Magnets and Lattices

— Accelerator building blocks
— Transverse beam dynamics
— coordinate system



Magnets: building blocks of an accelerator

* Both electric field and magnetic field can be used to
guide the particles path.

* Magnetic field is more effective for high energy particles,
i.e. particles with higher velocity.
— For a relativistic particle, what kind of the electric field one

needs to match the Lorentz force from a | Telsla magnetic
field?



Types of magnets in an accelerator

Dipoles: uniform magnetic field in the gap
— Bending dipoles

— Orbit steering

Quadrupoles

— Providing focusing field to keep beam from being
diverged

Sextupoles:

— Provide corrections of chromatic effect of beam
dynamics

Higher order multipoles



Dipole magnet

* Two magnetic poles
separated by a gap

* homogeneous magnetic
field between the gap

* Bending, steering, injection,
extraction




Deflection of dipole

F=ymv—=q17xl§
[,

* For synchrotron, bending field is proportional to
the beam energy

beam rigidity: Bp = P.where p is the momentum of the particle and q
9 is the charge of the particle



Quadrupole

* Magnetic field is proportional to the distance
from the center of the magnet o AR

B_ = ky; By=kx |

* Produced by 4 poles which are shaped as !
xy=+R"/2

— Particle going through the center: F=0
— Particle going off center




Quadrupole magnet

* Theorem

V x B =u,J

PB-dl =l

* Pick the loop for integral

f OR B'rdr = u,u NI
For the gap is filled with air, B'[T/m]=2.51

NI

R[mm"]



Sextupole

B = mxy
B, =~ m(x’ - y?)
—

* Focusing strength in horizontal
plane:

! —
B' =mx
» Place sextupole after a bending dipole
where dispersion function is non zero
A
B}=mx=mD—B>O
P



Focusing from quadrupole

T

x_'1_,9B, 4B I _gB'l
fop ymv o ymy fooymy

* Required by Maxwell equation, a single quadrupole has to

provide focusing in one plane and defocusing in the other
plane

= kil

VxB=0 B.=B'yand B, = B'x
VzxB, x=-VZxB Yy



Transfer matrix of a qudruploe

* Thin lens: length of quadrupole is negligible to the
displacement relative to the center of the magnet




Transfer matrix of a drift space

* Transfer,matrix of a drift space

> 7
x]—> &Y




Lattice

* Arrangement of magnets: structure of beam line

— Bending dipoles, Quadrupoles, Steering dipoles, Drift space
and Other insertion elements

* Example:

— FODO cell: alternating arrangement between focusing and
defocusing quadrupoles
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FODO lattice
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* Net effect is focusing!



FODO lattice
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* Net effect is focusing

* Provide focusing in both planes!



Curverlinear coordinate system

* Coordinate system to describe particle motion in an accelerator

* Moves with the particle

Set of unit vectors:

5(5) = Sol)
A RO
x(s)=-p ¥

y(s) = x(s) x 5(s)




Equation of motion

ds(s) 1.
: =——x(s)
i ds o
dx(s) z l&(s)
B
ds

* Equation of motion in transverse plane

F(s) =T, (s) + xx(s) + yy(s)



Equation of motion

d?(s)—ds[f +x3c+x@+yy]—§[(1+ )5S+ x'x+'y]

dt  dt ds ds dt P

d b\ A 5 N
= A+ D5+ X E 4y Il =vS+v i+, P
dt P

<l

v =fi = (ds) [(1+2)° +x7+ "]
dt P

F(s) ds dv 4 +X A X . A
(2) [(x"—'o )X+ —S+y'"y]
di* ~ dr ds 1+ p P




Equation of motion

d’r(s p’ ok Y #d g v x B
L3 (ORI NS TR
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x'- B2 o T 4 2y W 9B o
P ymv. . p ymy
" " B'
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Solution of equation of motion

* Comparison with harmonic oscillator: A system with a
restoring force which is proportional to the distance
from its equilibrium position, i.e. Hooker’ s Law:

d’x(t)

= > = —kx(1) Where k is the spring constant
4

e Equation of motion:

d’x (1)

t2

+hkx(1)=0  x(1)= Acos(kt + X)

Amplitude of the Frequency of
sinusoidal oscillation the oscillation



transverse motion: betatron oscillation

* The general case of equation of motion in an accelerator

x"'+kx =0  Where k can also be negative

» Fork>0

x(s)= Acos(Wks+ %)  x'(s) = —AVk sin(/ks + x)
» Fork <0

x(s) = Acosh(Wks+ x) x'(s) = —Ak sinh(+/ks + %)



Transfer matrix of a quadrupole

* For a focusing quadrupole

(

1 \
( b ) S cos~/kl ﬁsmx/zl ( % )

\—\/zsin\/zl cos\/zl 2

* For a de-focusing quadrupole

/ \
( 2 ) cosh kI Lsinhﬁz ( - )
X

; P
o ksinh\/zl cosh\/ZZ ,




Hill's equation

In an accelerator which consists individual magnets, the
equation of motion can be expressed as,

x'"+k(s)x =0 k(s+L,)=k(s)

Here, k(s) is an periodic function of L, which is the length of
the periodicity of the lattice, i.e. the magnet arrangement. It
can be the circumference of machine or part of it.

Similar to harmonic oscillator, expect solution as

x(s) = A(s)cos(y(s) + x)

or.

x(s) = Ax[B.(s) cos@p(s) + ) B.(s+L,)=B.(5)



Hill' s equation: cont’ d

x'(s) = —A4/B.(s)y' (s)sin(@(s) + x) + b ( )Aw/l/[a’ (s) cos(@(s) + x)

* with
1 /3 /3'2
)= 21
MR
» Hill’ s equation x''+k(s)x =0 is satisfied

x(s) = AP, Cos(qj(s) + %)
x'(s) = —A4J1/B (s) sin(y(s) + x) + 4 2( )Aw/l/ﬁ (s) cos@p(s) + x)




Betatron oscillation

* Beta function f_($):

— Describes the envelope of the betatron oscillation in an accelerator
(B)2

 Phase advance: s
(s) = fo ds
B.(s)
 Betatron tune: number of betatron oscillations in one orbital turn
01C) R
0, - Y02 og-
B, (S) (B.)

20T



Phase space

* In a space of x-x , the betatron oscillation projects an ellipse

12 2 '
p.x"+y x"+20 xx'=¢

where
1 .
O =——
X 2/3)(?
/a’xyx=1+a§

» The are of the ellipse is TT€



Courant-Snyder parameters

* The set of parameter (3, a,andy,) which describe the
phase space ellipse

* Courant-Snyder invariant: the area of the ellipse

2 2
E=P.x"+y. x" +20 xx'



Phase space transformation

* In a drift space from point | to point 2
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Focusing quad

V4

» Bffect of a focusing quadrupole

XI




Transfer Matrix of beam transport

* Proof the transport matrix from point | to point 2 is

x(s,)

x'(s,)

(x(sz)) \/ﬁ? (coswszs1 + sim]/JSZS1 ) BB simpszs] (

x'(s)) | l+aa, .

Slnlpszsl + al — az COSI/}SQS] \/E(COSwSzﬁ - az Sinwszsl )
BB, BB, P,

» Hint:

x(5) = A+JB.(5) cos@(s) + x)
x'(s) = —Aw/l/ B.(s)sin(@(s) + x) + P "‘2(5) Aw/l/ B.(s) cos(yp(s) + x)

|



One Turn Map

 Transfer matrix of one orbital turn
(cos2nQ, +a, , sin2zxQ ) B, sin2a0,

X(SO+C) - 1+ OC X(So)
Gy - ———=*5in2nQ, (cos2mQ, -, sin270,) [\ x'(s,)

X,8)

Stable condition

Tr(M,, ) =2cos2n0, ) |

» Closed orbit: (X(S . C)) 12 ( x(s))
x'(s+ C) x'(s)

(x(s + C)) _ M(s+ C,s)( x(s))
x'(s+ C) x'(s)

Tr(Ms S+C)




Stability of transverse motion

* Matrix from point | to point 2
M. =M MM,

» Stable motion requires each transfer matrix to be stable, i.e. its

eigen values are in form of oscillation

1 O
M- All=0 With 1=(O 1) and det(M)=1

S5 18

X =Tr(M)A+det(M)=0

A= %Tr(M) + \/%[Tr(M)]Z -1

‘%Tr(M) <1.0




Dispersion function

* Transverse trajectory is function of particle momentum

Momentum spread

A
Define X = D(S)—p

/ P

Dispersion function



Dispersion function

* Transverse trajectory is function of particle momentum.

P+ X qb X |
x_p2 S SON WA DV 97 A

1o ym

1 2p. — B p|l 1A
x||+ : pO p+ pOX=__p

P P bp, p P p

S D(S)% D(s+ C) = D(s)

i :
D"+ 1 2p0—p+ o pOD=l

2

P P bp, p | P




Dispersion function: cont’ d

* In drift space

l=0 and p'_() = D'"=0

P
dispersion function has a constant slope

» In dipoles,

1 2p, — 1
l;éo and B'=O Dn_l_[ . pO p]D=—

p 4D o




Dispersion function: cont’ d

» For a focusing quad,

l:() and p's 3D”+B'&D=O

p p
dispersion function oscillates sinusoidally

» For a defocusing quad,

l:() and B () =>D"—B'&D=O

P P

dispersion function evolves exponentially



Compaction factor

» The difference of the length of closed orbit between off-
momentum particle and on momentum particle, i.e.

Ap
+ D——|d0 - pdO
AC_aAp_gS(p p) b
C p P pd6
A D, A D
a==(T) T = a=(~)
P P P



Path length and velocity

» For a particle with velocity v,

AL Av AT Av AR 1 Ap
AR AT T W ol

I S~ X
—=(@-—) T = (-5
r e’ MG, S

» Transition energy vy, : when particles with different energies
spend the same time for each orbital turn

— Below transition energy: higher energy particle travels faster

— Above transition energy: higher energy particle travels slower



Chromatic effect

* Comes from the fact the the focusing effect of an quadrupole
is momentum dependent

1 :; Particles with different momentum have
? = ki different betatron tune

— Higher energy particle has less focusing

» Chromaticity: tune spread due to momentum spread

Tune spread

7 Ap/p momentum spread



Chromaticity

» Transfer matrix of a thin quadrupole

550 1 0 1 O
M=|_1 1= _l(l_%) 1= 1 1 1
I Y0 AN f i

* Transfer matrix

1 0
M(s+C,5)=M(B,A)|_1 |

1 O

4.

J

- M(B,A)




Chromaticity

M(s+C.s) = l+a, e S

fp

(cos2mQ, +a,, sin27Q,) B, SIN270, 1 0
sin27Q,) [ ]

sin27Q. (cos2mQ, —a,

50
X,80

(cos2nQ, +a, , sin2xQ )+ S Ay _sin270, B, sin2a0,

X8,

T 1+oal, | 1 Ap
=-sin2xQ, +(cos2mQ —o  sin2xQ )——— (cos2nQ -

B fp

cos[2m(Q. + AQ )] = %TF(M(S + C,s)

sin27Q.)

So

cos[2m(Q, + AQ,)]| = cos2mQ, + %/3 sinanxl%

fp




Chromaticity

cos[27(Q, + AQ, )| =cos2nQ, + % B, sin2m0, ]10 2P
p

Assuming the tune change due to momentum difference is small

cos2mQ —2mxAQ sin2mQ = cos2aQ, + lﬁx - $in 270, jlc Ap
pP
1 A A 1 1
AQ= __/3“0 = Sy = - =—-———f(5)
fp Aplp 4m f




Chromaticity of a FODO cell

SR,
ﬂA‘\ /P\\ﬂ 2L(1 £ sin[Ay /2])
ﬁfd -

/ ’ sin[A]
L

sin[Ay /2] =—
 —

Z AT L
_ 4n(/a’ff /S'df) mp : - S
1 Ay
- ——tan——
g, S an 5




Chromaticity correction

Nature chromaticity is always negative and can be large and
can result to large tune spread and get close to resonance

condition

Solution:
— A special magnet which provides stronger focusing for
particles with higher energy: sextupole
Ap

—>0




Sextupole

1
B =mxy B = Em(x2 - y%)

* Focusing strength in horizontal plane:

B'y = MX

0’B ml
« where m=—2= and k_=—lis the magnet length

ax 2 SX Bp

* Tune change due to a sextupole:

AQ. =L/3’“ k. x letx=D%
4 p

AQ)C/Ap= 1 ﬁxs ksxDx
p 4n 7"




Chromaticity Correction

20 /2_Lg ¢ p
p 4x "

* Sextupole produces a chromaticity with the opposite
sigh of the quadrupole!

* It prefers to be placed after a bending dipole where
dispersion function is non zero

* Chromaticity after correction

AQ. 1 1

= 7 1% iﬁx,i BIts ksx,iﬁx,li

S %k 47




Chromaticity correction

£€=20




How to measure betatron oscillation?

> Excite a coherent betatron motion with a pulsed kicker
XI

%

> Record turn — by — turn beam position




How to measure betatron oscillation?

Turn-by-turn beam position

monitor data

betatron tune is obtained by
Fourier transform TbT beam

position data

Vertical

Kicker angle: (mrad) |0.300§ Kicker voltage: (V) |501 .00

Last Data Arriwved m
Mon Jun 10 11:59:19 2013 33116 3

Turn-by-turn Position vs. Time

Coherence Amplitude = 2,2201

Kicker
: : : : : : - 1e-10

" 1400

T -200 0 0 200 400  BOO0 800 1000 1200

turns [revolutions]

fitdataset (¥2)

Diff (¥2)

Frequency Spectrum - Tune

Peakl = 8.,7848, Peak2 = 8,8225, FitPeak = 8,73853
Delta = 0,0377, Ratio2Tol = 0,0012
Coh Amp = 2,6178

1000 4
800:
600 1
400 1
2004 -

FFT Amp




Beam Position Monitor (BPM)

e Astrip line bpm response
— Right electrode response

Int) =120 0+ 230 () cos(nb) sin("D)] | (

2T T n
— And left electrode response

I,(t) = —%[1 + %Z 711(2) cos(nf) sin(n(r + %))]

* Hence,
. 3
Ip(t) — IL(t) 48111(%) T osd + §sm(7¢)

Ip(t)+I(t) ¢ b 3 ¢

* Let x=rcosB
IR(t)—IL(t)z4sin(¢/2)x
I.(t)+1,(7) b

(6)3 cos(36) + high order terms.




Coherent betatron oscillation at RHIC




How to measure betatron functions
and phase advance?

£ 3
o= <

o
<

sqrtibeta func [m])
g

=
<

<

. hori beta func (¥1) —=— model beta (Y1) . hori phase (Y2) —=— model phase (Y2)

Lattice: Blue

0 1000 2000 3000 4000

maghets o hsteer o vsteer o hbpms L] vbpms

sqrt{beta func [m])

S-Coordinate

. vert beta func (Y1) —=— nmodel beta (Y1) . vert phase (¥2) —=— model phase (Y2)

phase [degree]

phase [degree]



