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Overview

1. Undulators and wigglers

2. Impact on radiation damping and equillibrium beam sizes

3. Nonlinear Effects
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Undulators and Wigglers

I Periodic series of dipole magnets with period λw = 2π
kw

with gap g

I Field is periodic along the beam axis (with B̃ being the peak field)

By = B̃ sin(kw s) (1)
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Undulators and Wigglers (cont’d)

Electromagnetic wiggler at the ATF (left) and permanent magnet
undulator at the ALS (right).
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Trajectory in a wiggler

I Assuming y = 0 and Bx = 0 the equations of motion can be written
as

ẍ = −ṡ
e

meγ
Bz(s) (2)

s̈ = ẋ
e

meγ
Bz(s) (3)

This can be approximated to (using ẋ = vx � x and
ṡ = vs = βc =const.):

ẍ = −βceBw

meγ
cos kw s (4)

Using ẋ = x ′βc and ẍ = x ′′β2c2 this becomes

x ′′ = − eBw

meβcγ
cos kw s = − eBw

meβcγ
cos

(
2π

s

λw

)
(5)
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Trajectory in a wiggler (cont’d)

I Integration yields (β = 1):

x ′(s) =
λweBw

2πmeγc
sin kw s (6)

x(s) =
λ2

weBw

4π2meγc
cos kw s (7)

I The maximum angle of the trajectory and the wiggler axis is given by

θw = x ′max =
1

γ

λweBw

2πmec
(8)

I If θw ≤ 1
γ the device is an undulator, otherwise it’s a wiggler
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Wiggler contribution to energy loss

I Increased energy loss from synchrotron radiation

I Ideally integrated field over the lenth is zero, therefore can be inserted
into straight section without change to overall geometry

I Total energy loss per turn in a storage ring is given by
(Cγ = 8.846 · 10−5 m

GeV3 )

U0 =
Cγ

2π
E 4

0 I2 with I2 =

∮
1

ρ2
ds (9)

I Need to add wiggler contribution

I2w =

Lw∫
0

1

ρ2
ds =

1

(Bρ)2

Lw∫
0

B2 ds =
1

(Bρ)2
B2

wLw

2
(10)

I I2w does not depend on the wiggler period!

Ina Reichel (Berkeley Lab) Insertion Devices June 2012 7 / 33



Wiggler contribution to energy loss (cont’d)

I Assume 5 GeV beam energy, circumference of 6.7 km and a desired
damping time of 2.5 ms (ILC damping rings):

U0 = 2E0
T0

τ
= 8.9 MeV (11)

I Assuming 0.15 T for the dipoles, they contribute 500 keV per turn to
the energy loss, so the wigglers have to provide 8.4 MeV:

Cγ

2π
E 4

0 I2w = 8.4 MeV ⇒ I2w = 0.95 m−1 (12)

I Using
1

(Bρ)2
B2

wLw

2
= 0.95 m−1 (13)

and assuming apeak field of 1.6 T, the total length of wigglers
requires is Lw ≈ 210 m
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Wiggler contribution to the momentum compaction factor

I The momentum compaction factor αC has an effect on other
parameters like the synchrotron tune.

αC =
1

C0
I1 with I1 =

∮
Dx

ρ
ds (14)

I In a FODO lattice αC can be approximated using the horizontal tune:

αC ≈
1

Q2
x

with Qx ≈
1

2π

C0

βx
(15)

I For the ILC damping rings without wigglers (C0 = 6.7 km and
βx ≈ 25 m) one gets αC ≈ 5× 10−4
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Wiggler contribution to the momentum compaction factor
(cont’d)

I Need dispersion in wiggler to calculate contribution to momentum
compaction factor.

I In a dipole with bending radius ρ and quadrupole gradient k1, the
dispersion is given by

d2Dx

ds2
+ K Dx =

1

ρ
with K =

1

ρ2
+ k1 (16)

I Assuming k1 = 0 we get

d2Dx

ds2
+

B2
w

(Bρ)2
Dx sin2 kw s =

Bw

Bρ
sin kw s (17)

I Try Dx ≈ D0 sin kw s
I For kwρw � 1, one can neglect the second term on the left:

Dx ≈ −
sin kw s

ρwk2
w

(18)

For the ILC damping wigglers kwρw ≈ 160
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Wiggler contribution to the momentum compaction factor
(cont’d)

I Have assumed all contributions to dispersion are from bending in the
wiggler. Things like misaligned quadrupole components etc. would
add additional contributions which we neglect here.

I Dispersion in generated in the wiggler is small:

|D0| ≈
1

ρwk2
w

with ρw =
Bρ

Bw
(19)

I For the ILC damping wiggler we get |D0| ≈ 0.39 mm compared to
about 10 cm in the dipoles.
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Wiggler contribution to the momentum compaction factor
(cont’d)

I Now lets calculate the wiggler contribution to I1:

I1w =

Lw∫
0

Dx

ρ
ds ≈ −

Lw∫
0

sin2 kw s

ρ2
wk2

w

ds = − Lw

2 ρ2
wk2

w

(20)

I I1w is negative as higher energy particles have a shorter path length in
the wiggler (which is the opposite from the path length in a storage
ring).

I For the ILC damping wigglers (ρwkw ≈ 160 and Lw ≈ 210 m) we get
I1w ≈ −0.004 m which is small compared to I1 ≈ 3.4 m from the
dipoles, so the contribution to the momentum compaction factor is
negligible.
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Wiggler contribution to the natural energy spread

I Natural energy spread (Cq = 55
32
√

3
~

mc = 3.832× 10−13 m):

σ2
δ = Cqγ

2 I3
Jz I2

with I3 =

∮
1

|ρ|3
(21)

I I3 does not depend on the dispersion, so the wiggler could possibly
make a large contribution to the energy spread

I Bending radius in the wiggler:

1

ρ
=

B

Bρ
=

Bw

Bρ
sin kw s =

1

ρw
sin kw s (22)

I This yields

I3w =
1

ρ3
w

Lw∫
0

∣∣sin3 kw s
∣∣ ds =

4Lw

3πρ3
w

(23)

I For the ILC damping wigglers (Lw ≈ 210 m, ρw ≈ 10.4 m),
Iw3 ≈ 0.079 m−2 which is large compared to the dipole contribution
(5.1× 10−4 m−2).
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Wiggler contribution to the natural energy spread (cont’d)

I In the ILC damping rings, the damping wiggler contribution to I2 and
I3 is large compared to the contribution of the dipoles. Therefore the
energy spread is largely determined by the wiggler:

σ2
δ ≈

4

3π
Cq

γ2

ρw
=

4

3π

e

mc
CqγBw (24)

I For a damping ring, the energy spread of the extracted beam is an
important parameter: The larger it is, the more difficult the
downstream bunch compressors are to design

I With a beam energy of 5 GeV and a wiggler field of 1.6T, the natural
energy spread is about 0.13%. This is acceptable (upper limit is
around 0.15%).
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Wiggler contribution to the natural emittance

I The natural emittance depends on I2 and I5
(Cq = 55

32
√

3
~

mc = 3.832× 10−13 m):

ε0 = Cqγ
2 I5
Jx I2

with I2 =

∮
1

ρ2
ds and

I5 =

∮
Hx

|ρ|3
ds with Hx = γxD

2
x + 2αxDxDpx + βxD

2
px (25)

I The contribution of the wiggler to I5 depends on the β-function in the
wiggler. We assume αx ≈ 0. Then we get

Dpx ≈
dDx

ds
= kwD0 coskw s (26)

I Assuming kw � 1
βx

we can approximate

Hx ≈
βx

ρ2
wk2

w

cos2 kw s (27)
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Wiggler contribution to the natural emittance (cont’d)

I With this we can write the wiggler contribution to I5 as

I5w ≈
〈βx〉
ρ2
wk2

w

Lw∫
0

cos2 kw s

|ρ|3
ds =

〈βx〉
ρ5
wk2

w

Lw∫
0

| sin3 kw s| cos2 kw s ds (28)

I Using
〈
| sin3 x |cos2x

〉
= 4

15π we have

I5w ≈
4

15π

〈βx〉 Lw

ρ5
wk2

w

(29)

I Assuming 〈βx〉 ≈ 10 m and the usual wiggler parameters
(kw ≈ 15.7 m−1), we get I5w ≈ 5.9× 10−6 m−1.
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Wiggler contribution to the natural emittance (cont’d)

I Lets see how this compares to the contribution from the dipoles
(assuming TME lattice tuned for minimum dispersion; θ is the bending
angle in the dipoles, ρ the bending radius):

I5 =
π

5
√

15

θ3

ρ
(30)

I Assuming 120 dipoles with a field of 0.15 T and 5 GeV one gets
I5D ≈ 1.7× 10−7 m−1, so the wiggler contribution dominates.
However often a less than ideal TME lattice is used where the wiggler
contribution can be significant. In other lattices, like FODO, the dipole
contribution can dominate.
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Wiggler contribution to the natural emittance (cont’d)

I Combining I2w and I5w we get for the natural emittance

ε0 ≈
8

15π
Cqγ

2 〈βx〉
ρ3
wk2

w

(31)

I Using the usual parameters this yields ε0 ≈ 0.22 nm.

I If the dipole contribution is comparable to the wiggler contribution,
the natural emittance will be larger than this by about a factor of two.

I The wiggler contribution can be reduced by
I reducing the horizontal β-function
I reducing the wiggler period, i.e. increasing kw

I reducing the wiggler field, i.e. increasing ρw
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Dynamical effects of wigglers

I Aside from the effects on the natural emittance and the energy
spread, the wigglers have two other effects:

1. provide linear focusing which must be included in the lattice design
2. non-linear field components that can affect particles at large amplitude

and thus can limit the dynamic aperture
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3D field in an ideal wiggler

I If the poles are infinitely wide, the horizontal field component
vanishes:

Bx = 0 (32)

By = Bw sin kzz cosh kzy (33)

Bz = Bw cos kzz sinh kzy (34)

I As Bz is non-zero for a vertical offset and the particle has a horizontal
velocity thanks to the wiggler field, a particle with a horizontal offset
will experience a vertical deflecting force which leads to vertical
focusing in the wiggler.
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Vertical focusing in a wiggler

I For simplicity we will assume that the trajectory of a particle is
determined by the vertical field component of the wiggler. Other
forces, e.g. vertical deflections, will be trated as perturbations.

I The horizontal equation of motion on the mid-plane is given by

d2x

ds2
=

By

Bρ
=

Bw

Bρ
sin kzs cosh kzy (35)

I with the solution

x = −Bw

Bρ

1

k2
z

sin kzs cosh kzy (36)

and

px = −Bw

Bρ

1

kz
cos kzs cosh kzy (37)
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Vertical focusing in a wiggler (cont’d)

I The vertical equation of motion is

dpy

ds
=

q

p0
pxBz =

Bw

Bρ
px cos kzs sinh kzy (38)

I The total deflection per period is

∆py ≈
Bw

Bρ
sinh kzy

λw∫
0

px cos kzs ds (39)

I Using px as from above we find

∆py ≈ −
(

Bw

Bρ

)2 1

kz
sinh kzy cosh kzy

λw∫
0

cos2 kzs ds (40)

= − π

2k2
z

(
Bw

Bρ

)2

sinh 2kzy (41)
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Vertical focusing in a wiggler (cont’d)

I Series expansion in y yields

∆py ≈ −
π

kz

(
Bw

Bρ

)2 (
y +

2

3
k2
z y3 + ...

)
(42)

I Taking only the term linear in y into account, per wiggler period this
is equivalent to a vertically focusing quadrupole with the integrated
strength

k1l = − π

kz

(
Bw

Bρ

)2

(43)

I The cubic term contributes

∆p
(3)
y ≈ −2π

3

(
Bw

Bρ

)2

kzy
3 (44)

which is often referred to as the “dynamic octupole” term.
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Horizontal focusing in a wiggler

I The finite width of the magnet poles leads to a decrease of the field
strength for large horizontal offsets.

I In a simple model the field can be written as

Bx = −kx

ky
Bw sin kxx sinh kyy sin kzz (45)

By = Bw cos kxx cosh kyy sin kzz (46)

Bz =
kz

ky
Bw cos kxx sinh kyy cos kzz (47)

with the condition (from Maxwell’s equations)

k2
x + k2

z = k2
y (48)

I A particle with a horizontal offset sees a weaker field in one set of
poles and a stronger field in the other. The net effect is a horizontal
deflection that appears as a horizontal defocusing force.
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Horizontal focusing in a wiggler (cont’d)

I Consider a particle with the trajectory (x0 is the inital horizontal
offset)

x = x0 + x̂ sin kzs with x̂ =
1

k2
z

Bw

Bρ
(49)

I Assuming y = 0 the horizontal kick per period is

∆px = − 1

Bρ

λw∫
0

By ds (50)

= −Bw

Bρ

λw∫
0

cos [kx (x0 + x̂ sin kzs)] sin kzs ds (51)

=
Bw

Bρ
λwJ1 (kx x̂) sin(kxx0) (52)

≈ Bw

Bρ
λw

kx x̂

2
kx x0 (53)
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Horizontal focusing in a wiggler (cont’d)

I The horizontal focusing can be written as

∆px ≈
λw

2

(
Bw

Bρ

)2 k2
x

k2
z

x0 (55)

I Compare to the vertical focusing

∆py ≈ −
λw

2

(
Bw

Bρ

)2 k2
y

k2
z

y0 (56)

I For infinitely wide poles, kx → 0 which means there is no horizontal
focusing. In this case one also gets ky = kz . For finite horizontal
poles, the vertical focusing is enhanced due to k2

y = k2
x + k2

z .
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Nonlinear effects in wigglers

I At the center of a pole (sin kzs = 1) and with y = 0 the vertical field
is given by

By = Bw cos kxx = Bw

(
1− 1

2
k2
x x2 +

1

24
k4
x x4 − ...

)
(57)

I The quadratic term leads to horizontal defocusing, the sextupole field
“feeds down” (when combined with the wiggling trajectory) to give a
linear focusing effect.

I In the same manner, the decapole component feeds down to give a
octupole component. So for finite pole width, we have a “dynamic
octupole” in both planes.

I Wigglers can have a significant impact on the non-linear dynamics.
They can potentially restrict the dynamic aperture. Therefore it is
important to have a good model for analysing the nonlinear effects.
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Modelling the nonlinear effects of wigglers

Modelling the nonlinear effects of wigglers is done in four steps:

1. Magnetostatic codes (e.g. Tosca, Radia) are used to calculate the
magnetic field in one period.

2. An analytical model for the field (a mode decomposition) is fitted to
the field obtained in step 1.

3. The analytical model is then used to create a dynamical map which
described the motion of a particle through the wiggler. This is done
with codes like MaryLie or COSY.

4. The dynamical map is then used in a tracking code to determine the
impact of the wiggler on non-linear dynamics, e.g. tune shifts,
resonances or dynamic aperture.

We will have a brief look at some of the steps.
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Modelling the nonlinear effects of wigglers, step 2

Generalise the representation used so far to inlude a series of wiggler
modes:

Bx = −Bw

∑
m,n

cm,n
mkx

ky ,mn
sin mkxx sinh ky ,mny sin nkzz (58)

By = Bw

∑
m,n

cm,n cos mkxx coshky ,mny sin nkzz (59)

Bz = Bw

∑
m,n

cm,n
nkz

ky ,mn
cos mkxx sinh ky ,mny cos nkzz (60)

k2
y ,mn = m2k2

x + n2k2
z (61)
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Modelling the nonlinear effects of wigglers, step 2 (cont’d)

From the vertical field on the mid-plane (y = 0)

By = Bw

∑
m,n

cm,n cos mkxx sin nkzz (62)

one can in principle determine the coefficients cm,n by using a 2D Fourier
transform of the field data from step 1. In practice this does not work well.
The hyperbolic dependence of the field on y means that any small errors
from the fit increase exponentially away from the mid-plane.
A better technique is to fit the field on a surface enclosing the region of
interest. The hyperbolic dependence of the field means that in this case
any small errors actually decrease exponentially towards the axis of the
wiggler.
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Modelling the nonlinear effects of wigglers, step 2 (cont’d)

I Using a cylindrical surface within the wiggler aperture and standard
cylindrical coordinates, we get:

Bρ =
∑
m,n

αm,nI
′
m(nkzρ) sin mφ sin nkzz (63)

Bφ =
∑
m,n

αm,n
m

nkzρ
Im(nkzρ) cos mφ sin nkzz (64)

Bz =
∑
m,n

αm,nIm(nkzρ) sin mφ cos nkzz (65)

I If we know the radial field component Bρ at a fixed radius, we can
obtain the mode coefficients αm,n by a 2D Fourier transform.

I Usually done as close to the poles as data quality allows.
I Number of modes required depends on shape of field.
I Once αm,n are known, we can construct the field components

everywhere. The errors are small within the cylindrical surface.
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Modelling the nonlinear effects of wigglers, step 3

I With the mode decomposition of the field, we can now use an
“algebraic” code to construct a dynamical map.

I An “algebraic” code manipulates algebraic expressions instead of
numbers. There are different types of algebraic codes:

I Differential algebra codes like COSY

I Lie algebra codes like MaryLie

A differential algebra code can manipulate Taylor series. By
incorporating an integrator to solve the equations of motion into a
differential algebra code, we can construct a Taylor map representing
the dynamics of a particle in the given field.
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Modelling the nonlinear effects of wigglers, step 4

I The map constructed in step 3 now needs to be included in a tracking
code to look at the impact on beam dynamics

I Could just track a set of particles at varying amplitudes to “measure”
the dynamic aperture, however a frequency map analysis yields much
more informtion
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