USPAS Course on Photocathode Physics

John Smedley, BNL and Matt Poelker, TJNAF

Lecture 8 Practical Matters

Austin, TX January 16-20, 2011

Lecture 8:

- Ion Bombardment
- High Voltage: avoiding breakdown and field emission
- A clean photocathode
- Vacuum Hot Filament Gauges

Imperfect Vacuum = Finite Lifetime

Compare NEW and OLD load locked guns

"Further Measurements of Photocathode Operational Lifetime at Beam Current > 1mA using an Improved 100 kV DC High Voltage_GaAs Photogun," J. Grames, et al., Proceedings Polarized Electron Source Workshop, SPIN06, Tokyo, Japan

But Sometimes Lifetime is Still Not Good!!

- ✓ OK, good vacuum. What else matters?
- Clean laser beam, no stray light
- Good orbit, proper electron beam optics
- No field emission from cathode
- Reduce the active area of photocathode
- Move the laser away from the electrostatic center
- Increase the size of the laser beam
- Apply bias to the anode
- Operate at Higher Bias Voltage?

Good beam versus Bad Beam

The beam that doesn't make it to the experiment only serves to degrade vacuum. This leads to ion-bombardment and QE decay

"Free" beam loss monitoring

Designed and constructed by J. Hansknecht

UHV Ion Pump Power Supplies

Ion Pumps detect bad orbit and beamloss

Field Emission measured at (floating) anode versus Gun Bias Voltage

Anode won't always capture all FE.... Better to look for x-rays....

HV "Conditioning": sometimes it works

Lifetime Experiments at the Injector Test Cave

Imperfect Vacuum and Ion Bombardment

photocathode

Electron beam makes ions, that are attracted to the EC of the photocathode

I mentioned other factors can limit lifetime: Field emission, photocathode material, laser wavelength, laser radial position on photocathode, beam optics, gun voltage

Avoid the Electrostatic Center (EC)

Ions create QE trough to electrostatic center

- characteristic QE "trench" from laser spot to EC. Ion are attracted to EC
- Laser spot size ~0.5 mm and can be moved to different locations on the photocathode.
- QE can be restored, but takes about 8 hours to heat and reactivate

- Activate with different Masks: 5 mm, 7 mm, and No Mask (12.8 mm)
- II. Measure Lifetime from different spots on Bulk GaAs with 532 nm green laser

6.0

5.5

5.0

4.5

4.0

3.5

3.0

10

Charge (C), I = 2.0 mA

QE (%)

Stray light, Spontaneous Emission from GaAs photocathode, and x-ray induced photoemission might be generating this "extra" beam

	l=0 (HV = 0, 100 kV)	I = 2 mA (Bulk GaAs, 532 nm, 350 μm Lase Spot) (HV = 100 kV)		
		5 mm Active Area	7 mm Active Area	12.8 mm Active
				Area
Anode Current	0.0 ± 0.3	0.0 ± 0.3	0.0 ± 0.3	-1001000
(pA)				
X-ray Detector	0.6 ± 0.3	1.5 ± 0.5	1.8 ± 0.5	3 – 7
(E-2 mR/h)				
Gun Vacuum	0	0	0	0 – 30
(pA)				
Y-Chamber	3.0	3.0	3.0	4 - 20
Vacuum (nA)				

 \star

Lesson: electrons from the edge of the photocathode strike the anode and vacuum chamber walls, degrading vacuum and limiting lifetime. Don't make beam from the edge of the photocathode!!!

Improve Lifetime with Larger Laser Spot?

(Best Solution – Improve Vacuum, but not easy)

Lifetime with Large/Small Laser Spots

"Further Measurements of Photocathode Operational Lifetime at Beam Current > 1mA using an Improved 100 kV DC High Voltage_GaAs Photogun," J. Grames, et al., Proceedings Polarized Electron Source Workshop, SPIN06, Tokyo, Japan

What about Ions Created Downstream of Anode?

Modifying the HV Chamber Anode Structure

Limiting Ionized Gas from HV Chamber

Unbiased vs. Biased Running at 5mA

Ions create QE trough to electrostatic center

Photocathode Lifetime at "EC" at 2mA

Improve Lifetime with Higher Bias Voltage?

Prolong Photocathode Charge Lifetime

Field Emission – A Very Important Issue

- Previous measurements with flat electrodes, small gaps and low voltage - not very useful
- Want to keep gun dimensions about the same – suggests our 200kV gun needs "quiet" electrodes to 10MV/m

Stainless Steel and Diamond-Paste Polishing Good to ~ 5MV/m and 100kV.

Work of Ken Surles-Law, Jefferson Lab

Single Crystal Niobium:

- Capable of operation at higher voltage and gradient?
- Buffer chemical polish (BCP) much easier than diamond-paste-polish

Conventional geometry: cathode electrode mounted on metal support structure

Replace conventional ceramic insulator with "Inverted" insulator: no

Single Crystal Nb: Good Cathode Electrode Material

No field emission at 225kV bias and 20mm gap

Why a Niobium Cathode Electrode?

Krypton Processing to Eliminate FE

Limiting the Active Area via Anodization

Normal photocathode; "out of box"

Anodized photocathode

- Electrons emitted from edge of wafer hit vacuum chamber walls. This is bad for vacuum.
- Anodization eliminates inadvertent photoemission from locations not intentionally illuminated with laser light
- Anodizing process dirties the photocathode surface, bad for QE

Atomic Hydrogen Cleaning

Photocathode sits here, inside vacuum chamber

Molecular hydrogen dissociated with RF inductive discharge

"Portable-H"

Atomic Hydrogen Cleaning

- Extremely high QE from bulk GaAs
- Reliable cleaning method
- No wet chemicals
- In situ cleaning an option (i.e., put it on the gun or in prep chamber)

But not for High Polarization Photocathodes

Deep UHV gauges Theory and Practice

Marcy Stutzman Jefferson Lab

Bruce Kendall Elvac Laboratories

Pressure ranges

Deep ultra high vacuum: below 1x10⁻¹⁰ Torr

- Commercially available gauges exist
- Care must be taken in using gauges properly
- Extreme high vacuum: below 1x10⁻¹² Torr
 - Few room temperature systems obtain XHV
 - Electron sources for accelerators would benefit
 - Particle collider interaction regions
 - Reactive surface science applications
 - Nano-electronics
- Ionization gauges required to measure deep UHV
 - Hot filament gauges
 - Cold cathode gauges

HOT FILAMENT GAUGES

Bayard-Alpert Modulated Bayard-Alpert Extractor Bessel Box Bent Beam

Hot filament gauges

P = nkT

- Electrons produced by hot filament
- Electrons accelerated toward biased grid
- Gas molecules ionized by electron impact
- Ionized molecules collected on wire
- Collector current proportional to gas density

HOT FILAMENT GAUGE ERRORS

X-ray limit Inverse X-ray effect Electron Stimulated Desorption Outgassing from heated surfaces

Hot cathode gauge operation and errors

- 1. True gas ionization
 - Positive current
- 2. X-ray effect
 - e- on anode -> photons emitted
 - Photons on collector -> electrons emitted
 - Extra positive current
- 3. Inverse X-ray effect
 - e- on anode -> photons
 - Photons on walls -> electrons
 - Electrons to collector
 - Extra negative current
- 4. Electron stimulated desorption
 - e- strike gas molecules on anode
 - Gas ionized and reaches collector
 - can be distinguished with energy analysis
 - Neutral atom desorbed
 - Ionized within grid
 - Indistinguishable from real gas
 - Must eliminate souce

 $I^{+} = I_{real} + I_{x-ray}^{-} - I_{inv,x-ray}^{-} + I_{ESD}$

Reduction of x-ray and ESD errors

Modulation Geometry

- Extends BA gauge below 10⁻⁹ Torr
- Redhead modulated gauges 1960s
 - ETI / Teledyne sold commercial version
- Modulator varied between potentials near grid and collector voltages
 - Careful selection of potentials required to avoid changing ESD and x-ray currents
 - Real signal modulates, background constant
 - High pressure (10⁻⁸ Torr) determination of modulation constant
- MBAG benefits
 - Retrofit existing BAG with external modulation unit
 - Unaffected by electrometer drift
 - Read pressure near/better? extractor gauge

Reduction of x-ray and ESD errors

- CERN style commerical MBAG coming from Volotek
 - CERN vendor for MBAG controllers
 - Finishing prototyping
 - Commercial manufacturing run soon
 - Hope to exceed extractor capabilities
 - XHV vacuum work
 - heat treat flanges
 - ceramic feedthroughs (previously glass)
 - ▶ 4.5" flange less wall interference
 - CERN working on qualification
- Televac/ETI have produced metal MBAG as special order – Kendall, custom electronics

Reduction of x-ray and ESD errors

Geometry

- Reduce collector solid angle (thin wire BA)
- Shield the collector from line of sight to the grid
 - Extractor
 - Bent Beam
 - Helmer
 - Ion Spectroscopy
 - Bessel Box
 - AxTran
- Energy discrimination
 - Repeller in extractor
 - Bent beam gauges

Oerlikon Leybold Extractor gauge

X-ray limit measurements

Fumio Watanabe JVSTA 9 (1991).

Determines x-ray limit for certain setup Current at reflector > grid Current with voltages off

Gauge	X-ray Limit (Torr)
Watanabe A	2.1 x 10 ⁻¹²
Watanabe B	1.6 x 10 ⁻¹²
Watanabe C	1.9 x 10 ⁻¹²
JLab A	0.63 x 10 ⁻¹²
JLab Gun 2	>2 x 10 ⁻¹²
JLab Gun 3	>2 x 10 ⁻¹²

Modulated extractor gauge

- Cornell vacuum group with Charlie Sinclair (retired)
 - Modulate reflector potential with AC voltage
 - Read signal using Lock-in amplifier system
 - Measure field-off current (often negative) and account for this
 - Real time measurement with compensation for x-ray limit

Extractor gauge long-term stability data

- Excellent stability with near continuous operation for more than a decade
- Venting 3-4 times per year
- Largest sensitivity changes follow system bakeouts
- Factors affecting stability
 - Excessive heating deformation
 - Contamination
 - Mechanical damage
 - Nude gauge mounting geometry
 - Degas protocol

Energy analysis for ESD ions

Bent Beam Gauges

Extractor (Torr)

Bessel Box

Application notes

- Hot filament gauges will heat walls
 - Reduce heat of gauge (1 mA instead of 10 mA)
 - Outgassing from walls reduced
 - More gas adsorbed on grid, walls -> ESD increased
 - Use better wall materials
 - BeCu Watanabe
 - Silco-steel™ Kendall
 - Heat walls until molecules don't stick
 - Kendall: operation 700-800K eliminates adsorbed molecules on walls and grid
 - Eliminates ESD neutrals
 - Watanabe: heated grid / cold cathode gauge
- Electronics issues
 - Cable leakage
 - Replace coax cables with twin-ax or tri-ax
 - Electrometer stability
 - Always use same head/control unit combination
- Calibrate each gauge (vs. spinning rotor gauge) regularly for optimal performance

COLD CATHODE GAUGES

Magnetron Inverted Magnetron Double Inverted Magnetron Ion pump?

Cold Cathode Gauge Operation

- Electron cloud trapped in crossed electric and magnetic fields
 - Spontaneously starts in presence of electric field at HV pressures
 - Electron cloud density limited by space charge effects
- Ionized gas collected at cathode
 - UHV starting element
 - Radioactive
 - Thermal
 - VU 🕨

Modern Cold Cathode Gauge

- No gauge heating
- Very rugged, low power consumption
 - Lunar missions, space applications
- Change in power law behavior at "magnetron knee" ~10⁻⁹ Torr
- Stray magnetic fields minimized in modern designs
- Accuracy for ELVAC modification of **Televac CCG**
 - Stronger magnets
 - Smaller volume
 - Precision alignment mounting jig
 - **Controller** improvements

Televac		
Double		
Inverted		

design

Kendall JVSTA 18 1724 (2000).

Edwards low field

Ion pump as a pressure gauge

- PE sputter DI pumps
- Penning cell
- Power supply with Electrometer

UHV ION

- Current linear vs. extractor gauge
- Minimum voltage to sustain discharge
- Does not work with all ion pump designs (Noble ion configuration)

Conclusions

Hot filament gauges

- X-ray limit, ESD ions
 - Geometry
 - Modulation
- ESD neutrals
 - Heated grid gauges
 - Novel materials
- Sensitive to abuse, contamination
- Lowest pressure measured with Helmer gauge

Cold cathode gauges

- Rugged, low energy consumption
 - Lunar, space applications
- Compensation for "knee" in electronics
- Ion pumps with sensitive current monitor shown to work as a relative pressure gauge
- Extension of conventional gauges toward XHV requires more work

Small market – few commercially available gauges Careful selection, utilization essential for accurate readings Deep UHV gauges essential for improvements toward XHV

Deep UHV/XHV gauges

- Extractor gauge
 - available for decades
 - x-ray limit reduced through geometry
 - x-ray limit quote: 7.5x10⁻¹³ Torr
- Axtran gauge
 - Bessel box energy discrimination
 - electron multiplier to assist in low current measurements
 - Purchased, not yet installed
 - Measurement limit quote: <7.5e-15 Torr
- Watanabe BBB (Bent Belt Beam) gauge
 - Newly designed (JVSTA 28 (2010) p. 486)
 - Operates with Leybold IE540 controller
 - 230° degree deflector (similar to Helmer)
 - BeCu housing to reduce I_{heating}
 - Manufacturer's lower limit: 4x10⁻¹⁴ Torr

Pressure Measurement = Current Measurement

Ionization gauge current contributions $I_{measured} = I_{real} + I_{x-ray} + I_{heating} + I_{ESD} + (I_{inv.x-ray} + I_{ESDneut.})$

 I_{real} : pressure dependent gas phase ions – species sensitive I_{X-ray} : x-ray induced electron desorption from collector – reduce by geometry

 I_{ESD} : ions arriving at collector from electron stimulated desorption (ESD) of molecules on the grid

- reduce by degassing grid

 $I_{heating}$: pressure rise due to filament heating – species sensitive – reduce by material selection, geometry, long duration

Gauge characterization chamber

- Heat treated twice
 - 400°C 10 days
- Outgassing (Q)
 - 3x10⁻¹⁴ Torr·L/s·cm²
- Q following 250°C bake
 6.3x10⁻¹⁴ Torr·L/s·cm²
- 3800 cm², 12L
- Pumping
 - 4 WP1250 NEGs, 60%
 1300 L/s
 - 40 L/s ion pump
 (behind right angle valve)

Predicted pressure 2x10⁻¹³ Torr

- Extractor Gauge
- BBB Gauge
- 2 Leybold IE540 controllers
- 2 Keithley electrometers
- UHV ion pump power supply
- Diagnostic cross with RGA and ion pump
- NEG activation flange

Linearity between gauges

BBB and Extractor compared

- vs. pressure
 - Leybold IE 540 source
 - Keithley Electrometer

Pressure varied in chamber by heating NEGs or chilling

Conversion to Torr using manufacturer calibration factor / sensitivity

- Depends on species
- Ionization energy
- Ionization current
- Geometry

Gauge responses linear response over decades, possible deviation at lowest pressures

Sensitivity

BBB and Extractor

- 120V electron energy
- 1.6 mA emission current
- geometry, collection efficiency vary

BBB vs. SRG data from previous setup

BBB sensitivity calculated using extractor

SRG Data: pressure 10⁵ higher than our area of concern Calculate BBB sensitivity from Extractor gauge pressure?

Collection efficiency

relative sensitivity

Can the deviation from constant behavior be explained by gauge backgrounds?

Background current measurements

Extractor x-ray current accounts for 3/5 of total measured signal

BBB signal of 35 fA with background of -1 fA

Gauge backgrounds measured at different times, different pressures

Sensitivity ratio: x-ray limit correction

- Subtraction of x-ray background for extractor gauge overcorrects
- What else?
 - ESD limits
 - Load due to gauges
 - Small current measurement errors
 - nonlinearity in gauge response?

Extractor current (Amps)

Electron stimulated desorption $I_{measured} = I_{real} + I_{x-ray} + I_{heating} + I_{ESD} + \dots$

- Electrons can liberate elements adsorbed on the grid
- If grid filament potential equal to electron energy, ESD difficult to separate
- Methods to reduce ESD
 - high energy electron bombardment (degas mode)
 - operate grid at elevated temperature
 - grid material optimization (BBB)
 - stabilize for months
 - Axtran: energy analysis since electron energy ≠ grid-filament potential

Use one gauge to measure the additional current generated by other hot filament $\Delta I (BBB) = 4.8 \text{ fA}$ $\Delta I (Extractor) = 5.6 \text{ fA}$

BeCu BBB housing should reduce effect Difference minimized after 6 months?

So what is our pressure? $I_{measured} = I_{real} + I_{x-ray} + I_{heating} + I_{ESD} + \dots$

Conclusions

- Pressure in our systems (nitrogen equivalent) corrected for gauge effects is near 1x10⁻¹² Torr
- BBB signal to noise good: Noise < 10% signal
- Extractor gauge: measurements at lowest pressures dominated by background
- BBB and extractor agree very well above 1x10⁻¹¹ Torr, diverge at lowest pressures
- The BBB gauge should be able to quantify pressure improvements in the bakable cryopump system.

Back up slides

Emittance and Brightness

Normalized Emittance from GaAs:

$$\varepsilon_{n,x,y} = \sqrt{\frac{q}{4\pi\varepsilon_0 E_s} \frac{k_B T_{eff}}{m_e c^2}}$$

- q Bunch Charge (= 0.4 pC, 200 μ A and 499 MHz)
- E_s Electric Field at GaAs surface
- T_{eff} Effective Temperature of GaAs (= 300 400 K, 780 nm)
- $k_B T_{eff}$ Thermal Energy (= 34 meV)

Gun HV (kV)	${f E}_{s}$ (MV/m)	ε _n (μm)
100	2.0	0.011
140	2.8	0.009
200	4.0	0.008

InvGun2 : Lifetime at 2mA and 100kV bias: Versus Laser Position and Active Area

