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What sets the discovery potential of colliders?

1. Energy
➙ determines the scale of phenomena to be studied

2. Luminosity (collision rate)
➙ determines the production rate of “interesting” events

➙ Scale L as E2 to maximize discovery potential at a given energy
➙ Factor of 2 in energy worth factor of 10 in luminosity

✺ Critical limiting technologies:
➙ Energy - Dipole fields, accelerating gradient, machine size
➙ Current - Synchrotron radiation, wake fields
➙ Focal depth - IR quadrupole gradient
➙ Beam quality - Beam source, machine impedance, feedback

Luminosity =
Energy ! Current

Focal depth ! Beam quality
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Beams have internal (self-forces)

✺ Space charge forces
➙ Like charges repel
➙ Like currents attract

✺ For a long thin beam

! 

Esp (V /cm) =
60 Ibeam (A)

Rbeam (cm)

! 

B" (gauss) =
 Ibeam (A)

5 Rbeam (cm)
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Net force due to transverse self-fields

In vacuum:
Beam’s transverse self-force scale as 1/γ2

➙ Space charge repulsion: Esp,⊥ ~ Nbeam

➙ Pinch field: Bθ ~ Ibeam ~  vz Nbeam ~ vz Esp

∴Fsp ,⊥ =  q (Esp,⊥ + vz x Bθ) ~ (1-v2) Nbeam ~ Nbeam/γ2

Beams in collision are not in vacuum (beam-beam effects)
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We see that ε characterizes the beam while
β(s) characterizes the machine optics

✺ β(s) sets the physical aperture of the accelerator because
the beam size scales as
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Example: Megagauss fields
in linear collider

electrons positrons

At Interaction Point space charge cancels; currents add
==>  strong beam-beam focus

--> Luminosity enhancement
--> Very strong synchrotron radiation

Consider 250 GeV beams with 1 kA focused to  100 nm

Bpeak ~ 40 Mgauss

==> Large ΔE/E
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Types of tune shifts: Incoherent motion

• Center of mass does not move

• Beam environment does not “see” any motion

• Each particle is characterized by an individual amplitude &
phase

From: E. Wilson Adams lectures
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Incoherent collective effects

✺ Beam-gas scattering
➙ Elastic scattering on nuclei => leave physical aperture
➙ Bremsstrahlung
➙ Elastic scattering on electrons           leave rf-aperture
➙ Inelastic scattering on electrons

=======> reduce beam lifetime
✺ Ion trapping (also electron cloud) - scenario

➙ Beam losses + synchrotron radiation => gas in vacuum chamber
➙ Beam ionizes gas
➙ Beam fields trap ions
➙ Pressure increases linearly with time
➙ Beam -gas scattering increases

✺ Intra-beam scattering
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Intensity dependent effects

✺ Types of effects
➙ Space charge forces in individual beams
➙ Wakefield effects
➙ Beam-beam effects

✺ General approach: solve

✺ For example, a Gaussian beam has

✺ For r < σ
! 
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Beam-beam tune shift

✺ For γ >> 1, Felec ≈ Fmag

✺ Therefore the tune shift is

✺   For a Gaussian beam

y w

h

l
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Effect of tune shift on luminosity

✺ The luminosity is

✺ Write the area in terms of emittance & β at the IR

✺ For simplicity assume that

✺ In that case

✺ And
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Increase N to the tune shift limit

✺ We saw that

or

Therefore the tune shift limited luminosity is
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Incoherent tune shift for in a synchrotron

Assume: 1) an unbunched beam (no acceleration), & 2) uniform
density in a circular x-y cross section (not very realistic)

! 

" " x + K(s) + K
SC
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Incoherent tune shift limits current
at injection

using I = (Νeβc)/(2πR) with
N…number of particles in ring
εx,y….emittance containing 100% of particles

! 

"Qx,y = #
r0

2$% 2& 3
N

'x,y

 “Direct” space charge, unbunched beam in a synchrotron
 Vanishes for γ » 1
 Important for low-energy hadron machines
Independent of machine size 2πR for a given N
 Overcome by higher energy injection ==> cost

From: E. Wilson Adams lectures
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Injection chain for a 200 TeV Collider
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Beam lifetime

Based on F. Sannibale USPAS Lecture
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Finite aperture of accelerator
==> loss of beam particles

✺ Many processes can excite particles on orbits larger than
the nominal.
➙If new orbit displacement exceed the aperture, the

particle is lost

✺  The limiting aperture in accelerators can be either physical
or dynamic.
➙Vacuum chamber defines the physical aperture
➙Momentum acceptance defines the dynamical aperture

From: Sannibale USPAS Lecture
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Important processes in particle loss

✺ Gas scattering, scattering with the other particles in the
beam, quantum lifetime, tune resonances, &collisions

✺ Radiation damping plays a major role for electron/positron
rings
➙For ions, lifetime is usually much longer

• Perturbations progressively build-up & generate losses

✺ Most applications require storing the beam as long as
possible

==> limiting the effects of the residual gas scattering
==> ultra high vacuum technology

From: Sannibale USPAS Lecture
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What do we mean by lifetime?

✺ Number of particles lost at time t  is proportional to the
number of particles present in the beam at time t

✺ Define the lifetime τ = 1/α; then

✺ Lifetime is the time to reduce the number of beam particles
to 1/e of the initial value

✺ Calculate the lifetime due to the individual effects (gas,
Touschek, …)
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Is the lifetime really constant?

✺ In typical electron storage rings, lifetime depends on beam
current

✺ Example: the Touschek effect losses depend on current.
➙ When the stored current decreases, the losses due to Touschek

decrease ==> lifetime increases

✺ Example: Synchrotron radiation radiated by the beam
desorbs gas molecules trapped in the vacuum chamber
➙ The higher the stored current, the higher the synchrotron radiation

intensity and the higher the desorption from the wall.
➙ Pressure in the vacuum chamber increases with current
==> increased scattering between the beam and the residual gas
==> reduction of the beam lifetime

From: Sannibale USPAS Lecture
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Examples of beam lifetime measurements

ALSALS

DADAΦΦNENE

Electrons Positrons
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Beam loss by scattering

✺ Elastic (Coulomb scattering) from
residual background gas
➙ Scattered beam particle undergoes

transverse (betatron) oscillations.
➙ If the oscillation amplitude exceeds

ring acceptance the particle is lost

✺ Inelastic scattering causes
particles to lose energy
➙ Bremsstrahlung or atomic excitation
➙ If energy loss exceeds the

momentum acceptance the particle is
lost

Incident positive
particles

nucleus

photon

Rutherford cross section

Bremsstrahlung cross section
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Elastic scattering loss process

✺ Loss rate is
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Gas scattering lifetime

✺ Integrating yields

✺ For M-atomic molecules of gas

✺  For a ring with acceptance  εA & for small θ
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Inelastic scattering lifetimes

✺ Beam-gas bremsstrahlung: if EA is the energy acceptance

✺ Inelastic excitation: For an average ßn
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ADA - The first storage ring collider (e+e-)
by B. Touschek at  Frascati (1960)

The storage ring collider idea was invented by R.
Wiederoe in 1943
  – Collaboration with B. Touschek
  – Patent disclosure 1949

Completed in less than one year
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Touschek effect:
Intra-beam Coulomb scattering

✺ Coulomb scattering between beam particles can transfer
transverse momentum to the longitudinal plane
➙ If the p+Δp of  the scattered particles is outside the momentum

acceptance, the particles are lost
➙ First observation by Bruno Touschek at ADA e+e- ring

✺ Computation is best done in the beam frame where the
relative motion of the particles is non-relativistic
➙ Then boost the result to the lab frame
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Transverse quantum lifetime

✺ At a fixed s, transverse particle motion is purely sinusoidal

✺ Tunes are chosen in order to avoid resonances.
➙ At a fixed azimuthal position, a particle turn after turn sweeps all

possible positions between the envelope

✺ Photon emission randomly changes the “invariant” a &
consequently changes the trajectory envelope as well.

✺ Cumulative photon emission can bring the particle
envelope beyond acceptance in some azimuthal point
➙ The particle is lost

! 

xT = a "n sin #" n
t +$( ) T = x,y
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Quantum lifetime was first estimated by
Bruck & Sands

✺ Quantum lifetime varies very strongly with the ratio
between acceptance & rms size.

Values for this ratio ≥6 are usually required
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Lifetime summary
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In colliders the beam-beam collisions also deplete
the beams

This gives the luminosity lifetime



US Particle Accelerator School

LEP-3
Life gets hard very fast

William A. Barletta
Director, US Particle Accelerator School

Dept. of Physics, MIT
Economics Faculty, University of Ljubljana
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Physics of a Higgs Factory

✺ Dominant decay reaction is e+ + e- => H =>W + Z

✺ MW+MZ = 125 + 91.2 GeV/c2

==> set our CM energy a little higher: ~240 GeV

✺ Higgs production cross section ~ 220 fb  (2.2 x 10-37 cm2)

✺ Peak L = 1034 cm-1 s-1  = < L> ~ 1033 cm-1 s-1

✺ ~30 fb-1 / year ==> 6600 Higgs / year

✺ Total cross-section at ~ 100 pb•(100GeV/E)2

We don’t have any choice about these numbers 
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Tune shift limited luminosity of the collider
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We can only choose I(A) and ß*(cm)

✺ For the LHC tunnel with fdipole = 2/3,  ρ ~ 3000 m

✺  Remember that

✺ Therefore,  Bmax = 0.134 T

✺ Each beam particle  will lose to synchrotron radiation

or 6.2 GeV per turn
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Ibeam = 7.5 mA ==>  ~100 MW of radiation

✺ Then

✺ Therefore to meet the luminosity goal
<ß*

xß*
y>1/2

 ~ 0.1 cm

✺ Is this possible? Recall that is the depth of focus at the IP
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Bunch length is determined by Vrf

✺ The analysis of longitudinal dynamics gives

where αc = (ΔL/L) / (Δp/p) must be ~ 10-5 for electrons to
remain in the beam pipe

✺ To know bunch length we need to know Δp/p ~ ΔE/E

✺ For electrons to a good approximation
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For our Higgs factory εcrit = 1.27 MeV

✺ Therefore

✺ The rf-bucket must contain this energy spread in the beam

✺ As Uo ~ 6.2 GeV,
Vrf,max > 6.2 GeV + “safety margin” to contain ΔE/E

✺ Some addition analysis

✺ The greater the over-voltage, the shorter the bunch
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For the Higgs factory…

✺ The maximum accelerating voltage must exceed 9 GeV
➙ Also yields σz = 3 mm which is okay for ß* = 1 mm

✺ A more comfortable choice is 11 GeV (it’s only money)
➙ ==> CW superconducting linac for LEP 3
➙ This sets the synchronous phase

✺ For the next step we need to know the beam size

✺ Therefore, we must estimate the natural emittance which is
determined by the synchrotron radiation ΔE/E
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The minimum horizontal emittance
for an achromatic transport
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Because αc is so small,
we cannot achieve the minimum emittance

✺ For estimation purposes we will choose 20 εmin as the
mean of the x & y emittances

✺ For the LHC tunnel a maximum practical  ipole length is
15 m
➙ A triple bend achromat ~ 80 meters long ==> θ = 2.67x10-2

<ε> ~ 7.6 nm-rad ==> σtransverse = 2.8 µm

How many particles are in the bunch?
Or how many bunches are in the ring?
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We already assumed that
the luminosity is at the tune-shift limit

✺ We have

✺ Or

✺ So,      Ne ~ 8 x 1011 per bunch

✺ Ibeam = 7.5 mA ==> there are only 5 bunches in the ring
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Space charge fields at the collision point

electrons positrons

At Interaction Point space charge cancels; currents add
==>  strong beam-beam focus

--> Luminosity enhancement
--> Very strong synchrotron radiation

This is important in linear colliders

What about the beams in LEP-3?
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At the collision point…

Ipeak = Ne /4 σz   ==> Ipeak = 100 kA

✺ Therefore, at the beam edge (2σ)

B = I(A)/5r(cm) = 36 MG !

✺ When the beams collide they will emit synchrotron
radiation (beamstrahlung)

✺  For LEP-3  Ecrit = 35 GeV !  (There are quantum corrections)
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The rf-bucket cannot contain such a big ΔE/E
Beamstrahlung limits beam lifetime & energy resolution of events
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There are other problems

✺ Remember the Compton scattering of photons up shifts the
energy by 4 γ2

✺ Where are the photons?
➙ The beam tube is filled with thermal photons (25 meV)

✺ In LEP-3 these photons can be up-shifted  as much as  2.4 GeV
➙ 2% of beam energy cannot be contained
➙ We need to put in the Compton cross-section and photon density to find

out how rapidly beam is lost

E=γmc2 λout

λin


