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Mathematical Programming

Introduction: Real World Problem Formulation

- Goals, Objectives, and Figure-of-Merit (FOM)
Goal - Want to make something happen
E.g. minimize orbit deviation
Figure of merit (FOM) quantizes progress of this goal
Figure of merit also called “objective” in mathematical programming

- Variables
O What you vary to achieve your goal (affecting the figure-of-merit)
O E.g. dipole corrector strengths
O Usually these have limits (power supply capabilities)

«  Constraints
. Variables can only live in a certain region of parameter space

E.g. keep the orbit deviation at some point fixed in order to go around an
obstruction



L
Mathematical Programming

Introduction: Constrained Optimization

- One way of implementing constraints 1s through penalty functions
- Optimization is penalized when variables go out of bounds

- Constrained optimization versus penalty functions
+ Some packages include constrained optimization directly

+ Otherwise you can augment the FOM with a penalty function

+ E.g. FOM = Cost + Penalty where
penalty = 1 — (bending field/existing magnet capability)?

« This has drawbacks though (the terms can fight each other)

- Most optimization packages minimize the FOM,
- If you need a maximization just use I/FOM

- Variables
« Usually the user provides a list of the variables and their limits



Mathematical Programming
Introduction: Non-linear Constrained Optimization

- Great for solving real world problems
* You don’t need to know any math! (well, a little)

- In years past with slower processors, many techniques involved
using advanced mathematical techniques — appropriate for the
particular application

- Now-days a sledge hammer works fine

- Open XAL has such a sledge hammer 1n its toolbox (the “Solver”)
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Overview

+ Most problems involving optimization and/or the solution of
nonlinear equations can be put into the framework of mathematical
programming.

- Usually we have several free parameters (e.g., magnet strengths) - the vector

x represents these parameters in the vector space where we are looking for
solutions (typically R”)

- We take an initial “guess” for the solution x,,

- Using an (intelligent?) algorithm we iteratively update the current value of x;
to x,,, usually with a policy of the form

X =X+ ad

where d, is the search direction and ¢, is the search length at the it iteration.
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Mathematical Programming

Overview (cont.)

- The method by which we chose the search direction d. identifies the
algorithm. (Still a topic of current research.)

- Some of the more popular are...

- Newton (Ralphson) — simple technique based on derivatives
Conjugate gradients — the “expanding subspace” theorem
GMRES — Generalized minimal residual (reducing res. error)
Simplex — Inspection of constraint vertices
Genetic Algorithms — Analogous to genetic base pair expression
Dynamic Programming — Hamilton-Jacobi-Bellman equation

- For example, when using the Newton method to minimize a functional

J(x), the search directions are picked in the direction opposite to the
gradient VJ(x)
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Mathematical Programming

Overview (cont.)
- Many of these algorithms are “canned” in mathematical
software packages
- Consequently they are easy to employ

« In order to use one of these canned mathematical programming packages
(for equation solving, or for optimization), we need to formulate our
problem as a mathematical programming problem.

- For example, nonlinear optimization 1s a basic mathematical
programming application

+ Basic (unconstrained) minimization problem

Given a functional J : R” — R, Jis the
o B Figure of
find X&R" suchthat J(X)=<J(x) for all x&R" Merit

or X=argminJ(x)
XER"
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Mathematical Programming

A Waming on Algorithms
- Some mathematical programming algorithms rely upon the smoothness of
the objective J(x)
- These algorithms tend to use derivative information to compute the {d,}

- Taking derivatives of noisy data can lead to problems — the noise component is
usually amplified

- When working with parameters x obtained from experimental data it may be
wise to avoid the so-called descent algorithms that typically employ the
gradient of J(x) (at least approximately). Instead, try algorithms using direct
evaluation...

- Genetic algorithms
- Simplex algorithms
- Etc.

- Note, however, repeated direct evaluation can be expensive!
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Mathematical Programming

Example: Function Minimization via Newton

Newton minimization: Newton minimization is arguably the most simple
descent-type algorithm where the search directions are picked as -VJ(x,)

- For any point x;, the gradient -VJ(x,) gives search direction d,

- The search length ¢, 1s determined through a separate line search
algorithm which minimizes the scalar function

¢(a) =J(x; + ad)

- Thus we have

aJ / dx,
d, =-VJ(x;)=-
aJ / ox,,

a; =argming, ()
(24

X, =X; +a,d;

A

P()
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Mathematical Programming

Example (cont.): Function Minimization via Newton

Consider the nonlinear functional on the plane R?

. 2 X n
J(X)=sm(x1 +x2) where X = ER"
x2 10

- For any point x, the gradient VJ(x) gives -d

2
d, = —VJ(x,) = - cos(x; + x5 )2
2x, cos(x; +x5)

«; = argminsin

; (xl —acos(x; + x%))+ (xg —a2x, cos(x; + x%))zl
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Example (cont.): Function Minimization via Newton

- For example, starting at x, = (0,0) gl ) +x§)
Qg =m/2) |
0 —m/2 1
d, =[N =M= I
0~ 0 0 % 0] §§=
: BT
5
TR
- For the next iterate we compute 3 l!:'; =
0 . MELPE
dl = O -2 ’:
205V o
After which x, = (-/2,0) for i >1 Cos 10 15 20 25 300 °
102
@0.4?—
690.6;
600.8;
ot
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Mathematical Programming

Example (cont.): Function Minimization via Newton

- However, if we start from a different initial

guess x, = (0, 1/2) 2f r—
0 -1 -1.577 :
XO = , Xl = , X2 = ., °°° 1k
1/2 ~1/2 0.077 ¥
o0
we end up 1n a different place. = El L
] g
- This is the general nature of nonlinear _ ‘
programming. Y e ——r———
-2 0 2
- Existence - Local solutions ? n

 Uniqueness - Global solution ?
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Mathematical Program Eg.: Function Minimization via Newton

¢+ Our example problem

minJ(x) = sin(xl + x%)

has solutions wherever

iy 7.

2 2n+1
xl +X2 =

i

[N [

a7 n=...,-10,+1,...

e
o

Lo
-,

o
oo

b
o
b

They are ubiquitous.

-

L. P _5 e —
« This 1s another property : . 0
previous domain

nonlinear programming 9!

Plot of J(x) over larger domain
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Solution of Nonlinear Equations

- Many times we are faced with a problem of the form

JF1(x5--05x,) =y

T (X5 x,) =y,

which we abbreviate f(x) =y (vector notation )
+ The functions f; are nonlinear in their arguments x..

+ For example, consider the system

X +x; =1 fo(X) = X7 +x3,

x1+x2=0} [1(X) =x; + x,, (OJ
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Mathematical Programming

Solution of Nonlinear Equations: Example (continued)

 Consider geometric interpretation of A2 B
example problem LX) =y,

fi(X)=xl +X2 =O=yl,

fr(X) =x{ +x3 =1=y,,

+ The solution of the nonlinear problem occurs
at points in the plane where both equations
are satisfied.

- Here we have two solutions

X=(+1/J§) (-1/\/5] =

12T (41742
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Solution of Nonlinear Equations: Variational Techniques

- Rather than trying to solve the nonlinear equation f(x) =y directly
(there are techniques for this), another approach is to minimize the
functional J(x)

J(x) =y -f(x)”

That 1s,
fx)=y = minly-f(x)’

- If we find an x,, such that J(x,)) = 0, then clearly f(x,)) =y.

+ However, a minimizer x,, of J(x) does not guarantee that J(x,) =0
(that 1s, it 1s possible that J(x,) > 0 even though J(x) 1s a minimum)
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Mathematical Programming

Variational Technigue Example global
minima

- Recall our nonlinear problem example

SiX) =x +x, =0=y,

f>(x) =?C12 +X§ =1=y,,

- The variational form is !
Jx) =y £ = - A + (- Lr®) 5

2 2 2 | - 1.0
=(x1+x2) +(1—x1 —x2)2 1

4 4 2.2 2 2

- It has the same solutions

+1/42) (-1/:2
(—1/\/5]’ (+1/J§
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Constraints: A Variational Approach and Penalties

Sometimes we are faced with a constrained problem,
where the solution must lie in a feasible region
described by the equation

h(X) =0 2

a smooth surface (or “manifold”) in R”

- A variation approach also works here by feasible region
introducing a “tuning parameter” ¢ > 0

min|y = (x)|2 + c|h(x)|2 The magnitude of tuning
X parameter ¢ determines

. how hard we push.
- In general, the penalty function “pushes” the

minimization process into the feasible region.
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Review

Original Problem Variational Form

« Mathematical programming 5
implies f(x)=y mxin\y ~f(x)|
X =X+ ad

, f(x)=y , ,
- Every mathematical _ minly - £(x)|” + c/h(x)|
: h(x)=0 x
programming problem has a
weak (or variational) form.
+ Solutions of the weak form f(x)=y minly - f (X)‘z v dh (X)‘z rdlg (X)‘z
are not guaranteed to be h(x)=0 x .
solutions of the original a(x) < 0 d=0if gx)=0

problem d>0 if g(x)>0

(see supplemental material)
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Supplemental Material

- More details on mathematical programming
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Problems with Constraints

« Many times we are faced with
problems whose solutions must
remain within a specific region of
parameter space

+ For example, we cannot drive magnet
strengths beyond their power supply
ratings.

- These constraints are usually
expressed as inequalities of the form

g1(x,...,x,) =<0,

which can be abbreviated g(x) <0
g, (x1,...,x,)=<0,

Feasible
region
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Mathematical Programming

Problems with Constraints

 The following (linear) constraints
defined the shaded region in the

plane:
2x; +x, -2=0,
X +2x, -2=<0,
-x; =0
-Xx, <0

« Most nonlinear programming
packages accept solution constraints
if put into this form.

g1(x,...,x,) =<0,

g, (x5...,x,)=<0,

1.2

1.0
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Solution of Nonlinear Equations with Constraints

- Most nonlinear equations with constraints can be put
into the vector form

f(x) =y
g(x)<0

- In general, problems with constraints
are much more difficult to solve than thos

- However, by using “canned” software packages and expressing
the constraints in the form described, this fact is hidden from
the user.
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Constrained Nonlinear Equations: Penalty Function Approach

- Starting with the nonlinear problem

f(x)=y | |
g(x)=<0 unfeasible region ¢ = 0

- As before, we convert f(x) =y to the weak
form

feasible region
min | y — f(x)

g(x)<0

- We then add a term, the “weak” form for the
constraints g(x) < 0, typically called the
penalty term =

min | y — f(x) [ + ¢?| g(x) |7

=c=0

Note: If g(x) < 0 then we are
c>0 ifg(x)>0 in the feasible region and the
c=0 1fgx)<0 constraints are not binding;

thus, ¢ = 0.



