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Lectures 1 and 2: summary

In Lecture 1, we:

• derived expressions for the damping times of the vertical,

horizontal, and longitudinal emittances;

• derived expressions for the equilibrium horizontal and

longitudinal emittances in an electron storage ring in terms

of the lattice functions and beam energy.

In Lecture 2, we derived expressions for the natural emittance

in storage rings with different lattice styles, in terms of the

number of cells and the beam energy.
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Lectures 1 and 2: key results

The momentum compaction factor is:

αp =
I1
C0
. (1)

The energy loss per turn is:

U0 =
Cγ

2π
E4
0I2, Cγ ≈ 8.846× 105 m/GeV3. (2)

The natural energy spread and bunch length are given by:

σ2δ = Cqγ
2 I3
jzI2

, σz =
αpc

ωs
σδ. (3)

The natural emittance is:

ε0 = Cqγ
2 I5
jxI2

, Cq ≈ 3.832× 10−13 m. (4)
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Lectures 1 and 2: synchrotron radiation integrals

The damping partition numbers are:

jx = 1− I4
I2
, jz = 2+

I4
I2
. (5)

The synchrotron radiation integrals are:

I1 =
∮

ηx

ρ
ds, (6)

I2 =
∮

1

ρ2
ds, (7)

I3 =
∮

1

|ρ|3 ds, (8)

I4 =
∮

ηx

ρ

(

1

ρ2
+2k1

)

ds, k1 =
e

P0

∂By

∂x
, (9)

I5 =
∮ Hx

|ρ|3 ds, Hx = γxη
2
x +2αxηxηpx+ βxη

2
px. (10)
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Lecture 3 objectives

In this lecture, we shall discuss issues associated with nonlinear

dynamics in storage rings.

In particular, we shall:

• show that lattices constructed using only dipoles and

quadrupoles have significant chromaticity (tune variation

with beam energy);

• show how the adverse effects of chromaticity can be

avoided by correcting the chromaticity using sextupoles;

• show that the use of sextupoles for correcting chromaticity

has a side effect in limiting the dynamic aperture, which in

turn limits the beam lifetime.

Nonlinear effects cannot be avoided in storage rings, and are of

crucial importance in determining practical limitations on

injection efficiency and beam lifetime.
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Effect of a focusing error on the betatron tune

Our first goal is to derive an expression showing how the

betatron tune in a storage ring changes with particle energy

(for fixed magnet strengths).

For simplicity, we shall consider the dynamics in just one

transverse degree of freedom.

The transfer matrix for a particle moving through a thin

quadrupole is:

M =

(

1 0
−K 1

)

, (11)

where:

K =
q

P

∫

∂By

∂x
ds. (12)
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Effect of a focusing error on the betatron tune

Note that:

K =
q

P

∫

∂By

∂x
ds =

1

f
, (13)

where f is the focal length of the magnet.

P is the momentum of the particle. A small increase in P leads

to a small increase in focal length (i.e. a reduction in focusing

strength).
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Effect of a focusing error on the betatron tune

Under the transformation:

P 7→ (1 + δ)P, (14)

the focusing strength transforms:

K 7→ K

1+ δ
≈ (1− δ)K, (15)

and the transfer matrix transforms:

M 7→
(

1 0
−(1− δ)K 1

)

≈
(

1 0
−K 1

)

·
(

1 0
δ ·K 1

)

. (16)

The effect of the energy deviation can be represented by

inserting a thin quadrupole alongside each real quadrupole in

the lattice.

This affects the betatron tune, as we shall now show.
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Effect of a focusing error on the betatron tune

Consider the single-turn matrix starting just after a given

quadrupole in a storage ring. We write the matrix in the

standard form:

R =

(

cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)

, (17)

where α, β, γ are the Twiss parameters.

µ gives the phase advance around the storage ring, i.e. the

rotation angle in phase space when a particle makes one turn

of the ring.

Note that the eigenvalues of R are:

λ± = e±iµ. (18)

This gives a way of finding the phase advance from any given

single-turn transfer matrix.
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Effect of a focusing error on the betatron tune

The single-turn transfer matrix is just the product of the

transfer matrices for all successive elements in the storage ring.

Therefore, in the presence of a single focusing error (of

strength dK) at the chosen quadrupole, the single-turn matrix

becomes:

R′ =
(

cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)

·
(

1 0
−dK 1

)

. (19)
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Effect of a focusing error on the betatron tune

The phase advance in the presence of the focusing error can be

found from the eigenvalues of R′.

After some algebra, we find:

µ′ = µ+ dµ, (20)

where:

dµ ≈ 1

2
β dK. (21)
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Chromaticity

In the case of a focusing error arising from an energy error on a

particle moving through the lattice, we would have:

dK = −δ ·K. (22)

To take account of the effect of focusing errors on all the

quadrupoles (which would arise from the energy deviation), we

simply integrate around the ring:

∆µ = −1

2

∮

β δ · k1 ds. (23)

where:

k1 =
q

P0

∂By

∂x
. (24)

P0 is the reference momentum, and ∆µ is the change in phase

advance with respect to a particle with the reference

momentum (i.e. zero energy deviation).
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Chromaticity

The linear chromaticity ξ is defined as the first-order derivative

of the betatron tune ν as a function of the energy deviation δ.

Since µ = 2πν, we can write for the horizontal chromaticity:

ξx = − 1

4π

∮

βxk1 ds. (25)

Since horizontally focusing quadrupoles are vertically

defocusing, and vice versa, the vertical chromaticity is:

ξy =
1

4π

∮

βyk1 ds. (26)

In any lattice, the beta function will tend to reach its largest

values in focusing quadrupoles (horizontally, k1 > 0), and its

smallest values in defocusing quadrupoles (horizontally, k1 < 0).

Therefore, the natural chromaticity (i.e. the linear chromaticity

without any correction by sextupoles) will always be negative.
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Why do we care about chromaticity?

Resonances occur when the tunes

satisfy:

mνx+ nνy = ℓ, (27)

for integer values of m, n and ℓ.

The natural chromaticity of a stor-

age ring can easily be large enough

that the tunes of particles with even

modest energy deviation can hit

integer or half-integer resonances.

This can lead to rapid loss of par-

ticles from the beam.

Also, certain beam instabilities (collective effects) are sensitive

to the chromaticity. Operating with a chromaticity that is close

to zero, or even slightly positive, can increase the limit on the

amount of current that can be stored in the ring before the

beam becomes unstable.
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Correcting the chromaticity with sextupoles

Fortunately, there is a (relatively) easy way to control the

chromaticity in a storage ring, even with a fixed linear lattice

design.

Particles with an energy deviation δ oscillate around a closed

orbit that is displaced from the closed orbit for δ = 0 by a

distance:

x = ηδ, (28)

where η is the dispersion.

In a sextupole magnet, the focusing strength varies with

horizontal position:

k2 =
q

P0

∂2By

∂x2
,

q

P0

∂By

∂x
= xk2. (29)

Locating sextupoles where the dispersion is large allows us to

provide additional focusing for off-energy particles, to

compensate the chromaticity of the quadrupoles.
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Correcting the chromaticity with sextupoles
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Correcting the chromaticity with sextupoles

Combining equations (28) and (29), we find that the linear

focusing provided by a sextupole is:

k1,sext = ηδ · k2. (30)

Notice that this has a direct dependence on the energy

deviation δ.

We can treat the focusing from sextupoles as a perturbation, in

the same way as we did the focusing error from the energy

deviation of a particle in a quadrupole.

Then, the total linear chromaticity, including quadrupoles and

sextupoles is:

ξ = − 1

4π

∮

β (k1 − ηk2) ds. (31)
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Correcting the chromaticity with sextupoles

Strictly speaking, equation (31) applies to the horizontal

motion:

ξx = − 1

4π

∮

βx (k1 − ηxk2) ds. (32)

But we can derive a similar expression for the vertical

chromaticity, using the same arguments:

ξy =
1

4π

∮

βy (k1 − ηxk2) ds. (33)

Note that βy is largest in vertically focusing quadrupoles,

k1 < 0; so the natural vertical chromaticity in a storage ring is

always negative (like the natural horizontal chromaticity).
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Correcting the chromaticity with sextupoles

Also note that sextupoles used to cancel the horizontal

chromaticity will tend to make the vertical chromaticity more

negative, and vice versa.

However, the chromatic effect of a sextupole depends on the

beta function, as well as on the dispersion and the strength of

the sextupole.

By locating sextupoles with k2 > 0 where βx is large and βy is

small, we can correct the horizontal chromaticity with relatively

little impact on the vertical chromaticity.

Similarly, by locating sextupoles with k2 < 0 where βy is large

and βx is small, we can correct the vertical chromaticity with

relatively little impact on the horizontal chromaticity.
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Example: correcting chromaticity in a FODO lattice
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Example: correcting chromaticity in a FODO lattice

Tune variation in a 24-cell FODO lattice, with energy deviation

from -2.5% to +2.5%:

Without sextupoles. With sextupoles.
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Example: correcting chromaticity in a DBA lattice
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Example: correcting chromaticity in a DBA lattice

Tune variation in a 24-cell DBA lattice, with energy deviation

from -2.0% to +2.0%:

Without sextupoles. With sextupoles.

Notice that even with sextupoles tuned to give zero

chromaticity, there are significant changes in tune with energy,

because of the higher-order chromaticity.
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Adverse effects of sextupoles: dynamic aperture

Sextupoles are necessary for correcting the dynamics of

particles which do not have exactly the energy for which the

lattice is designed.

Unfortunately, because the fields in sextupoles are nonlinear,

the sextupoles have “side effects” for particles that may have

the right energy, but are performing betatron oscillations (i.e.

are not following a closed orbit).

To understand the possible impact, let us calculate the change

in the betatron action resulting from a series of sextupole

“kicks” as a particle performs multiple turns around the ring.
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Resonances

The effects of different kinds of perturbation (dipole,

quadrupole, sextupole...) can be understood by considering

motion of a particle in phase space.

For example, with a dipole perturbation (∆px independent of

x), we can see that the betatron amplitude of a particle

increases rapidly if the tune is near an integer, but only slowly

near a half-integer.
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Resonances

However, if the tune is near a half-integer, a quadrupole

perturbation (∆px ∝ x) leads to rapid growth in betatron

amplitude.

Similarly, a sextupole perturbation (∆px ∝ x2) leads to a rapid

growth in betatron amplitude if the tune is close to a

third-integer.
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Betatron amplitude growth from sextupole perturbations

We can quantify the effects of sextupoles more precisely in

terms of the rate of change of the betatron action.

Under linear symplectic transport, the betatron action Jx (that

characterises the amplitude of a betatron oscillation) is

constant:

2Jx = γxx
2 +2αxxpx+ βxp

2
x. (34)

When a particle passes through a sextupole, it receives a

transverse kick:

∆px = −1

2
k2x

2∆s. (35)

The corresponding change in the action is:

∆Jx = −1

2
k2
(

αxx
3 + βxx

2px
)

∆s. (36)
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Betatron amplitude growth from sextupole perturbations

For simplicity, let us assume that αx is small (i.e. the beta

function varies slowly around the ring).

Then, using:

x =
√

2βxJx cosφx, (37)

px ≈ −
√

2Jx

βx
sinφx, (38)

we find:
dJx

ds
≈ 1

8
k2 (2βxJx)

3
2 (sinφx+ sin3φx). (39)
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Betatron amplitude growth from sextupole perturbations

Since βx and k2 are periodic functions of s (with period equal

to the circumference of the ring, C), we can write:

β3/2
x k2 =

∑

n
k̃2,ne

−i[ψ(θ)+nθ] (40)

where:

θ = 2π
s

C
, (41)

and the Fourier amplitudes k̃2,n are given by:

k̃2,n =
1

C

∫ C

0
β3/2
x k2 e

i[ψ(θ)+nθ] dθ. (42)

ψ(θ) is any function with the same periodicity in s as βx and k2.

The reason for introducing this function will become clear

shortly.

Design of Electron Storage Rings 28 Part 3: Nonlinear Dynamics

Betatron amplitude growth from sextupole perturbations

Substituting the Fourier decomposition (40) into equation (39)

gives:

dJx

ds
≈ 1

8
(2Jx)

3
2
∑

n
k̃2,ne

−i[ψ(θ)+nθ] (sinφx+ sin3φx). (43)

Note that there are two “oscillating” factors in the right hand

side: one representing the variation of k2 (weighted by the beta

function), and another representing the phase advance.

If the frequencies of these two oscillations are different, then

they combine to give a rapid oscillation, which averages to

zero: the average rate of change of the action will be small.

But for particular cases, the frequency of the variation of k2
can resonate with the phase advance: in such cases, if k̃2,n is

large, the action can be quickly driven to very large values.
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Betatron amplitude growth from sextupole perturbations

Inspecting equation (43):

dJx

ds
≈ 1

8
(2Jx)

3
2
∑

n
k̃2,ne

−i[ψ(θ)+nθ] (sinφx+ sin3φx),

we see that resonance with the term containing sinφx occurs

when:

ψ(θ) = µx(s)− νxθ, (44)

and n is the integer closest to νx.

The Fourier coefficient in this case:

k̃2,n =
1

C

∫ C

0
β3/2
x k2 e

i[µx(s)−νxθ+nθ] dθ, (45)

represents the strength of a driving term for an integer

resonance, since this term has the largest impact when νx is an

integer.
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Betatron amplitude growth from sextupole perturbations

Again inspecting equation (43):

dJx

ds
≈ 1

8
(2Jx)

3
2
∑

n
k̃2,ne

−i[ψ(θ)+nθ] (sinφx+ sin3φx),

we see that resonance with the term containing sin 3φx occurs

when:

ψ(θ) = 3(µx(s)− νxθ), (46)

and n is the integer closest to 3νx.

The Fourier coefficient in this case:

k̃2,n =
1

C

∫ C

0
β3/2
x k2 e

i[3(µx(s)−νxθ)+nθ] dθ, (47)

represents the strength of a driving term for a third integer

resonance, since this term has the largest impact when 3νx is

an integer.
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Betatron amplitude growth from sextupole perturbations

Note that there are two conditions for the action of a particle

to be driven to large values by the sextupoles in a lattice:

1. The tune of the lattice must be close to an integer, or a

third integer.

2. The resonant driving term must be significantly large.

Usually, of course, we wish to avoid particles reaching large

betatron amplitudes.

If a lattice is not carefully designed to avoid both the

conditions above, then it is quite likely that trajectories with

even small initial amplitudes rapidly become unstable.

Such trajectories are said to be outside the dynamic aperture

of the lattice.
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Resonances: effects in phase space

Horizontal phase space in the ALS, close to a third-integer

resonance, produced by tracking in a model of the lattice.

D. Robin, J. Safranek, W. Decking, “Realizing the benefits of restored

periodicity in the Advance Light Source,” PRST-AB, 2-044001 (1999).
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Resonances: effects in phase space

Effect of third-integer resonance on beam distribution. Top: SR light

monitor images. Bottom: (simulated) horizontal phase space.

D. Robin, J. Safranek, W. Decking, “Realizing the benefits of restored

periodicity in the Advance Light Source,” PRST-AB, 2-044001 (1999).
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Frequency map analysis of particle dynamics in the ALS

C. Steier, D. Robin, J. Laskar,
L. Nadolski, “Lattice model
calibration and frequency map
measurements at the ALS,”
Proc. EPAC2000, Vienna,
Austria (2000).

D. Robin, C. Steier, J. Laskar,
L. Nadolski, “Global dynamics
of the Advanced Light Source
revealed through experimen-
tal frequency map analysis,”
Phys. Rev. Lett. 85, 3, pp.
558-561 (2000).
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Frequency map analysis of particle dynamics in the ALS

C. Steier, D. Robin, J. Laskar, L. Nadolski, “Lattice model calibration and frequency map
measurements at the ALS,” Proc. EPAC2000, Vienna, Austria (2000).

D. Robin, C. Steier, J. Laskar, L. Nadolski, “Global dynamics of the Advanced Light
Source revealed through experimental frequency map analysis,” Phys. Rev. Lett. 85, 3, pp.
558-561 (2000).
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Dynamic energy acceptance

The dynamic aperture depends on the energy deviation.

The range of energy deviation over which the (transverse)

dynamic aperture is non-zero is called the dynamic energy

acceptance.

The energy acceptance is of significant importance in (low

emittance) storage rings for light sources, because it plays a

major role in determining the beam lifetime, which in turn is

one of the major performance metrics.

Usually, the dynamic energy acceptance is determined using

tracking simulations; but it can also be explored using

experimental techniques.
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Dynamic energy acceptance

Left: Particle loss as a function of energy deviation (horizontal

axis) and horizontal kick amplitude (vertical axis). Right:

corresponding points in tune space.

C. Steier, D. Robin, L. Nadolski, W. Decking, Y. Wu, J. Laskar, “Measuring
and optimizing the momentum aperture in a particle accelerator,” Phys.
Rev. E, 65, 056506 (2002).
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Energy acceptance

If the energy deviation of a particle in a storage ring becomes

too large, then the particle will be lost from the beam. The

energy acceptance is the maximum energy deviation that a

particle can have and remain stored within the ring.

The energy acceptance of a storage ring is limited by two

effects:

1. RF acceptance: at large energy deviations, the RF voltage

becomes insufficient to restore the particle energy.

2. Dynamic acceptance: the dynamic aperture generally

shrinks with energy deviation, because of chromatic and

nonlinear effects.

In practice, the energy acceptance is the smaller of the RF and

dynamic acceptance.
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RF energy acceptance

Achieving a good energy acceptance is essential for achieving a

good beam lifetime, as we shall discuss shortly.

The RF acceptance is determined by parameters including the

RF voltage and frequency, momentum compaction factor, and

the energy loss per turn.

Recall the equations for longitudinal motion:

dz

ds
= −αpδ, (48)

dδ

ds
=

qVRF

C0P0c
[sin(φs − kz)− sinφs] . (49)

Solving these equations of motion gives a characteristic phase

space portrait...
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RF energy acceptance

There are distinct regions of stable motion (lines in closed

loops) and unstable motion (lines extending to infinity).

Regions of stable motion are bounded by the separatrices.

Separatrices intersect at unstable fixed points.
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RF energy acceptance

The equations of motion can be derived from a Hamiltonian:

H = −αp
2
δ2 − qVRF

kC0P0c
[cos(φs − kz)− kz sinφs] . (50)

On any line in the phase space portrait, the value of H is

constant. This provides a way to determine the energy

acceptance:

1. Determine the phase space coordinates of an unstable fixed

point, from the condition dz/ds = dδ/ds = 0.

2. Substitute these coordinates into the Hamiltonian, to find

the value Hs of the Hamiltonian on a separatrix.

3. Determine the energy deviation for which dδ/ds = 0, subject

to the constraint that the Hamiltonian takes the value Hs.
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RF energy acceptance

The result is that the RF acceptance of a storage ring is given

by:

|δ|max,RF =
2νs

hαp

√

1−
(

π

2
− φs

)

tanφs, (51)

where φs is the synchronous phase, given by:

φs = π − sin−1

(

U0

eVRF

)

, (52)

and νs is the synchrotron tune:

νs =

√

−eVRF
E0

hαp

2π
cosφs. (53)

VRF is the RF voltage; E0 the beam energy; U0 the energy loss

per turn; h the harmonic number; and αp is the momentum

compaction factor.
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RF energy acceptance: example

Based on parameters (similar to) the ALS:

Ring circumference 196.8m
Beam energy 1.9 GeV
RF frequency 500MHz
Momentum compaction factor 1.6× 10−3

Energy loss per turn 280 keV
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RF energy acceptance

The RF system of an electron storage ring is usually specified

to provide an energy acceptance of several percent.

Increasing the RF energy acceptance beyond a few percent

rarely provides any benefits, because the energy acceptance is

then limited by dynamic effects.

Left: Touschek lifetime in the

ALS as a function of the RF

acceptance.

C. Steier, D. Robin, L. Nadolski, W.
Decking, Y. Wu, J. Laskar, “Mea-
suring and optimizing the momentum
aperture in a particle accelerator,”
Phys. Rev. E, 65, 056506 (2002).
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Dynamic energy acceptance

The dynamic energy acceptance is best found by particle

tracking in an accelerator modelling code.

For a detailed analysis, particles are launched on the closed

orbit at different locations around the ring. At each initial

location, the particles are assigned a range of energy deviations

(to represent particles following a Touschek scattering event).

The particles are tracked for a number of turns corresponding

to one or more synchrotron radiation damping times. Those

particles that exceed some specified bound are assumed to be

lost from the beam.

A thorough analysis of the dynamic energy acceptance,

computed at small intervals around the ring circumference, can

be computationally expensive.
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Touschek scattering

Touschek scattering is generally the dominant lifetime

limitation in low emittance storage rings (for example, in third

generation synchrotron light sources).

Particles within a bunch are

continually making betatron

and synchrotron oscillations.

If two particles within a

bunch collide, there can be

a large momentum transfer

from the transverse to the

longitudinal directions.

If the energy deviation of either particle following the collision

is outside the energy acceptance of the storage ring, then the

particle will be lost from the beam.
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Touschek scattering

A proper analysis of Touschek scattering is complex, so here we

simply quote the standard formula for the beam lifetime:

1

τ
= − 1

N

dN

dt
=

r2e cN

8πσxσyσz

1

γ2|δ|3max
·D(θ2), (54)

where:

θ =
|δmax|βx
γσx

, (55)

and:

D(ǫ) =
√
ǫ

[

−3

2
e−ǫ+

ǫ

2

∫ ∞

ǫ

lnu

u
e−u du+

1

2
(3ǫ− ǫ ln ǫ+2)

∫ ∞

ǫ

e−u

u
du

]

.

(56)

Note that the energy acceptance |δ|max is the smaller of the

dynamic acceptance (which can vary around the ring) and the

RF acceptance.
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Touschek scattering
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Touschek scattering

Note that:

• The decay rate is proporational to the bunch population.

The decay is not exactly exponential: higher current means

shorter lifetime.

• Neglecting the dependence on D(θ), the decay rate is

inversely proportional to the bunch volume, σxσyσz. The

Touschek lifetime is shorter in rings with lower emittance.

Sometimes, third-harmonic cavities are used to “flatten”

the RF focusing, and increase the bunch length to improve

the lifetime without compromising the brightness.

• The lifetime is proportional to the square of the beam

energy (but the cost of the storage ring increases with

energy).

• There is a strong scaling of the lifetime with the energy

acceptance: neglecting the dependence on D(θ) the lifetime

increases with the cube of the energy acceptance.
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Summary

• Chromaticity (dependence of the optics on particle energy)

is an intrinsic property of accelerator beamlines.

• In a storage ring, chromaticity must be controlled so that

the trajectories of particles with significant energy deviation

do not cross harmful resonances in tune space.

• Sextupoles provide an effective way for controlling

chromaticity in storage rings. In low-emittance rings, strong

sextupoles are needed that produce strong nonlinear

“side-effects”.

• Understanding and controlling the nonlinear effects of

magnets in storage rings is necessary for achieving good

beam lifetime.

Design of Electron Storage Rings 51 Part 3: Nonlinear Dynamics


