage across load (R) N
g ! ‘ h Power Conversion
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Blumlein “Wave Model” !5"13

e [|nitial conditions

2 Lines Single transit: T Charge voltage: \\ Impedance: Z,

— 2 TL with a common electrode | /2 J

— TLscharged to V, C Q/_?_ >

— TL Impedance: Z, } & W2 ‘D gR -
— Load impedance: R =2 Z, 1 w2

e Switchclosesatt=0

— Wave that hits short, reflects with T
inverted polarity € o )
— Voltage of V /2 on both ends of h

0<t<T

§ll i (Vn/2 - V./Z)/R =0

\{;/2 —
load, no load current = )
2

— Wave in upper TL unchanged - —

* t = T T<1t<31
— Inverted wave reaches load = w2
— Load voltage: V /2 - (-V /2) =V, J w2 l' R S 2
— Load current: V/R H w2 | g T
— Load matched, no reflected wave g bk

in either TL N
o t=23T: energy depleted
g ! A h f\ Power Conversion
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Blumlein Modulator

Blumlein Generator

) tClose:

. }
uz0 - et < s
. =s00s | S =
flkﬂ
. \ .
tDpeﬁg;SUns R4Z2 -~

1 2 5
| MBuig i .
10Ky —
Y ~ PARAMETERS: ]
- ; Veharge 10KV, %
- : : P 0. . S0o0hm o S
F o A - S0ns. . . . . . . . .. )
20KV
------------------------------------------------------------------------------
18KV
SR R T (U R RN RS M TR DY ST R A R
au- :
T A T | -----
~16KU L
ds 288ns 3@ens
U{Rload:1)

A 7>

D o ™A Vi1 13- 17,2011
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. _ o _ R
Blumlein in Comparison to Transmission Line !hlh

e Switching
— Blumlein charge (switch) voltage equals load voltage
— Blumlein switch current is half of load current
— Peak switch power is half of peak load power for both topologies

— However, it is generally easier to get switches that handle high current
than high voltage

e Blumlein is more complicated

— Either nested transmission lines or exposed electrode — half load voltage
during pulse

— More sensitive to parasitic distortion (e.g. switch inductance)
« Both are important modulator topologies

g ! A h f\ Power Conversion

Solutions for 'Cnaﬁlenging Problems
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W
Blumlein Modulator I\%

Outer Housing - Ground

High Voltage Insulator Dielectric Liquid

Charged Conductor Corona Ring to Reduce
Electric Field Enhancement

Large Radius to Reduce
Flectric Field Enhancement

Coaxial Blumlein Configuration

g ! A _Q /\ Power Conversion
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Advanced Test Accelerator Blumlein Modulator

- Vin=25kV
~ Ven=250kV
10:1 Step-Up "
- e
-_— u =
1
:
Resonant Spark
Transformer Gap

_ Trigger
. Cathode
-Anode

Intermediate Water/Oil

[.Conductor
Center

Conductor

Interface

Cell Drive

250kV, 70ns
Blumlein PFL /

- @ ] . :
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W
Pulse Forming Networks (PFNSs) !h%

* The maximum pulse duration of transmission line pulsers is limited by the
physical length of the line, at 3 ns/ft, a 1 us TL would be 330’ long
« Transmission line can be approximated by an LC array
— Higher energy density in capacitors
— Higher energy density in solenoidal inductors
— PFNs can produce long duration pulses in a compact package

» Design equations
- Z=(L/C)°>
— 1=2N(LC)%° (output pulse length)
— [For N-stages of inductance, L, and capacitance, C

* However, the discrete element model of the TL is only accurate as the number
of stages, N —

« Example
- N=7
- £2=10Q
— T=1us
« C=714nF
« L=0.714 uH

g ! A _Q {\ Power Conversion
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e PEN Out i
Example PFN Output Into Matched Load I

120 |

- [\ 7-stage PFN
T~ 1us

\NL”7 = Matched load

80.0 F

i(r1) in amperes

40.0 \

\\ / N b

—

-40.0 F

200n 600n 1.00u 1.40u 1.80u
time in seconds

g ! A h f\ Power Conversion
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. _ R
The Trouble with Pulse Forming Networks !hlh

« Attempting to reproduce a rectangular pulse, which is non-causal

— O = %, therefore, N must — oo

— PFNs constructed with finite N
» Fourier series expansion of a rectangular pulse (period 0 to 1)

= 1(t)= @ lpeadn) ¥ _ b, sin (nnt/r)

* b= (1/n) (1 - cos (nm)) =0 forevenn, 2 for odd n

= 1) = (4 | eudm) anzl (1/n) sin (nxzt/t) over only odd terms, n =1,3,5,...

« Magnitude of the nt term a 1/n, sets convergence rate for a rectangular
pulse

g ! A _Q {\ Power Conversion
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Fourier Components for a Rectangular Pulse !hlh

(Peak amplitude and duration normalized to unity)

14 I I I I
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Fourier Approximation to a Rectangular Pulse !hlh
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m
Guillemin Networks: The Solution to “The Trouble with PFNs” IS[&

 E.A. Guillemin recognized that the discontinuities due to
— Zero rise/fall time, and
— Corners at the start/stop of the rise and fall

are the source of the high frequency components that challenge PFN
design. “Communication Networks,” 1935

» Further, since such a perfect waveform cannot be generated by this
method, that better results can be obtained by intentionally design for
finite rise/fall times (i.e. trapezoidal pulse) and by rounding the corners

(i.e. parabolic rise/fall pulse)
» Fourier decomposition of these waveforms shows faster convergence
— Trapezoidal: nt term o 1/n?
— Parabolic: nt term o 1/n3

g ! A h f\ Power Conversion
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PFN Design

i

Instead of infinitely fast rise and fall-times, the desired pulse shape should have a reasonable
(finite) rise and fall time. A design procedure then assume a repetition of pulses as shown

below so that a Fourier analysis can be performed.

NATIONAL ACCELERATOR LABORATORY
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The Fourier expansion of the current
required to generate a waveform of Switch
this shape into a constant resistive 40/0— Vv t
load consists of only sine terms. () =—F=sin( )
Each sinusoid in the series: L, L LG
: - . nat — C
i(t)=1, D, b,sin— Vo = "
n=1,3,5,... T . |(t) c . Vn .
may be produced by the adjacent n T o (D), = ?sm @,
circuit: ! " N
o1 A5
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PEN Design _\h%

Comparing the amplitude and frequency terms for the Fourier
coefficients and the LC loop:

. na V. t
| b sin— = sin
pk™n r L ( LnCn)
C,
| b — V 7z 1

G (PP
Cn

Solving forL and C, :
L =

where Z
n pk

C, = Tb“
nrZ,

g ! A _q f\ Power Conversion
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Fourier Coefficients for Trapezoidal Waveform ghlh

Fourier Coefficients for Risetime = 8%

14

1.2 / \
1st Harmonic
" .

armonic

0.8
= 7th Harmonic
= 9th Harmonic

0.6

|

aT —>>

~—

o

|
l
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LA N
! 1_

t Amplitude

Time 0.4

L/ N
«— 1 —> E“ //\ /\\

|
;
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-0.4

For the trapezoidal waveform shown ..

above the series expansion is:
i(t)=1, Z b, sm—
n=135,.
b — 4 sinnza o _
" s nm where n =1,3,5,... And a =risetime as % of pulsewidth T
B l ‘ Q f\ Power Conversion
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Example !h"rﬁ

Sum 1-6 Fourier Coefficients - for 8% Risetime

1.4

1.2

/4 mi\\
/7 =1\
N

-
2
i 0.6 1+3+45
..E: / / 1+3+5+7
oa 1 1+3+5+7+9 ]
' / / 14+345+7+9+11 \\
0.2 T \—
O T T T T T T T T T
( 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2
Time
[ |
ﬂ ! ‘ _q ) Power Conversion
B ™A\ UNe 13- 17,2011 USPAS Pulsed Power Engineering  E Cook 43 R

NATIONAL ACCELERATOR LABORATORY



Example - !h"rﬁ

Sum 1-6 Fourier Coefficients - for 5% Risetime

1.4

M

0.8
" = ]St Harmonic
'g 1+3
E 0.6 1+3+5
E 1+3+5+7
< 14+3+5+7+9
0.4 '—// 1+3+5+7+9+11 \\—
0.2 T -
0 T T T T T T T T T
( 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2
Time
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Trapezoidal and Parabolic Waveshapes !hlﬁ

—lpk —lnk
| | | . \
. . . A
| | | | 1
| | | 1 1
I I\, I i '
aT —>» I(— —)I 1€—at at I(— —>|
O | = O | |
| ! : Time—> i i Time —>»
| |
<« 7 —>» <« T —>»
Trapezoidal Waveshape Waveshape with Parabolic Rise and Fall Time
Values of b, L,,, and C,, for this circuit topology;
Ll L3 I‘5 LMZ LM
Waveform b, L, C,
C, C, Cs Cuz TCu
4 2yt 4z 1T 7
Rectangular Nz 4 7'z,
i(sinnﬁaj Z,t 4t (sin n;zaj
Trapezoidal nz\ nm 4 Sinnz n’p’Z,\ nm
nza
Flat top and i[sin—;nﬂajz Z,1 4 [sin%nﬁajz
parabolic rise | N7\ $nma [ sininmal’ nz'Z,\ 4nm
and fall FN7a
B I ‘ h /\ Power Conversion
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Fourier Coefficients for Other Waveshapes Id%

Values of Inductances and Capacitances for Five-Section Pulse-Forming Network

Fourier coefficients Inductance Capacitance
Waveform a

b1 bs bs b7 by L La Ls Li Ls Ch Cs Cs Cr Ch
Rectangular 0 11.2732(|0.4244|0.2547 0.1819 0.1415|0.2500(0.2500|0.2500| 0.2500| 0.2500(0.4053|0.04503|0.01621|0.00827| 0.00500
Trapezoidal 0.05{1.2679(0.4089(0.2293 0.1474 0.0988|0.2510{0.2595|0.2777| 0.3578| 0.3578|0.4036|0.04318{0.01459{0.00670| 0.00349
Trapezoidal 0.08{1.2601|0.3854(0. 1927 0.1015 0.0482/0.2526(0.2753/0.3303| 0.4478| 0.7340(0.4011|0.04089{0.01227(0.00462| 0.00170
Trapezoidal 0.10]1.2524|0.3643[0.1621 0.0669 0.0155/0.2542(0.2012/0.3927| 0.6796{ 2.2875|0.3987|0.03865/0.01032/0.00304 0©.00055
Trapezoidal 0.20(1.1911(0.2141 0 —0.0393 |—0.0147|0.2672|0.4455| = —1.1561{—2.4052|0.3791{0.02272 0 0.00179]|—0.00052
Parabolic rise 0.05(1.2699|0.4166(0.2418 0.1640 0.1194|0.2507]0.2547/0.2632| 0.2773] 0.2961]0.4042|0.04420{0.01539|0.00745| 0.00422
Parabolic rise 0.10|1.2627|0.3939{0. 2064 0.1194 0.069110.2521|0.2694|0.3084( 0.3808( 0.5122(0.4019{0.04179(0.01314/|0.00543| 0.00244
Parabolic rise 0.20(1.2319{0.3127|0.1032 0.0246 0.0017(0.258410.3393|0.6168| 1.8472| 20.94 (0.3921|0.03318(0.00657|0.00112| 0.00006
Parabolie rise 0.25{1.209210.2610(0.0564 0.00353| 0.0017]0.263210.4065(1.1202| 12.887 | 21.37 |0.3849(0.022769/0.00359|0.00016| 0.00006
Parabolic rise 0.33|1.1609|0.1720{0.00930| 0.00338] 0.0064]0.2742|0.6168|6.8493| 13.44 5.5556(0.3695/0.01825(0.00059{0.00015{ ©.00023
Parabolic rise 0.40[1.1142{0.1080 0 0.0085 0.0015(0.2857(0.9821| = 5.346 | 23.15 ]0.3547|0.01146 0 0.00039| 0.00005
Parabolic rise 0.50{1.0319|0.0382|0.00825| 0.00300| 0.0014(0.3085/2.7747|7.7160( 15.15 25.00 |0.3285/0.00406(0.000530.00014| 0.00005

Multiply the inductances by z 7 and the capacitances by 7/Zy . The inductances are given in
henrys and the capacitances in farads if the pulse duration is expressed in seconds and the
network impedance is in ohms. a is fractional risetime of pulse.

i(t)= Z b, sin—= Z b, sin——

Nn135 n135

g ! A h f\ Power Conversion
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PEN Design !ﬁ"rﬁ

The network required to
produce all the Fourier
components and therefore L, L, L,
reproduce the pulse
waveshape is:

The problem with this circuit network is that physical inductors have stray shunt
capacitance which distort the waveshape and the required values of capacitors have a
wide range of values which increases costs.

The mathematical approach is to use the impedance function of the above circuit and
derive networks having other topologies but the same impedance function. Six basic
circuit topologies have been derived (including the above circuit).

g ! A _Q /\ Power Conversion
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_ i
Synthesis of Alternate LC Networks I

The admittance function for the above circuit has the form:

C,S

Y(S)_L1Cs 1 LCsiel

Z(s)= v (s)

Z(s) in turn can be expanded about its poles to yield equivalent
networks have other circuit topologies

g ! A _Q {\ Power Conversion
B /™ W\ 'Une 13-17,2011  USPAS Pulsed Power Engineering Burkhart & Kemp 48 /™" ™™

NATIONAL ACCELERATOR LABORATORY




. _ _ R
Equivalent Guillemin Networks !hlh

e TypeA:
_ 00893 00202 00075 00026
— Capacitances vary o 00781
— Little used 0.466 Trpe 4
0235 %0259 165313 G506
. TypeB: 00781 00632 00658 00774 01083 -
: ype
— Capacitances vary 0.0545’[‘ 0,0542’[‘ o.omaT o.oagoT 01674

— Similar in layout to Type E

« TypeC: ozss_é oz7o§ ‘% ‘% ono‘%““'c
— Capacitances vary

_ Straightforward design 04003T 00416]" oomT ooosaT 0.0017 |
— Variants used (SLAC 6575) 00914 00509 00908 00%06 00882

e TypeD Type D
— Fixed capacitance o 09910 00916T 00916T" 00916 00919]"

— Negative inductances 0456 0054 0009 00012 0000076

— Basis for Type E o—“—%—{(__%__( '_—é
e TypeF 0195 0182 04233 1838 2128"PF
yp . ' % %

— CapaCItanceS Vary F1a. 6:22.—Equivalent forms for five-section Guillemin voltage-fed network. Multiply
the values of the inductances by Zyr and the values of the capacitances by r/Zy. The
inductances are in henrys and the capacitances in farads if pulse duration r is expressed
in seconds and network impedance Zy in ohms.

g ! A h f\ Power Conversion
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Lad

PEN - Type E _I%

> 0.1586
> 0.1670

0.1701
0.1615

/ \o/

\
/_,ﬁ — 0.0914 0.0909 00908 0.0906 0.0882
00801 _0.0674 0.0668 _ 0.0711 0.0805

NN N W

n.owo’l‘ 0.09151‘ o,oeuT 0.0916[ 0.0915[
O % & 3 _

The negative inductance that are seen in the Type D PFN represent the mutual
inductance between adjacent inductors and may be realized in physical form by winding
coils on a single tubular form (solenoid) and attaching the capacitors to the inductor at
appropriate points on the inductor.

Type D
-0.0113 <1-0.01224-0.0118 9} 0.0077 ’

&0,0910‘[‘ 0.0910’1" 00916 o.osnd’[‘ 0.0910’]‘

[l

The quality of the output pulse is dependent on the number of sections used. For a
waveform having a desired risetime/falltime of ~ 8% of the total pulsewidth, five
sections (each consisting of one inductor and one capacitor) prove to be adequate to
produce the desired waveshape. A sixth section provided only slight improvement.
This corresponds to the relative magnitude of the Fourier-series components for the
corresponding steady-state alternating current wave. The relative amplitude of the fifth
to the first Fourier coefficient is ~4% while the sixth to the first is ~ 2%.

Note: If faster risetimes/falltimes are required, the number of sections needed to satisfy
that risetime increases.

A h f\ Power Conversion
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_ _ i
Type E_PEN- Practical Design Parameters ]|

e For:

_ L
PFN Characteristic Impedance = Z, 7 = C_N
0
PFN Output Pulse Width = 2t "
« where L, =total PFN inductance and T= .‘/ LnCn

Cy = total PFN capacitance

The total PFN inductance (including mutual inductances) and capacitance
is divided equally between the number of sections.

Empirical data have shown that the best waveshape can be achieved when
the end inductors should have ~20-30% more self inductance. The mutual
inductance should be approximately 15% of the self inductances.

» Bottom line: don’t bust your pick designing a “perfect” PFN

Capacitance values vary from can-to-can and with time
Inductor values are never quite as designed
Strays; inductance, capacitance, resistance, distort the waveform

and should you somehow overcome all of the foregoing, you can be
certain that the technicians will “tune” the PFN and your “perfect”
waveform will be but a memory

g ! A h f\ Power Conversion
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PEN Design for Time Varying Load !hlh

« Within a limited range, the impedance of individual PFN sections may
be adjusted to match an impedance change in the load.
— For example: Each section of a 5 section roughly drives 20% of the load
pulse duration. If the load impedance is 10% lower for the first 20% of

pulse, designing the first section of the PFN (section closest to the load) to
be 10% lower than rest of the PFN will make a better match and generate

a flatter pulse.
— This approach works only if the load impedance is repeatable on a pulse-
to-pulse basis

g ! A h f\ Power Conversion
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PFN: Practical Issues !h%

« Switch: In addition to voltage and peak current requirements, must also be able
to handle peak dl/dt (highest frequency components will be smaller magnitude
and may be difficult to observe)

— SLC modifications to 6575 doubled dli/dt
— Even with 2 thyratrons, short tube life
— Solved by adding “anode reactor” (magnetic switch in series with tube)

» Positive mismatch, Z,..4 > Zppy

— “Prevents” voltage reversal (may still get transient reversals), improves lifetime
» Switch
» Capacitors
» Cables

— Incorporate End Of Line (EOL) clipper to absorb mismatch energy
* Inductors
— Must not deform under magnetic forces
— Tuneable
* Movable tap point
* Flux exclusion lug
 PFN impedance range is limited (just like PFLs), as is maximum switch voltage
— Transformers can be used to match to klystron load
— SLAC 6575 modulators are matched to 5045 klystrons with a 1:15 transformer,

g ! A _¢ f\ Power Conversion
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W
Charge Circuits - Basics !h%

High Voltage

.Swiy/ cIOad
®

1+ Load Power Load
T Cioad Impedance Supply High Voltage Impedance
Switch

Where C,,,4 represents the capacitance of a transmission
line, PFN, energy storage for a hard-tube circuit, etc.

Power
Supply

The charge circuit is the interface between the power source and the pulse generating
circuit and may satisfy the following functions:
Ensures that C,,,4 IS charged to appropriate voltage within the allowable time period.
Provides isolation between the power source and the pulse circuit:

Limit the peak current from the source.
Prevent the HV switch from latching into an on state and shorting the power source.
Isolate the power source from voltage/current transients generated by pulse circuit,

c ! A _h quer Conversion
i H\.! June 13-17,2011  USPAS Pulsed Power Engineering Burkhart & Kemp 54 ‘\7’“"””"”"“””9’“””"'5”“

NATIONAL ACCELERATOR LABORATORY



AC Power Rectification !5"13

Charging Power Supplies

Transformer - Rectifier
Combinations

ﬂ I . Power Converslon
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AC Power Rectification
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Power and Power Factor:

Definition of average Power:

T
1‘[1
P=—
T1

0

using clean valtage and distorted current:

vl = \E-Vs-sm-ml-t

Definition of RMS values:

Ty
1 .
I;= —J- i(t) dt
T1 0

Definition of Current distortion:

2
Igis = Z Isn
(h=1)

Example for sinusaidal current:

T, 3
1 2m
Liys = [—- Ly sitn] — -t dt
0

Definition of total harmonic distortion:

T
plth dt = LJ- wgl(t)-1g(t) dt
Ty 0

Power & Power Factor in AC Systems

M. Giesselmann, Sept-29-2000

D=kl + D dn®
(h=1)

2 2
L= [Ig +Z Ish
(k1)

USPAS Pulsed Power Engineering TTU PPSC
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L ]
AC Power Rectification \hlh

Definition of Power Factor with Distorted
Current Waveforms

Calculation of real power:

T, T
P=L-J‘ ﬁ-?s-sm(col-t)-\ﬁ-lsl-sin[m1-t—¢1)dt P= 22 ‘ﬁ-‘fs-sin }—ﬂ-t -\ﬁ-Isl-sin 2’—“-1—4;1 dt
0 T T Ty

0

T1
T I I
= Ti-[—l-(sin(d:l] + 4-cos(¢1]-n]-vs-il B —-si:1(¢1)-vs-il:| P= Vs-Isl-cus[d)l]
1 4 T 4 o

Definition of apparent Power and Power Factar: 3=Vl

Power Factor with distorted Current:

VgIg-cos I I
= Lw FF = S—I-cos[q:l) FF = L} DPF DPF=Displacement Power Factor
Vol I I

Mow in terms of THD:

Id.is

T ISl | Idls

ﬂ I + Power Conversion
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AC Power Rectification !5"13

Single Phase Transformer-Rectifier System

Single Phase Transformer

¥
§

TH2

i

PARAMETERS: _ N L |
Pi 314169265 V_LL 180

Freq B0 Voph_peak {Sar(2*V_LUSart(3)}

Omega  {2*Pi*Freq}

g ! + Power Conversion
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AC Power Rectification !5"13

Single Phase Transformer-Rectifier Performance

l_: MicroSim Probe - [1Ph_Rec2.dat]
til File Edt Trace Plot View Tools Window Help

=2 2] N N et (o o T = e 2 e |

L R e
AC Input Current

Pl ™ e Y

fa '.l / X / \‘ f y

/
/
¢

)
SEL>>
e L R e e L L et
I{Rprim1) - I(Rprim2)
L L it

DC Output Yol tage

U{Pos,Neg) U{Plus)
|For Help, press F1

ﬂ ! +~ Power Conversion
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AC Power Rectification

Single Phase Transformer-Rectifier System

Single Phase Transformer

oo

Waci I\/ﬁk\]

R_Load2
vac2 If’*u:] > 1;

1

PARAMETERS: PARAMETERS: DZaT s
Pi 314159265 WoLL 480
Freq 60 V_ph_peak {Sort{Z™_LLISqr(3)}
Omega  {2*Pi*Freq}

1
o Lﬂu June 13 - 17, 2011 USPAS Pulsed Power Engineering TTU PPSC
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AC Power Rectification !h%

Single Phase Transformer-Rectifier Performance

L: MicroSim Probe - [1Ph_Rec2. dat]
[7] File Edit Trace Plot Wiew Tools Window Help

Slts(a| 72| alalal] mlEvels| el =# iz a2 ol

2R - o oooooooooooooooooooooes
s

AC 1nput Current

A
, 1

'/
W,

1
1
SEL>> | )
| e e e i e e e e e e e e e
I{Rprim1) I{Rprim2)
B s e e e e e e e o e e E o

DC Qutput Voltage

T U(Pos,Neg) - U(Plus)
\

ﬂ ! Power Conversion
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AC Power Rectification

A-Y Transformer-Rectifier System

&@Va ;ﬁ Delta-Wye Transformer
:?%225—{:?§£5——~¢§6Ic

Pi 314159265
Freq 60
Omega  {2°PiIFreq)

| e £
‘ i 3 D2 D4 DB
PARAMETERS: ) ) 1 ¢ Neg
) [ ]
] . | \\
C 11le

PARAMETERS:

o ] IE 480
V_ph_peak {Sqri(2)"_LL/Sqrti(3)}

Y ratio=10
3phase

T

1
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AC Power Rectification \hlh

Performance of A-Y Transformer- Rectlﬁer

L.'; MicroSim Probe - [3Ph_Rec.dat]
u File Edit Trace Plot View Toolz Window Help

= = NN e [ o o e e e I ) o

AC Line Current, Phase A

U(Pos,Neq)

| Copy Complete

ﬂ I + Power Conversion
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AC Power Rectification

Performance of A-Y Transformer-Rectifier

l_: MicroSim Probe - [3Ph_RecDY_dat]
tﬂ File Edit Trace Plot View Tools ‘Window Help

[_ (O] x]
=8|

=1 =2 = = N (e e e 1 = e e

(60.274,211 008)

i
i
E(0,000,10.994K) '
1
1
:

L

1
SEL>> |
v +
BHz
U{Pos,Neq)

R

I
B.2KHz

i

i (300 376,45 .714)
! : :

i

L

(360 002,655 . 846)

AC Line Current, Phase A

(420.548,23.478)  (659.765,19.048)

DC Output Vol tage

(720,004,178 233)

1 1 1
B.4KHZz 8.6KHz 8.8KHz

Frequency

BB = = = - == o o e s

'For Help, press F1

T

o
D ’:\u June 13 - 17, 2011
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AC Power Rectification !5"13

Y-Y Transformer-Rectifier System

_F'os_9/®

riby

Wye-Wye Transformer

o

311 P21| 521 P31

PARAMETERS: I JIC
Pi 3.14159265 bl ur <%
FFE[] <

G0
omega Z*PirFre
g { o P12 512 P22

PARAMETERS:
V_LL 480 1
v_ph_peak {Sqrt(2)_LL/Sqrt(3)} .

T
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Y _ratio={10*5grt(3)}
dphase

+~ Power Conversion
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AC Power Rectification \hlh

Performance of Y-Y Transformer-Rectlﬁer

L ' MicroSim Probe - [3Ph_RecYY.dat]
]~_J File Edit Trace Plot View Toolz “Window Help

glﬂ P L=l NN [N e LN W | [ e (S S AR BER R B o o P e s

AC Line Current, Phase A

U{Pos,Heq)

|For Help, press F1

ﬂ I + Power Conversion
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AC Power Rectification

Performance of Y-Y Transformer-Rectifier

E MicioSim Probe - [3Ph_RecYY.dat]
tﬁ] File Edt Trace Plot View Tools “Window Help

e I N e e T e = e o e e e e

(60,000,202 429)

///’
SEL>>!

[ -- -
1(va)

100,10, 568K)

1
au +
BHZz
U{Pos,Neqg)

Al

(300.002,45.263)

(360 002,624,342)

L e
AC Line Current, Phase A

- (660.003,17.072)
//// (760.004,11 651)

(420 002,22 128)

Bl

DC Output VYol tage

(720.004,178 285)

B.4KHz B.6KHz 8.8KHz

Frequency

1.0KHz

L
/i

|For Help, press F1

T
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AC Power Rectification

A-A Transformer-Rectifier System

Pi
Freq
Omega

®\Q. (e ﬁé@;

'\\_‘L/F

; ,i&_( 3 )W_A.‘Zé@g
&—( ¢ j_%\/c C

-—

PARAMETERS:

3.14159265
60
{2Pi*Freq)

Delta-Delta Transformer

V_ratio={10"Sqrt(3)}
3phase

PARAMETERS:

V_LL 480
V_ph_peak {Sqrt(2)*_LL/Sgrt(3)}

T

ol
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AC Power Rectification \hlh

Performance of A-A Transformer- Rectlﬁer

AC Line Current, Phase A

ﬂ I + Power Conversion
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AC Power Rectification !h%

Performance of A-A Transformer-Rectifier

[: MicroSim Probe - [3Ph_RecDD.dat]
@Eile Edit Trace Plot Yiew Toolz Window Help

=2 e e N N Lo o = e e s e

L il
AC Line Current, Phase A

(60.000,211 069)

(420.002,23 .527) (780.004,13 069)

1
1
i
I
I
1
i
i
i
; : (300.002,47 466 . (660 003,18 £22)
|
i
i
L

DC OQutput ¥Yoltage
(0.000,10 995K) ' ‘

(360.002,636 305) (720,004,179 .948)

SEL>>!
o + . St ; - ;
BHz 0.2KHz 0.4KHz 8.6KHz 8.8KHz

U{Pos)
Frequency
1
|For Help, press F1

e I Power Conversion
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AC Power Rectification

12 Pulse Transformer-Rectifier System

Transformer Bank for 12 Pulse Rectifier

D3 D7 D11 D15 D19 D23
B e D1 DS Do 13 D17 D21

T

I [P TTTED
LANFAY
g1 PZ‘WI $21 P31 F31 ll
> g
ut g g 3phase :)-
3 Slie
91 P22j |S‘ P32j \‘832

v rai|ﬁ=10 =

kg o

b2 D& D10 14 D18 D22

\.
Pl |S12 2| |522 Png

<
Zphase ‘,

b‘1‘1 PM JSZ‘W F‘d‘I
>
;.
>-

uw J;

P
)
)
b]

W ratlo—{10 Sqri(3)}

522 P32

F‘3] ~=31

Zphase ‘,

04 pe D12 D16 Dz0 D24

V_ratio=[10"Sqrt3)}

1

PARAMETERS:
Pi 3.14159265

Freq 60
Omega {2°Pi"Freq}

PARAMETERS:
VL 350
V_ph_peak {Eqrf27V_LLIAsqri(3]}

1
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AC Power Rectification !h%

Performance of 12 Pulse Transformer-Rectifier

|_: MicroSim Probe - [3Ph_Rec12P . dat]
l—:_l File Edit Trace Plot “iew Tools Window Help

=2 T e N N e LN T [T e e I e e e

IR TKIRRD

U{H1a) U{H1b) + U{H2a) U{H2b) - U({H3a) U{H3b)

AR AT L¥ne Current, Phase A~ 7777 :

!,,,‘,UL___\:,Z_______,__’__ A s SO AP \/ _________________________________ | ‘:f

U(a) < U(B) + U(C)
2y
i DC Output Yoltage | i

U{Pos,Neq)

e I Power Conversion
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AC Power Rectification

Performance of 12 Pulse Transformer-Rectifier

[_: MicroSim Probe - [3Ph_Rec12P._dat]
E&I File Edit Trace Plot ‘“iew Tools Window Help

=431 R R e NN el (= o R 1= 5 .o e i e i ot O

(60 001,155 600)

1
I
1
I
1
1
I
I
]
1
1
I
I
1
1
I
I
I
]
1
I
I
I
I
=L

=
-3

1{Va)

(0.000,13 002K)

1l
8.2KHz
U(Pos ,Neg)

(300 .003,2 8653)

(360 004,312 790)

2B T~ = - oo oo o

AC Line Current, Phase A

© (660 007,10 549

)
(420 004,1 9351) ///, (780.008,5.3074)

BB = = = = e e e e e e e oo

DC Output Voltage

(720,007,252 006)

1
B.4KHz 8.8KHz

Frequency

Al
IFul Help, press F1
-
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Charging Topologies !5"13
» Resistive charging
» Constant current resistive charging
» Capacitor charging power supplies
* Inductive charging
— DC resonant charge

— AC resonant charge

— CLC resonant charge
* De-Qing

g ! A h f\ Power Conversion

— ) . . Solutions for Challenging Problems
e N\ June 13-17,2011  USPAS Pulsed Power Engineering Burkhart & Kemp 74 ‘
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Resistance Charging !h%

: Vv
()= - g

hg

(t) V 1 eRcthLoad

CLoad

1
EnergyLoad ~ E CLoadVOZ’

Energy, o, =

O'-—.S

1 R 1 Switc
P :
L AAN I YO —
: : t=0
| i : 4
. ) — V.(0)=0
i H Cload| -
1 1
1 1
] ]
I —— !
Charge Circuit Resistance Charging Waveshapes
- 0.; /f"———_—_,
—t ;:,DB \ ,// —iw [
9, \ / —e(t)
S 4
é 0.4 \\
E oz
t> 4'RcthLoad ';_CE o2 / \\
o1 / \\‘k‘h
vV 2 -2t . / i i
o c C oa a 05 1 15 2 25 k- 35 4 45 5 55 &
t)R:hg dt EO) e R hot ddt RC Time Constants
C
=t 1 Maximum charging efficiency is 50%

e RcthLoad

RI:hg
el Ay
qhﬂ“

NATIONAL ACCELERATOR LABORATORY

— Vo2 ( RCth

June 13 - 17, 2011

=3 CloadVs (independent of the value of Ry,

/\ Power Conversion
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W
Resistance Charging !h%

» Advantages
— Inexpensive
— Simple
— Allows use of low average power, power supply
— May eliminate the need for a high voltage switch
— Provides excellent isolation
— Stable and repeatable
— Charge accuracy is determined by regulation of power supply

» Disadvantages
— Inefficient
— Slow for high energy transfers

— Requires resistor rated for full charge voltage and, depending on the
charge time and energy transferred, a high joule/pulse or average power
rating

g ! A h {\ Power Conversion

A—  — . _ - - Solutions for Challenging Problems
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Constant Current Resistance Chargin ) |

e . High Voltage
: Rchg : .SW/
7 VVAN 7 %.—
: : t=0
i i 1+
. Vo ) — V.(0)=0
g i I=constant Cioed -
- -
I ———— !
Charge Circuit
C., =  __I where T = time for V. to approach V,
- CLoad CLoad -
T
ELost - I |2 Rchgdt - IZRx:hgT
0
el oy _OTF

Stored — ~ “LoadVC,,,4
2 2CLoad

Efficiency approaches 100% as

Efficiency = Ssores_ _ !  TP22RCgu
EStored + ELost T+ 2RcthLoad EﬁlClenCy = 71% for
T =5RcthLoad
g ! ‘ h f\ Power Conversion

— ) . . Solutions for Challenging Problems
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W
Constant Current Charge !h%

» Advantages
— Efficient
— Power and voltage rating on charge resistor is low
— Can still provide excellent isolation

» Disadvantages

— EXxpensive: requires constant current power supply or controllable voltage
source

— Maximum burst rep-rate determined by charge rate

g ! A _q f\ Power Conversion
s ™\ June 13 -17,2011  USPAS Pulsed Power Engineering Burkhart & Kemp 78 0‘““"””’ SRR
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Charging Efficiency is Waveform Sensitive J

Resistance vs Constant Current Charge

—
—_

—_

T T

Yl t)

\

=

y — 1]

ot
o

~

-
T

o o
(%) iH
]

NMormalized Capacitor Charge
Voltage
™

-
1

]

o}

05 1 1.5 z 25 = 5 4 4.5 5 55 &
RC Time Constants

I AR i Power Conversion

. _ H H Solutions for Challenging Problems
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Capacitor Charging Power Supplies !hlﬁ

Constant current power supply

» Positive attributes
— Efficient (>85%)
— Low stored energy
— Stable and accurate (linear to ~1% and with 1% accuracy)
— Can be operated from DC output to kHz repetition rates
— Compact (high energy density)
— Good repeatability (available to <0.1% at rep rates)

— Output voltage ranges up to 10’s of kV and controllable from 0-100% at
rated output voltage

— Charge rate usually specified at Joules/sec

— Internally protected against open circuits, short circuits, overloads and
arcs

— Locally or Remotely controllable

g ! A h f\ Power Conversion

Solutions for 'Cnaﬁlenging Problems

—x ] . :
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Capacitor Charging Power Su

lies !ﬁ"rﬁ

Issues

— Cost (usually > $1/watt)
— External protection must usually be provided for voltage reversals at load

HV Supply

Dn

Ro

Lo

Output

Cable Rt
., 0
Y /\/\/\f_‘{

S

Ci

L1

R1
(load)

Generalized HV Supply Load Connection
o I ¥~

D o AN i1 13- 17,2011

NATIONAL ACCELERATOR LABORATORY

USPAS Pulsed Power Engineering Burkhart & Kemp

R, terminates the output cable and
prevents the voltage reversal from the
closing of switch S; from appearing
across D;. R, is the internal resistance
of the power supply and is usually on
the order of a few ohms. C, is the
internal power supplies internal
capacitance and may only be a few
hundred pF.

Power Conversion

8 1 Solutions for Challenging Problems




. _ _ R
Capacitor Charging Power Supplies !hlﬁ

0y l

Period

le
i

Capacitor Voltage

N Output . C1 L1
= Cable Rt Rt |
Ce Protection l

1= diode
— A 51 RT

Vr

Mormal Charging Current

. \

e

Current through D1
from reversal (Vr)

\oltage Reversal Protection Circuit

The protection diode needs to have:

\ a reverse voltage rating that is higher than the circuit

operating voltage and the supply operating voltage

(with a safety factor); a rms current rating higher

HV Supply output diode under voltage than seen in the circuit; and a forward voltage drop
reversal conditions

1 AR

D o AN i1 13- 17,2011

NATIONAL ACCELERATOR LABORATORY

during conduction that is less than the voltage drop in
the power supplies’ diodes (if R,” is not used). If used,
Rt’ should be selected to limit the current to the
supply rated output current or less.

Power Conversion
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. _ _ R
Capacitor Charging Power Supplies !hlﬁ

o Useful relationships:

— Charge time Vcharge Capacitor Voltage
T = 1 CLoachthrated
by =
e 2 I:)peak
— Peak power rating
P _ l CLoachthrated —
=
P 2 Tchg > Charge Time =Tc (peak power)
- Period = 1/rep. Rate (average pm:.'er}
- Average power rating
1
I:)avg = E CLoachthratedPRF
— Maximum repetition rate Where:
PRE. — 1 Favg T, is the load charge time in seconds
" 2 CloaaVing Veated Ppeax i the unit peak power rating

Cioaq IS the load capacitance in Farads
Veng IS the load charge voltage in volts
2Pea V. .ieq 1S the power supply rating in volts

output V
rated

g ! A _Q {\ Power Conversion
s ™\ June 13 - 17, 2011 USPAS Pulsed Power Engineering  E Cook 83 0““‘"“”’ SRS
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Capacitor Charging Power Supplies M

3-ar-B HAROCOPY

= —output to—y
18 ps facroy Int. Print
2.80 V ; A P Car
\ \ :\ / \ \ HOD
1 /S ] i 3| cpis
| . i Bk H
| \\j L \ ','1 /I\\ 300 FOQd—
o 1]
Lo e i N . "
" d r b 528 A (VI J
= 280 kQ 16 ps F » ~protocs l=—
T i r HP 7558
s 4"—‘1"\—’ High | F IFF :/
44pF 148 pH Freq. 1 115+ color]
E e = | copr
1 1
| i ue = | . | backgrounc
|—Z G4 o r Black
L s ) F i e
18 p EWL
118 v oc
2 9 J UC & 580 M5/
? = oG 5.4 v
53 rr 0O sTOPPED

» Switch-mode power supplies

e Constant current on recharge time scales, but little output filtering so high
frequency structure of the converter is on the output current

— May result in increased losses in charge circuit components (e.g. diodes)

ad A h f\ Power Conversion
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Inductor Charging - DC Resonant Charge

»

+

High Volta%---------------_- ------ -l
y E LChg Diode !
. 1 Q Q Q Q Q 1
] T
+ Vtzo ! :
< : :
—_— 1 1
V, — | |t ] —_
° T 0 ()D Cload
1 1
< 1
! !
N L

Charge Circuit

. Vv . Vo
i()=—= sm[ t J =—Fsino
Load

i

V.(0)=0

(Assume R=0)

Lossless Energy Transfer

chg L'chgC 0
CLoad S —
1L E / \\//
V.(t)=—=—i(t )t V4 AN
Load @ E / //,/, N
= -V, cos gt |, s / /] \
ST N
=V,(1-cos m,t) /| // ]
/
Maximum value of V, at t=n/w, Time
1 A i o i
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W
DC Resonant Charge !h%

» Advantages
— Efficient - approaches 100%
— Due to voltage gain, PS can be ~ 1/2 of desired load voltage
— Easily capable of high repetition-rate operation
— Practical and easy to implement
— Low di/dt requirements for the high voltage switch
» Disadvantages

— Requires isolation diode (unless load is discharged at the peak of
charging)

— May require a high voltage switch (command resonant charge)
— Inductor must be designed for high voltage operation
— Power supply must be capable of providing the peak current

g ! A h {\ Power Conversion

—— — . _ - - ' Solutions for Challenging Problems
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DC Resonant Charge with Resistive Losses !ﬁrﬁ

High Voltage "= ========== == === -

y I Lzhg Diode
+ §

Vo —

V.(0)=0
Cload| - (0)

Charge Circuit

R
2 Lchg

—t

Ve (t)=V,|1-e’"'?| coswt + R sinat
Load ZO)LChg

Total energy provided to circuit = I, VT, where T, = charging period
Qchg _ CLoadVCm,,

~t
i V, 7% .
|(t)=?°e2LC“g/Rsma)t where o = _[w. —

0

avg Tchg Tchg
1
. . E CLoadVgLoad Tch VC
Efficiency = — —Chg Cio
lavgVo Teng 2V,

L
Efficiency ~1 —4—2 where Q = w—l_\:hq and Q> 10

g ! A _ﬁ f\ Power Conversion
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AC Resonant Charge !h%

_.g@rfltage:- ----- Ly Diode 1
o1 00000 :
% t=0 : H :
Vosinmt<> i i(t)D T V.(0)=0
: D
N — I 1
_ Vo _ Choose Ly and Cyq,q SUCh that: oG =0
i(t)= tsin ot
2L,
V 1 .
Ve, =723 [—tcos ot +—sin a)t}
oa 220 W
1 _ T
fora = cycle, t = 7o LengCloas = —

VCLoad (zj — ZVO
0, 2

g ! A _ﬁ f\ Power Conversion
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W
AC Resonant Charge !h%

» Advantages
— High efficiency
— Voltage gain reduces the source voltage requirement
— Low di/dt requirements for high voltage switch
— High voltage switch not needed if repetition rate is same as source
frequency
» Disadvantages
— Requires high frequency ac source or very large inductor
— Diode must have large inverse voltage rating (nV,)
— Peak repetition rate is limited by source frequency

A

Power Conversion

Solutions for Challenging Problems

1 AR
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. _ Q
DC Resonant Charge - Capacitor to Capacitor !ﬁrﬁ

Charge Circuit

Used when power supply can’t
provide the peak charge current  High Voltage
(e.g. high power systems)

V,(0)=0

. V . t V. . CoCLoad
i(t) = 2= Sin| ———=——=| = 2sinat where C, =-——>2%
I‘_cmh [V Lctheq J Z ! C0 + CLoad
Ceg
7T C
At peak voltage (t = —) 1V, =2Vo—+
@ " CC Load
2V .C
ForC, =10C .,: V. = —— =1.82V,
e Co + CLoad
A /S f\ Power Conversion

A—  — . _ - - Solutions for Challenging Problems
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. _ Q
DC Resonant Charge - Capacitor to Capacitor !hlﬁ

» Advantages
— Efficient
— Voltage gain reduced the PS voltage requirement
— Easily capable of high repetition rate operation
— Can operate asynchronously

— Power supply isn’t required to provide large charge current when system
Is operating at low duty factor

— Low di/dt requirements on high voltage switch

» Disadvantages
— Requires a large DC capacitor bank

— DC capacitor bank needs to be fully recharged between pulses to ensure
voltage regulation at the load, unless alternative regulation techniques are
employed

g ! A _¢ f\ Power Conversion
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DC Resonant Charge with Resistor Charge
C, recharged through R

after the C, 4 IS

inductively charged.

2
.. 1 V
Efficiency == °
2l | [u
VO

ForC, =10C__,:
1l AR

i

High Voltage == =======mmmmmm=mm=== "
R Swgitch * ! Len Diode I
o1 00000 :
—/ N\ : :
+ t=0 _§ :
v. — c —* i i s
—_ o T ' i(t ——
° T : () : CIoad
[ | ]
<€ |
. :
V.. (0)=V, e L

Efficiency = 90.9%

D o AN i1 13- 17,2011
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Charge Circuit
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W
Effects of Stray Capacitance I\%

Voo | 01 ) c— = ) %(0)=0
Co H
After C ., is charged :

V. = 2V and V =V, Charge Circuit ¢ _ stray Capacitance to ground

Load

wf

C,>>C .4 >>C,

LChg :
Q Q Q Q Q Effect of Stray Capacitance
+ + 30 —Cload
—_A - — 2\, —ves i — _
Cq ] Croad | - Peak inverse diode
voltage ~2V, instead
E 7 | of V,
: V : V. .
i(t)=—=2=sin(wt) = —=sin ot i
Ceq Time
CC 1
Ve, =2V, —V,cosmt  where C,=——"—-2" and 0 =——
Cs + C:Load Lctheq
b I ‘ h {\ Power Conversion
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Effect of Stray Capacitance !h%

i Leng Diode 1 L ]
100000 100000 C, - stray capacitance to ground
: : Cq - stray capacitance across diode stack
V— ] == Cloaa - (includes diode junction capacitance,
Co ; f P ' capacitance between mounting connections, etc.)
H h ! i(t) - . .
; ; i L.- total series inductance between diode and
T ground
Charge Circuit
I‘Chg _{ Cd LS
. Equivalent Circuit where: C_>>C . >>C,,C,
v, Cs = 2V Cload + 5y,

Co -

After C .4 IS charged:

C, will ring with C, and can create large inverse voltage across the diode stack
Coaq Will oscillate with C, and C,

Inductor Snubber and/or Diode Snubber may be required

g ! A _Q /\ Power Conversion
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W
Diode Snubber !h%
Gbs Rps s Rye Gbs Ry

WA AP
— A=A — AW ]

p -y e Lpp e

R, is used for DC grading of diodes to force voltage sharing between diodes. Want the current
VDiode

through R, to be large compared to the maximum leakage current (I )through the diodes: R ~ e

Cps and Rpg form the fast snubber where Cpg is for voltage sharing and Rg is for damping.
Energy is stored in Cg and dissipated in Rpg

Considerations for C¢ Considerations for R :

Charge stored @ ~ 0.7 volts > 10 diode junction charge 2 L, . L
Rps > — ﬁ where N is the number of series diodes
DS, N

% >> the stray capacitance of the entire stack (N diodes)
. . N\
is small compared to maximum applied o

C s should be as small as possible for higher efficiency
DS ~DS

Power Dissipation Rating > 2(PRF)C,.V.” where V, is
the maximum inverse voltage on the diode
Power Conversion

g! A-. . . Solutions for Challenging Probk
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W
Charge Inductor Snubber !h%

Leng Diode
090909
‘ C,>>C .4 >>C,
+ y C| d| + w, = L
Vo _::C Cs = 2Vp o — Vo " YLl
0]
Leng . Select C, ¢ >C,
hg
Gs Ry — — Considerations for R ¢:
_H_\/\/\/\_ + N RLS 1 L o o
T2V %% @D):R, < > ?Cq- (critically damped)
|| s
CS|| (2): Ensure power rating is adequate :
_ o P >2(PRF)C V,’
St ottt 0 At e i )
(4): Want R (C,; >>charging period
e ! ‘ _q f\ Power Conversion
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Inductive Charging Voltage Regulation I

» For Klystron phase stability, PEN charge voltage regulation may need
to be ~10 ppm
» High power supplies usually do not have precise regulation
— Requires more complicated topologies (over simple rectifier/filter)
— Increases cost
« Common approach to regulate PFN charge voltage from unregulated
source is de-Qing
— Monitor PFN voltage during charge cycle

— When PFN reaches final voltage, shunt energy remaining in charge
inductor to dummy load
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De-Qing Limitation !hlh
* During the delay between the measurement of the PFN reaching the desired

charge voltage and the termination of charging current (system delay), the
PFN voltage continues to increase

* When the unregulated source voltage is higher, charging current is increased
and the PFN voltage increase during the system delay is increased (AVpgy)

« This error must be corrected for precise PFN voltage regulation

— Phase advance on voltage divider
» Measured signal, V,, actually higher than PFN voltage, Vg
» Ratio of V,,/Vp is a function of PFN charge rate
» Compensates delay T oo M
* Used in SLAC 6575 o e

— Feed forward control loop N
« Measure final PFN voltage e e
» Adjust timing if voltage fluctuates
e UsedatPAL & |_____ W

— Similar regulation accuracy ool %
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W
Control System Functions !h%

« Control output waveform
— Voltage
— Pulse shape
— Timing
* Protect system (MPS)
— Over voltage
— Over current
— Heater time-outs
— Etc.

* Protect personnel (PPS)
— PPS interlocks
— Emergency Off
— Access interlocks
— Energy discharge

» Bleeder resistors across capacitors

» Engineered grounds N
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W
Control System Elements !h%

» Lab Scale: independent elements
— Charging supply with integrated controls
— Trigger generator
— Diagnostics
» Oscilloscope
* Probes

— Voltage divider
— Current transformer

» Installations
— Control system interfaces to many operators/users and many other
machines/systems: an integrated control system is required

» Periodic evaluation
« Configuration control

— Control system may incorporate many components at varying levels
 Integrated modulator control (modern trend)
» System level (e.g. HLRF)
» Facility level (e.g. accelerator)
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m
Elements of the 6575 Modulator Control System \hlh

Lad

476 Mhe From ML

Phase Reference Line
5

— EHOH

| KLYS MAG
| EMHP SB kly drive control
SB phase control

208 Volts

Subbooster
Hodulater

MICRO Lione 2856 Hhe o
-----------[---------1 Stretotwr | - Al
xls|e|s !
| 2856 Mz Subboster PIOP
o|r|vfe ; | [rar ]
ols|ulc | 5B Sab Drive Line &
M | .L L
i 20K¥ pk 194
- 10 Amps ELLi
I | Subbooster BF Drive Unit v

Focas Hagnet[Buik |supply
Trim Supply

15
200 Volts

-
[Wac Controller]

A 7>
™ | Y o \

NATIONAL ACCELERATOR LABORATORY

June 13 -17, 2011

USPAS Pulsed Power Engineering Burkhart & Kemp 102

vvs
—SAl | Subooster BF Drive
— Unit Power Supply
800Volts
— PRY PIOP 3 Phase
Loz HModulater ::“:-51"-
EA__) Hiystres - modulator
Teim Supply | gait =,
K1y Vae Controller | (MEST)
SLED Cavity
Control
WWVGD Vec Controller
Dave Steele 10-7-96

\4

To Accelerstor Section

fl Power Conversion

Solutions for Challenging Problems

\V,



m
Integrated Control Elements !ﬁrﬁ

» Programmable Logic Controller (PLC)

» Programmable logic devices (CPLD, FPGA)

Lad

Aﬁ
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Replaces relay logic

Serial communication interface (can support
EPICS communication)

Limitations
* Slow
* Loop timing not clocked

e But, can be combined with additional circuits
to expand capabilities

— Sample-hold
— Peak detect
— Various A-D and D-A

ILC-Marx PLC chassis

Cell Diagnostic
Module:
communication
& measurement

Xilinx CPLD
provides cell
control logic

LEDs indicate
cell statuses

Cell ID
pragram

Fast, to >100 MHz clock

Powerful

Compact

Flexible

Communication options

Inexpensive (after development costs)

Cell Over-Current

Remote-Local
Oper. Setting

PWM chip driving

Fiber Optic Links to
Detectors (under P 50kHz current source

CDM) Ground Controller

Control board for SLAC developed ILC-Marx f\
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