Vacuum Science and Technology for Accelerator Vacuum Systems

Yulin Li and Xianghong Liu
Cornell University, Ithaca, NY
Table of Contents

- Vacuum Fundamentals
- Vacuum Instrumentation
- **Vacuum Pumps**
 - Vacuum Components/Hardware
 - Vacuum Systems Engineering
 - Accelerator Vacuum Considerations, etc.
SESSION 3.2B: Getters

- Getters pump gases by chemically bonding molecules upon impingement
- Two definitions of pumping capacities:
 - Activation capacity
 - Termination capacity
- Based on activation manner, there are two types of getters:
 - Titanium sublimation pumps (TiSPs)
 - Non-evaporable getters (NEGs)
- Both TiSPs and NEGs are widely employed in accelerator vacuum systems
NEG – The Basics

- Porous alloys with very large active metallic surface area, when activated.

- Bulk Getters - gases diffuse into the interior of the getter material upon heating.

- Gases are categorized into four families based on their interactions with NEGs:
 2. CO, CO₂, O₂, and N₂ - adsorbed irreversibly.
 3. H₂O, hydrocarbons - adsorbed in a combination of reversible and irreversible processes. Hydrocarbons are adsorbed very slowly.
 4. Noble gases - not adsorbed at all.
Commercial NEG

- NEG is available only from:

 SAES Getters S.p.A.
 Viale Italia, 77
 20020 Lainate (Milano) Italy

 SAES Getters U.S.A., Inc.
 1122 E. Cheyenne Mountain Blvd.
 Colorado Springs, CO 80906
Hydrogen

- Hydrogen does not form a stable chemical composition with a NEG alloy. It diffuses rapidly into the bulk of the getter and is stored as a solid solution.

- Sievert’s Law describes the relationship between H_2 concentration within its NEG and its equilibrium pressure.

$$\log P = A + 2 \log q - \frac{B}{T}$$

$q = H_2$ concentration in NEG, Torr - liters/gram

$p = H_2$ equilibrium pressure, Torr

$T =$ getter temperature, K

A, B constants for different NEG alloys
NEG Pumping Characteristics (2)

CO, CO₂, O₂, N₂, other O-, C-containing molecules

- Active gases are chemisorbed irreversibly by NEGs.

- The chemical bonds of the gas molecules are broken on the surface of the NEG.

- The various gas atoms are chemisorbed forming oxides, nitrides, and carbides.

- High temperatures do not break these chemical bonds. High temperatures promote diffusion into the bulk of the NEG.
H₂O and Hydrocarbons

- Water vapor and hydrocarbons are “cracked” on the surface of the NEG.
- H₂ is chemisorbed reversibly.
- O₂ and C are chemisorbed irreversibly.
- However, hydrocarbons sorption efficiency below 500°C is extremely low.
Noble gases

- NEG do not sorb Ar, He, Kr, Xe.

- Ion pumps are required in combination with NEG for pumping rare gases.
NEG Pumping Characteristics (5)

- At low throughput, NEG pumping speeds are constant, independent of pressure.
- Pumping speeds do, however, vary with NEG temperature.
Activation Process for NEG

Ref. SAES Getters
Application Notes for NEGs

- NEG performance deteriorates due to successive exposures to air (oxygen and water) or N₂.

- Further improvement can be obtained if Argon is used as a protective gas, during long term storage.

- NEG pumps should never be exposed to air while at temperatures higher than 50°C.

- Degassing of NEGs during initial pump-down.

Ref. SAES Getters
SAES ST101® Non-evaporable Getters

- Metal alloy made up of 84% Zr, 16% Al.

- First Zirconium based getter alloy introduced and still widely used today after 30 years.

- The operating temperature range of ST101 is 0 to 450°C.

- ST101 chemisorbs CO, CO₂, H₂O, N₂, and O₂ at high rates.

- ST101 activates at temperatures from 550 to 900°C.

Ref. SAES Getters

ST 101 Alloy Activation Efficiency
SAES ST101® NEG – Pumping

Ref. SAES Getters
SAES ST101® NEG – Hydrogen Solubility

H₂ dissolved within St 101 alloy
ST101 Surface Composition vs. Temperature
SAES ST707® Non-evaporable Getter

- **Metal alloy made up of 70% Zr, 24.6% Va, and 5.4% Fe.**

- **The operating temperature range of ST707 is 20 to 100°C.**

- **ST707 chemisorbs CO, CO₂, H₂O, N₂, and O₂ at high rates.**

- **ST707 has much lower activation temperature.**

![Fig. 1. Activation conditions and gettering efficiency of St 707](image-url)
SAES ST707® NEG Pumping Performance

St 707 powder alloy: 100 mg
Geometric surface: 50 mm2
Activation: 450°C for 10 min.
Sorption: At the indicated temperatures
ST707 Surface Composition vs. Temperature

![Graph showing Surface Composition vs. Temperature](image)

- **Surface Composition (Atomic %)**
- **Temperature (C)**
Other SAES NEG Alloys

- ST 172 - Zr, V, and Fe alloy.

- ST 175 - Ti and Mo powder mixture, sintered form.

- ST 185 - Ti-V alloy (obsolete !)
NEG Cartridge Pump Module – CapaciTorr®

- Complete compact pumping system, with matching controller for easy activation
- NEG materials: st172 blades/disks
- Pump sizes from 50 l/s to 2000 l/s, for H₂
- For large sizes, the NEG cartridges are replaceable
CapaciTorr® Pumping Performance

CapaciTorr D 2000 MK5 (nude)

Pumping Speed (l/s)

Sorption temperature: 25 °C
Activation: 450 °C x 45'
Sorption pressure: 3e-6 Torr

Sorbed Quantity (Torr.l)

H₂, N₂, CO

nude — with CF100 body

Yulin Li, January 14-18 2013
NEG – Ion Pump Combination – NexTorr®

500 l/s VacIon Plus

NexTorr D500-5
Pumping Performance – NexTorr®

Sorption temperature: 25 °C
Activation: 1h @ 550°C
Main Technical Parameters – NexTorr® D500-5

<table>
<thead>
<tr>
<th>Initial pumping speed (l/s)</th>
<th>Gas</th>
<th>NEG activated</th>
<th>NEG saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>500</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>500</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>340</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>200</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Argon¹</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sorption capacity (Torr·l)</th>
<th>Gas</th>
<th>Single run capacity</th>
<th>Total capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>17</td>
<td>>1500</td>
<td>N/A</td>
</tr>
<tr>
<td>H₂</td>
<td>670</td>
<td>N/A</td>
<td>>360</td>
</tr>
<tr>
<td>CO</td>
<td>1.4</td>
<td>>75</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>137</td>
<td>50,000 hours at 10⁻⁶ Torr</td>
<td></td>
</tr>
</tbody>
</table>

NEG section
- Getter alloy type: St 172
- Alloy composition: ZrVFe
- Getter mass (g): 68 g
- Getter surface (cm²): 570

ION section
- Voltage applied: DC +5kV
- Number of Penning cells: 4
- Standard bake-out temperature: 150°C
Other NEG forms – Build your own pumps
Distributed Pumping with NEG strips

APS Beampipe with NEG strips
LLNL NEG Pump in a PEP-II Vacuum Chamber
Combination Pumping . . .
Ion Pumps with TSP or NEG

- Combination pumping produces greater pumping speeds for all gases.
 - TSP and NEG provide high pumping speeds for getterable gases.
 - Ion Pumps provide pumping of argon and light hydrocarbons (usually Noble Diode pumps are chosen).

- Combination pumping can be attained by:
 - Commercial combination pumps
 - Custom built combination pumps
 - Use of multiple types of pumps

- NEGs are used on systems where high constant pump speeds are required or on systems requiring distributed pumping.

- TSPs are used on systems with sudden large gas bursts, localized gas sources and/or frequent venting takes place.
Commercial Combination Pumps . . .
Ion Pumps with TSP or NEG

Ion Pump with TSP filaments
Ion Pump with NEG cartridge
NEG Thin Film for Accelerators

- Developed at CERN, by Bevenuti, et al

Low Outgassing Rates

Discrete Pumping

Distributed Pumping

Integrated Pumping

NEG Coating

Yulin Li, January 14-18 2013
Typical Sputtering Arrangement – A CLASSE Setup

- Cathode – Twisted wires
- Electric field (ion energy)
 ~ 600 V
- Magnetic field :
 200 ~ 500 Gauss
- Sputtering gas : Ar or Kr
 $P = 2 \sim 20$ mtorr

- DC or Magnetron Sputtering arrangement is commonly used.
- Coating surface cleanness is essential for good adhesion
- Sputtering gas purity extremely important
NEG Thin Film Characteristics

- *Most commonly deposited NEG thin films have elementary composition of Zr\textsubscript{x}V\textsubscript{y}Ti\textsubscript{z}, with x, y, z, close to unity.*

- *Stoichiometric balanced thin film tend to have lower activation temperature, probably due to smaller grain sizes.*

- *Pumping can be achieved at activation temperature as low as 150°C, though typical ~250°C. Thus an in-situ bakeout can activate the NEG coating.*

- *Typical NEG thin film thickness: 2~4 μm.*
NEG Coating Pumping Performance (1)

$T_{act}=350^\circ C$

![Graph showing CO and H₂ pumping performance with time in hours.]
NEG Coating Pumping Performance (2)

Pumping Speed vs. Gas-load
Activation Temperature Dependence (48-hr activation)
NEG Film Total Capacity & Aging Effects

- Total pumping capacity of a NEG thin film depends on the film’s solubility to oxygen, carbon, nitrogen, etc., and the film thickness

 Using solubility of 5%, 1-nm saturated surface oxide layer
 Estimated saturation/venting cycles for 1 \(\mu \text{m} \) NEG film > 50

- Gradual aging is a deterioration of the thin film performance due to accumulation of oxygen in the film

 - Reduction of pumping speed and capacity
 - Increase of activation temperature

Yulin Li, January 14-18 2013
NEG Film Aging Effect
NEG Film Aging – More

![Graph showing hydrogen pumping speed versus number of heating/venting cycles at different temperatures.](image-url)
Successful Applications of NEG Coatings

• NEG coating is an idea solution for long narrow-gapped undulator vacuum chambers
• All LHC warm beampipes were NEG coated.
• ESRF has had a very successful experience with the NEG-coated undulator chambers.
• Other new 3rd generation SR light sources, such as SOLEIL and DIAMOND, also used the NEG coatings for the undulator chambers.
• A NEG Coating Workshop was held at DIAMOND site, on 23/24 September 2002.
CERN’s NEG Coating Facility

~ 8m
CERN’s NEG Coating Facility – Details

Solenoid

- L = 8m
- φ = 60cm

Manifold

Chambers

Extensions

3mm wires of Ti, Zr and V
CERN’s NEG Coating Production

More than 1300 chambers coated with TiZrV NEG for the LHC.
Standard chambers are 7 m long, 80 mm diameter.
ESRF’s NEG Coating Facility

A New NEG Coating Building @ESRF

Extruded Al-Chamber 5-m long, 11-mm Gap

Motorized Air-cool Solenoid (500 G @100Amp)
IntegraTorr® – SAES Getters’ NEG Coating

- **SAES Getters is licensed by CERN to provide commercial NEG coating services.**

- **All components to be coated by SAES are cleaned by CERN facility, to ensure good thin film adhesiveness.**

- **Known projects used this services: RHIC, CesrTA, etc.**

One of the SAES sputtering systems for NEG coating, capable to coat up to 6.5 meter long chambers with a 2m height coil.
Hydrogen Embrittlement of NEGs are well known

Word of Caution

- The original coating had excellent bonding, by visual inspection and/or via ‘tape testing’
- Believe the coating was damaged by excessive H_2 sorption. More investigation planned

Powder substance were found on the orifice disk, as well as on the coated surface, after extensive pumping tests
Powder Confirmed to Be NEG

Powder SEM Image Powder EDX Spectrum
NEGs or TiSPs

- Both TiSPs and NEGs are great in dealing with hydrogen gas load, the main gas in an UHV system
- If space available, TiSPs are the first choice
 - Much less cost
 - More operational friendly
 - 'Un-limited' capacity
- Some practical questions regarding NEG
 - How to reduce hydrogen from NEG?
 - Should the NEG be thoroughly de-hydrogen before installation? Or is that possible?
 - What's sources of hydrogen in the commercial NEG modules/cartridges (in the NEG materials, or in the heating elements)?
 - What's the best way to passivate NEG for air exposure?