

Lecture 7 RF linacs

William A. Barletta

Director, US Particle Accelerator School Dept. of Physics, MIT Economics Faculty, University of Ljubljana

S-band (~3 GHz) RF linac

Translate circuit model to a cavity model: Directly driven, re-entrant RF cavity

University of Ljubljand

ACULTY O CONOMIC

Properties of the RF pillbox cavity

- We want lowest mode: with only $\mathbf{E}_{z} \& \mathbf{B}_{\theta}$
- Maxwell's equations are:

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{\theta}) = \frac{1}{c^2}\frac{\partial}{\partial t}E_z \quad \text{and} \quad \frac{\partial}{\partial r}E_z = \frac{\partial}{\partial t}B_{\theta}$$

Take derivatives

==>

$$\frac{\partial}{\partial t} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(rB_{\theta} \right) \right] = \frac{\partial}{\partial t} \left[\frac{\partial B_{\theta}}{\partial r} + \frac{B_{\theta}}{r} \right] = \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2}$$

$$\frac{\partial}{\partial r}\frac{\partial E_z}{\partial r} = \frac{\partial}{\partial r}\frac{\partial B_{\theta}}{\partial t}$$

$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} = \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2}$$

For a mode with frequency ω

✤ Therefore,

**

$$E_z'' + \frac{E_z'}{r} + \left(\frac{\omega}{c}\right)^2 E_z = 0$$

University of Ljubljand

FACULTY O

 \succ (Bessel's equation, 0 order)

✤ Hence,

$$E_z(r) = E_o J_o\left(\frac{\omega}{c}r\right)$$

• For conducting walls, $E_z(R) = 0$, therefore

$$\frac{2\pi f}{c}b = 2.405$$

E-fields & equivalent circuits for T₀₂₀ modes

University of Ljubljana FACULTY OF ECONOMICS

E-fields & equivalent circuits for T_{ono} modes

T_{0n0} has n coupled, resonant circuits; each L & C reduced by 1/n

Simple consequences of pillbox model

- ✤ Increasing R lowers frequency
 => Stored Energy, $\mathscr{C} \sim \omega^{-2}$
- Beam loading lowers E_z for the next bunch
- Lowering ω lowers the fractional beam loading
- Raising ω lowers $Q \sim \omega^{-1/2}$
- * If time between beam pulses, $T_s \sim Q/\omega$ almost all \mathcal{E} is lost in the walls

Keeping energy out of higher order modes

University of Ljubljand

FACULTY OF

Choose cavity dimensions to stay far from crossovers

The beam tube makes the field modes (& cell design) more complicated

- Peak E no longer on axis
 - $E_{pk} \sim 2 3 \times E_{acc}$ $FOM = E_{pk}/E_{acc}$
- ω_0 more sensitive to cavity dimensions
 - Mechanical tuning & detuning

University of Ljublja

ACULT

- Beam tubes add length & €'s w/o acceleration
- Beam induced voltages $\sim a^{-3}$
 - Instabilities

Plif

Cavity figures of merit

Figure of Merit: Accelerating voltage

The voltage varies during time that bunch takes to cross gap

University of Ljubljan

ACULTY

 \succ reduction of the peak voltage by Γ (transt time factor)

Compute the voltage gain correctly

University of Ljubljan

CONOMIC

The voltage gain seen by the beam can computed in the co-moving frame, or we can use the transit-time factor, Γ & compute V at fixed time

$$V_o^2 = \Gamma \int_{z_1}^{z_2} E(z) dz$$

Figure of merit from circuits - Q

 $Q = \frac{\omega_o \circ Energy \ stored}{Time \ average \ power \ loss} = \frac{2\pi \circ Energy \ stored}{Energy \ lost \ per \ cycle}$

$$\mathscr{O} = \frac{\mu_o}{2} \int_{v} |H|^2 dv = \frac{1}{2} L I_o I_o^*$$
$$\langle \mathscr{O} \rangle = \frac{R_{surf}}{2} \int |H|^2 ds = \frac{1}{2} I_o I_o^* R_{surf}$$

$$R_{surf} = \frac{1}{Conductivity \circ Skin \ depth} \sim \omega^{1/2}$$

$$\therefore Q = \frac{\sqrt{L/C}}{R_{surf}} = \left(\frac{\Delta\omega}{\omega_o}\right)^{-1}$$

Measuring the energy stored in the cavity allows us to measure Q

✤ We have computed the field in the fundamental mode

$$U = \int_{0}^{d} dz \int_{0}^{b} dr 2\pi r \left(\frac{\varepsilon E_{o}^{2}}{2}\right) J_{1}^{2}(2.405r/b)$$
$$= b^{2} d \left(\varepsilon E_{o}^{2}/2\right) J_{1}^{2}(2.405)$$

- To measure Q we excite the cavity and measure the E field as a function of time
- Energy lost per half cycle = $U\pi Q$
- Note: energy can be stored in the higher order modes that deflect the beam

Measuring the energy stored in the cavity allows us to measure

✤ We have computed the field in the fundamental mode

$$U = \int_{0}^{d} dz \int_{0}^{b} dr 2\pi r \left(\frac{\varepsilon E_{o}^{2}}{2} \right) J_{1}^{2} (2.405 r/b)$$
$$= b^{2} d \left(\varepsilon E_{o}^{2}/2 \right) J_{1}^{2} (2.405)$$

- To measure Q we excite the cavity and measure the E field as a function of time
- Energy lost per half cycle = $U\pi Q$
- Note: energy can be stored in the higher order modes that deflect the beam

Figure of merit for accelerating cavity: Power to produce the accelerating field

Resistive input (shunt) impedance at ω_o relates power dissipated in walls to accelerating voltage

$$R_{in} = \frac{\langle V^2(t) \rangle}{\mathscr{P}} = \frac{V_o^2}{2\mathscr{P}} = Q_v \sqrt{L/C}$$

Linac literature commonly defines "shunt impedance" without the "2"

$$\mathcal{R}_{in} = \frac{V_o^2}{\mathcal{P}} \sim \frac{1}{R_{surf}}$$

Typical values 25 - 50 $M\Omega$

Computing shunt impedance

 $\mathcal{R}_{in} = \frac{V_o^2}{\mathcal{P}}$ $\langle \mathcal{P} \rangle = \frac{R_{surf}}{2} \int_{s} |H|^2 ds$

$$R_{surf} = \frac{\mu\omega}{2\sigma_{dc}} = \pi Z_o \frac{\delta_{skin}}{\lambda_{rf}} \text{ where } Z_o = \sqrt{\frac{\mu_o}{\varepsilon_o}} = 377\Omega$$

The on-axis field E and surface H are generally computed with a computer code such as SUPERFISH for a complicated cavity shape

Power the cavities so that $E_z(z,t) = E_z(z)e^{i\omega t}$

Return to the picture of the re-entrant cavity

- * Nose concentrate E_z near beam for fixed stored energy
- * Optimize nose cone to maximize V²; I.e., maximize R_{sh}/Q
- Make H-field region nearly spherical; raises Q & minimizes
 P for given stored energy

University of Ljubly

Thus, linacs can be considered to be an array of distorted pillbox cavities...

In warm linacs "nose cones" optimize the voltage per cell with respect to resistive dissipation

Q =

University of Ljubljan

Usually cells are feed in groups not individually.... and

Linacs cells are linked to minimize cost

==> coupled oscillators ==>multiple modes

9-cavity TESLA cell

Example of 3 coupled cavities

 $x_0 \left(1 - \frac{\omega_0^2}{\Omega^2}\right) + x_1 k = 0 \qquad \text{oscillator } n = 0$ $x_1 \left(1 - \frac{\omega_0^2}{\Omega^2}\right) + (x_0 + x_2) \frac{k}{2} = 0 \qquad \text{oscillator } n = 1$

$$x_2\left(1-\frac{\omega_0^2}{\Omega^2}\right)+x_1k=0$$
 oscillator $n=2$

 $x_j = i_j \sqrt{2L_o}$ and Ω = normal mode frequency

Write the coupled circuit equations in matrix form

$$\mathbf{L}\mathbf{x}_{q} = \frac{1}{\boldsymbol{\Omega}_{q}^{2}}\mathbf{x}_{q} \quad \text{where} \quad \mathbf{L} = \begin{pmatrix} 1/\omega_{o}^{2} & k/\omega_{o}^{2} & 0\\ k/2\omega_{o}^{2} & 1/\omega_{o}^{2} & k/2\omega_{o}^{2}\\ 0 & k/\omega_{o}^{2} & 1/\omega_{o}^{2} \end{pmatrix} \quad \text{and} \quad \mathbf{x}_{q} = \begin{pmatrix} x_{1}\\ x_{2}\\ x_{3} \end{pmatrix}$$

Compute eigenvalues & eigenvectors to find the three normal modes

Mode q = 0: zero mode
$$\Omega_0 = \frac{\omega_o}{\sqrt{1+k}}$$
 $\mathbf{x}_0 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$
Mode q = 1: $\pi/2$ mode $\Omega_1 = \omega_o$ $\mathbf{x}_1 = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$
Mode q = 2: π mode $\Omega_2 = \frac{\omega_o}{\sqrt{1-k}}$ $\mathbf{x}_2 = \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$

For a structure with N coupled cavities

- ➢ N normal modes, N frequencies
- From the equivalent circuit with magnetic coupling

University of Ljublja

CONOMIC

$$\omega_m = \frac{\omega_o}{\left(1 - B\cos\frac{m\pi}{N}\right)^{1/2}} \approx \omega_o \left(1 + B\cos\frac{m\pi}{N}\right)$$

where B= bandwidth (frequency difference between lowest & high frequency mode)

• Typically accelerators run in the π -mode

University of Ljubljana 5-cell π -mode cell with magnetic coupling CONOMIC RF INPUT COUPLING SLOTS TUNERS

The tuners change the frequencies by perturbing wall currents ==> changes the inductance ==> changes the energy stored in the magnetic field

$$\frac{\Delta\omega_o}{\omega_o} = \frac{\Delta U}{U}$$

Dispersion diagram for 5-cell structure

University of Ljubljani

CONOMICS

Plii **Power exchange with resonant cavities**

University of Ljubljana

FACULTY OF

Beam power out

/ rf

- Define "wall quality factor", Q_w, & "external" quality factor, Q_e
- Power into the walls is $P_w = \omega U / Q_w$.
- If P_{in} is turned off, then the power flowing out $P_e = \omega U/Q_e$
- ♦ Net rate of energy loss = $\omega U/Q_w + \omega U/Q_e = \omega U/Q_{loaded}$

Till time & coupling

Loaded fill time

$$\Gamma_{\rm fill} = 2Q_{\rm L}/\omega$$

University of Ljubljand

CONOMIC

• Critically coupled cavity: $P_{in} = P_w = 1/Q_e = 1/Q_w$

* In general, the coupling parameter $\beta = Q_w / Q_e$

Effects of the rf source & beam at resonance

Voltage produced by the generator is

$$V_{gr} = \frac{2\sqrt{\beta}}{1+\beta} \cdot \sqrt{R_{shunt}} P_{gen}$$

University of Ljubljana

FACULTY OF

The voltage produced by the beam is

$$V_{b,r} = \frac{i_{beam}}{Z_{tr}(1+\beta)} \approx \frac{I_{dc}R_{shunt}}{(1+\beta)}$$

Effects of the rf source & beam at resonance

University of Ljubljana

FACULTY OF

$$V_{accel} = \sqrt{R_{shunt}} P_{gen} \left[\frac{2\sqrt{\beta}}{1+\beta} \left(1 - \frac{K}{\sqrt{\beta}} \right) \right] = \sqrt{R_{shunt}} P_{wall}$$

where
$$K = \frac{I_{dc}}{2} \sqrt{\frac{R_{shunt}}{P_{gen}}}$$
 is the "loading factor"

 $\Rightarrow = V_{acc} \text{ decreases linearly with increasing beam current}$

Power flow in standing wave linac

University of Ljubljana

FACULTY OF ECONOMICS

Efficiency of the standing wave linac

University of Ljubljana

CONOMIC

Plif

What makes SC RF attractive?

Comparison of SC and NC RF

Superconducting RF

- High gradient
 => 1 GHz, meticulous care
- ♦ Mid-frequencies
 ==> Large stored energy, €
- ★ Large \mathcal{C}_s ==> very small $\Delta E/E$
- Large Q==> high efficiency

Normal Conductivity RF

- High gradient
 => high frequency (5 17 GHz)
- High frequency
 => low stored energy
- Low \mathscr{C}_{s} ==> ~10x larger $\Delta E/E$
- Low Q
 ==> reduced efficiency

Recall the circuit analog

As
$$R_{surf} = > 0$$
, the Q = $> \infty$.

In practice,

$$Q_{\rm nc} \sim 10^4$$
 $Q_{\rm sc} \sim 10^{11}$

Figure of merit for accelerating cavity: Power to produce the accelerating field

Iniversity of Ljublja

$$R_{in} = \frac{\langle V^2(t) \rangle}{\mathscr{P}} = \frac{V_o^2}{2\mathscr{P}} = Q_v \sqrt{L/C}$$

Linac literature more commonly defines "shunt impedance" without the "2"

$$\mathcal{R}_{in} = \frac{V_o^2}{\mathcal{P}} \sim \frac{1}{R_{surf}}$$

For SC-rf *P* is reduced by orders of magnitude **BUT, it is deposited @ 2K**

Traveling wave linacs

Electromagnetic waves

From Maxwell equations, we can derive

$$\nabla^{2} E_{i} = \frac{\partial^{2} E_{i}}{\partial x^{2}} + \frac{\partial^{2} E_{i}}{\partial y^{2}} + \frac{\partial^{2} E_{i}}{\partial z^{2}} = \frac{1}{c^{2}} \frac{\partial^{2} E_{i}}{\partial t^{2}} \quad i = x, y, z$$

for electromagnetic waves in free space (no charge or current distributions present).

The plane wave is a particular solution of the EM wave equation

$$\overline{E} = \overline{E}_o e^{i(\omega t - ks)} = \overline{E}_o \left[\cos(\omega t - ks) + i \sin(\omega t - ks) \right]$$
Phase of the wave $=\phi$

when

$$\omega = c k$$

Dispersion (Brillouin) diagram: monochromatic plane wave

University of Ljubljanu FACULTY OF

The phase of this plane wave is constant for

$$\frac{d\phi}{dt} = \omega - k\frac{ds}{dt} \equiv \omega - kv_{ph} = 0$$

or

$$v_{ph} = \frac{\omega}{k} = c$$

Plane wave representation of EM waves

In more generality, we can represent an arbitrary wave as a sum of plane waves:

$$\overline{E} = \sum_{n=-\infty}^{\infty} \overline{E}_{no} e^{i(n\omega_0 t - ks)} \qquad \overline{E} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dt f(\omega) e^{i(\omega t - ks)}$$

Periodic Case

Non-periodic Case

University of Ljubljan

CONOM

Exercise: Can the plane wave accelerate the particle in the x-direction?

University of Ljubljand

CONOMIC

Can accelerating structures be smooth waveguides?

✤ Assume the answer is "yes"

- Then $\mathbf{E} = \mathbf{E}(r, \theta) e^{i(\omega t kz)}$ with $\omega/k = v_{ph} < c$
- ♦ Transform to the frame co-moving at $v_{ph} < c$
- Then,
 - The structure is unchanged (by hypothesis)
 - > E is static (v_{ph} is zero in this frame)
 - ==> By Maxwell's equations, H =0
 - $\Longrightarrow \nabla \circ \mathbf{E} = 0$ and $\mathbf{E} = -\nabla \phi$

> But ϕ is constant at the walls (metallic boundary conditions) ==> $\mathbf{E} = 0$

The assumption is false, smooth structures have $v_{ph} > c$

University of Ljubljan

ACULTY

We need a longitudinal E-field to accelerate particles in vacuum

Iniversity of Ljubly

- What about traveling waves?
 - \succ Waves guided by perfectly conducting walls can have E_{long}

- But first, think back to phase stability
 - To get continual acceleration the wave & the particle must stay in phase
 - ➤ Therefore, we can accelerate a charge with a wave with a synchronous phase velocity, v_{ph} ≈ v_{particle} < c</p>

University of Ljubljand **Propagating modes & equivalent circuits** FACULTY OF λ A Ro E All frequencies can propagate L2 TRi · (a) C_1 L_1 L2 L-C2 16, C_1 LI Propagation is cut-off C2 at low frequencies TM_{10} (c

d) ==> lower v_{ph}

Similar for TM01 mode in the waveguide

Magnetic flux lines appear as continuous loops Electric flux lines appear with beginning and end points

Figure source: <u>www.opamp-electronics.com/tutorials/waveguide</u> Lessons In Electric Circuits copyright (C) 2000-2002 Tony R. Kuphaldt

Weakly coupled pillboxes

University of Ljubljana

FACULTY OF

TM_{0n} modes

Dispersion relation for SLAC structure

Small changes in *a* lead to large reduction in v_g University of Ljubljana

FACULTY OF

Notation

 $\beta_g = v_g/c = Relative group velocity$

 $E_a = Accelerating field (MV/m)$

 $E_s = Peak surface field (MV/m)$

 P_d = Power dissipated per length (MW/m)

 $P_t = Power transmitted (MW/m)$

w = Stored energy per length (J/m)

University of Ljublja

CONOMI

Structure parameters for TW linacs

University of Ljubljana FACULTY OF ECONOMICS

$$r_{shunt} = \frac{E_a^2}{|dP_t/dz|} \quad (M\Omega/m)$$

$$Q = \frac{w\omega}{|dP_t/dz|}$$

$$\frac{r_{shunt}}{Q} = \frac{E_a^2}{w\omega}$$

$$s = \frac{E_a^w}{w}$$
 = Elastance (MQ/m/µs)
 W_{acc} = emergy/length for acceleration

In a structure with a constant geometry,

the inductance & capacitance per unit length are constant

==> constant impedance structure

Why do we need beams?

Collide beams

FOMs: Collision rate, energy stability, Accelerating field

Examples: LHC, ILC, RHIC

In LHC storage rings...

University of Linbliana FACULTY OF ECONOMICS

- Limited space & Large rf trapping of particles
 V/cavity must be high
- ✤ Bunch length must be large (≤ 1 event/cm in luminous region)
 ▶ RF frequency must be low
- Energy lost in walls must be small
 - $> R_{surf}$ must be small

SC cavities were the only practical choice

For ILC, SC rf provides high power, low ε beams at high efficiency

University *of Ljubljan* FACULTY O

- To deliver required luminosity (500 fb⁻¹ in 4 years) ==>
 - powerful polarized electron & positron beams (11 MW /beam)
 - tiny beams at collision point ==> minimizing beam-structure interaction
- To limit power consumption ==> high "wall plug" to beam power efficiency
 - Even with SC rf, the site power is still 230 MW !

Why do we need beams?

Intense secondary beams

University of Ljublja

ACULT

1 MW target at SNS

FOM: Secondaries/primary Examples: spallation neutrons, neutrino beams

The Spallation Neutron Source

- I MW @ 1GeV (compare with ILC 11 MW at 500 GeV (upgradeable to 4 MW)
 - ==> miniscule beam loss into accelerator
 - ==> large aperture in cavities ==> large cavities
 - ==> low frequency
 - ==> high energy stability
 - ==>large stored energy
 - = high efficiency at E_z

==> SC RF

Matter to energy: Synchrotron radiation science

Synchrotron light source (pulsed incoherent X-ray emission)

FOM: Brilliance v. λ B = ph/s/mm²/mrad²/0.1%BW

Pulse duration

Science with X-rays Imaging Spectroscopy

Matter to energy: Energy Recovery Linacs Hard X-rays ==> ~5 GeV

Even higher brightness requires coherent emission ==> FEL

Free electron laser

FOM: Brightness v. λ Time structure

University of Ljubljand

CONOM

Full range of FEL-based science requires...

- ✤ Pulses rates 10 Hz to 10 MHz (NC limited to ~ 100 Hz)
 - High efficiency
- Pulse duration 10 fs 1 ps
- ✤ High gain
 - Excellent beam emittance
 - ==> Minimize wakefield effect
 - ==> large aperture
 - ==> low frequency
 - Stable beam energy & intensity
 - ==> large stored energy in cavities
 - ==> high Q

 \implies SC RF