Safety System Management

Ken Barat Jan 2012 USPAS

Critical Elements

- Management at a Accelerator Facility has several roles
- First to ensure that risk is reduced through a number of safety approaches (systems)
- This will include
 - Machine Safety
 - User Safety
 - Staff Safety

Elements of SS Management

- The objective of safety system management is to ensure that the desired level of risk reduction is maintained over the lifetime of the system.
- This needs to involve all persons that are affected by the operation and use of the system. Many of which will resent this role, distracts from their daily activities

Machine Safety

- As you expect much of this course will deal with elements of machine safety
- Which of course it should and you want to hear about

User Safety

- User Safety has two levels
- Preventing the user population from damaging the accelerator
- Preventing the user population from hurting themselves and others
- Polices need to be in place to protect these people

Staff Safety

- Every accelerator operates with some level inhouse staff
 - Control operators
 - Craft staff
 - Housekeeping
 - Safety staff
- Polices must be in place to protect these people

Exercises

- We will have a on going exercise where you are the safety committee tasked to develop procedures to protect users and your own people
- We will use the Advanced Light Source, a third generation light source as our example

61508-1 Elements

- Per the referenced standard, management has additional responsibilities
- Establishing safety systems/procedures
- Seeing to the documentation of that system
- Managing change of the system and its elements
- Failure in any of these areas will cause your safety system to fall, either abruptly or in a gradual spiral downward

Management of Change

- Ensure that lifecycle is not broken
 - Systems are in place for all aspects of machine use and lifetime

• Established procedures for change

• Plan for decommissioning

IEC61508 – Management of Functional Safety Section 6

Those organizations or individuals that have overall responsibility for one or more phases of the overall [*safety system*] in respect of those phases for which they have overall responsibility, specify all management and technical activities that are necessary to ensure that the safety-related systems achieve and maintain the required functional safety. In particular, the following should be considered:

- a) the policy and strategy for achieving functional safety, together with the means for evaluating its achievement, and the means by which this is communicated within the organization to ensure a culture of safe working;
- b) identification of the persons, departments and organizations which are responsible for carrying out and reviewing the applicable overall [*safety system*] lifecycle phases (including, where relevant, licensing authorities or safety regulatory bodies);
- c) the overall [safety system] lifecycle phases to be applied;
- d) the way in which information is to be structured and the extent of the information to be documented;

IEC61508 – SS Management Requirements

e) the selected measures and techniques used to meet the requirements of a specified [*requirement*]f) the functional safety assessment activities

- g) the procedures for ensuring prompt follow-up and satisfactory resolution of recommendations relating to E/E/PE safety-related systems arising from
 - hazard and risk analysis
 - functional safety assessment
 - verification activities
 - validation activities
 - configuration management
- h) the procedures for ensuring that applicable parties involved in any of the overall [safety system] lifecycle activities are competent to carry out the activities for which they are accountable; in particular, the following should be specified:
 - the training of staff in diagnosing and repairing faults and in system testing;
 - the training of operations staff;
 - the retraining of staff at periodic intervals;

i) the procedures which ensure that hazardous incidents (or incidents with potential to create hazards) are analyzed, and that recommendations made to minimize the probability of a repeat occurrence;

IEC61508 – SS Management Requirements

- j) the procedures for analyzing operations and maintenance performance. In particular procedures for – recognizing systematic faults which could jeopardize functional safety, including procedures used during routine maintenance which detect recurring faults;
 - assessing whether the demand rates and failure rates during operation and maintenance are in accordance with assumptions made during the design of the system;

k) requirements for periodic functional safety audits in accordance with this sub clause including

- the frequency of the functional safety audits;
- consideration as to the level of independence required for those responsible for the audits;
- the documentation and follow-up activities;

I) the procedures for initiating modifications to the safety-related systems;

m) the required approval procedure and authority for modifications;

IEC61508 – SS Management Requirements

- n) the procedures for maintaining accurate information on potential hazards and safety-related systems;
- o) the procedures for configuration management of the [*safety system*] during the overall [*safety system*] lifecycle phases; in particular the following should be specified:
 - the stage at which formal configuration control is to be implemented;
 - the procedures to be used for uniquely identifying all constituent parts of an item (hardware and software);
 - the procedures for preventing unauthorized items from entering service;
- p) where appropriate, the provision of training and information for the emergency services.

Management of Management

Management must understand their responsibilities

Easy for managers to lose sight of their role

- Assume responsibility for acceptable level of risk
- Provide staff adequate resources and training
- Establishment of policy and strategy for achieving safety goals
- Dealing with outside regulatory or funding agencies
- Know how to Walk the talk

Step 1: Policy

- Senior management:
 - Establishes expectations
 - Provides sources of information
 - Institutional plans
 - Strategic plans
 - Contract requirements
 - External/internal commitments
- Example of National Ignition Facility

Step 1: Policy

- Senior management:
 - Establishes expectations
 - Provides sources of information
 - Institutional plans
 - Strategic plans
 - Contract requirements
 - External/internal commitments

Step 2: Planning

- Defining work scope
- Budget
- Timelines
- Hazard identification & characterization
- Develop controls
- System Interfaces

Step 2: Planning

- Civil construction or modifications
 - Access Control
 - Life Safety
 - Shielding
 - Potential impact on SS hardware
- Potentially hazardous equipment design, development, and modification.
 - Shutdown Methods
 - Status Feedback

Step 2: Planning

- Spare parts
- Determine the level of review and approval needed to bring system into operation
 - Readiness Review
 - Peer Review (internal or external; formal or informal)
 - Mechanism to respond to review findings
- Start configuration management (CM) program Earlier the better

Purpose of CM Program

- Is to establish a mechanisms for consistency between the appropriate design requirements, physical configuration, and documentation of critical items necessary to protect workers and the public during the lifecycle of a facility.
- Make sure all work even repairs fits into the desired goal and safety considerations are reviewed.

Configuration Management (CM)

- A program needs to be developed that fits into the needs and resources of the project and project team
- The agreed to CM requires
 - Training of staff
 - Support by management
 - Monitoring
 - Commitment to follow

Need to go back and improve as use history develops

Graded Approach

CM: Program Management

- Identify critical items based on facility safety basis documents
- Determine the configuration level for each critical item
- Establish a system for controlling changes
 - How, and by whom, shall changes be reviewed
 - Who has approval authority for changes?
 - Who will set priorities?

CM: Design Requirements

- Documents are added, changed, or deleted using the change control process which ensures the current configurations are known and controlled at all times.
- Interfaces with other systems are clearly identified.
- Identifying interfaces is important for interfacing systems that may have different CM levels or CM owners.

Document Control

- Identify the types and specific documents to be included within the CM Program.
- Determine how they will be stored to protect them from loss or damage.
- How will the documents & drawing be numbered and tracked so that you are sure most current documents are in use?
- Ensure documents can be easily retrieved

Step 3: Implementation & Operation

- Develop Users' Manual and other work procedures documents
 - Facility access control
 - Sweep procedures
 - Certification procedures/checklists
 - Integrate into facility operational procedures
 - Maintenance procedures
 - Safety system bypass CM requirements
 - Troubleshooting guides
 - Training/education documents
 - Change Control procedures
 - Can you think of a few more?

CM: Change Control

- The objective of the change control element is to maintain consistency among the design requirements, physical configuration, and facility documentation as changes are made.
- This objective can be met if needed changes are properly identified, evaluated for impact to safety and to other components executed in a controlled manner, and verified when complete.

Change Control

- Changes may include changes to hardware, maintenance procedures, processes, operations, documents, computer software, and inventory limits, as well as temporary modifications.
- Review each specific proposed change to determine whether it is within the bounds of the design requirements.
- Ensure affected parties are made aware of the change.

System Maintenance

- Don't rely on "reactive maintenance"
- Instead, focus on
 - Preventive maintenance
 - Training
 - Spare part quality
 - Suspect counterfeit
 - Vendor reliablity
 - Design improvements

Step 4: Checking & Corrective Action

- Should be conducted periodically during the life of the system
- Should also be conducted whenever a change or modification is performed that impacts the safety basis
- Do not be afraid to hold reviews of components of your safety system
 - Needs to have some people from outside your organization

Step 4: Checking & Corrective Action

Documented

- Corrective actions tracked
- Are corrective actions working
- Evaluated for trends and opportunities for continuous improvement

Step 5: Management Review

- Top management should periodically review system management to ensure it is meeting performance expectations
 - Self-Assessments
 - Contract performance review

Why Quality Initiatives Fail

- Quality programs often struggle to gain initial acceptance and to sustain continuous improvement. (U.S. General Accounting Office, 1991)
- The inability to manage an improvement program as a dynamic process is the main determinant of program failure.
- No system is so good that over time it can not be improved, emphasis of machine may change

Certification

 Safety systems require periodic certification in order to uncover dangerous undetected failures.

• Exercises all components of a system

• Should have an independent reviewer

Training

- SS Designers
- Maintenance Personnel
- Machine Operators
- Management
- User
- Your staff

Bypass

- Bypassing of safety system components during the lifetime of a facility is inevitable.
 - Final devices should have a manual energy isolation method that will provide equivalent protection as the automated safety system, e.g. lock out/tag out. This should be in the design requirements for the device.

Elements of SS Management

- The objective of safety system management is to ensure that the desired level of risk reduction is maintained over the lifetime of the system.
- This needs to involve all persons that are affected by the operation and use of the system. Many of which will resent this role, distracts from their daily activities

Documentation

- What would safety be without documentation?
- Section 5 of 61508-1 deals with documentation

Documentations

- Shall:
- Be accurate
- Easy to understand by those persons having to make use of it
- Suit the purpose for which it is intended
- Be accessible and maintainable

Documentation

- Shall contain sufficient information for the phase it is indented to cover
- Be available to allow to conduct activities
 - Know where they are
 - Be retrievable, searchable
- Have a workable documentation process
- Be able to tell when a revision has been made

