CONTROL ROOM ACCELERATOR PHYSICS

Day 4 *RF Applications - Setting RF With Respect to the Beam*

Introduction

Radio Frequency (RF) Acceleration

RF electromagnetic (EM) fields are the primary means of acceleration for particle accelerators

- Time oscillating electric fields in a resonant structure
- Must set the RF phase to within 1-2 degrees (few x 10^{-12} sec)
- Need to set the EM field amplitude to correct value also, complicated by cavity cooling

Motivation

- Objective: Set the phase and amplitude of an accelerating cavity so that it performs according to design
- We decide to build an application to satisfy this objective
 - (and automate it?)
 - (Model the acceleration process)
 - Devise a strategy for determining the proper RF phase and amplitude
 - Design a control room application based upon the strategy
 - Implement the application according to the design
 - Test the application
 - Support and maintain the application

Radio Frequency Acceleration Cavity Types

- Often RF structures have multiple accelerating cells, providing multiple instances for particle acceleration (if things are timed properly)
- In Open XAL there is a cavity device type which may contain multiple cells
- The Open XAL convention is that the cavity phase is the phase of the RF field relative to the synchronous beam particle in the first gap of the cavity
- The average phase of the beam throughout all the cavities can be quite different for low energy particles

1/30/14

Radio Frequency Acceleration

- Drift Tube Linac (DTL) many cells per cavity (typically 50-100)
 - Used at low energy, β changes rapidly throughout the structure
 - Need to have phase/amplitude nearly correct to transmit beam
- Superconducting Cavity fewer cells per cavity (say ~ 6)
 - Used at higher energy, β changes only slightly throughout the structure
 - Less sensitive to RF variations

RF Applications

Phase Matching

Must determine the proper RF phase and amplitude for a cavity

- A technique for proton beams is the RF phase scan (signature matching)
 - Use the beam to measure cavity phase and amplitude offset
 - Vary the phase and amplitude of an upstream RF cavity
 - Measure the response of the arrival time at downstream BPMs
 - Use a model to calculate the amplitude and phase offset of the RF generating device

RF Applications PASTA: An XAL DTL Phase Scan Application

- Scan phase of DTL Tank for 2 amplitude values
- Measure the arrival time $\Delta t(\theta)$ at 2 downstream BPMs (red and blue)
- Uses the scan/measure tool in XAL
- Hard to interpret at this point

RF Applications PASTA: Model Reference Control (MRC)

- The Δt Measurement
 - Using arrival time difference Δt between two BPMs eliminates position uncertainties RF cavity
 - The time difference Δt can be converted to an energy difference ΔW
- Model Reference
 - The model can accurately predict the observed behavior for correct input beam energy W, RF amplitude A, and phase θ
 - Design the MRC algorithm to find (W,A,θ)
- The model reference provides an estimator and error signal to do feedback control
 - The controller searches the parameter space (A, θ) to minimize *e* and adapts to parameter *W* since its value is unknown (adaptive control)
 - The controller uses the XAL Nonlinear Solver to search parameter space (W, A, θ)
- Steady state values of (*W*,*A*,θ) give the needed information to set the RF cavities
 - Error e is minimized, ΔW is maximized

RF Applications PASTA: Accuracy of Application

- Application Graph
 - Lines are model, dots are measurements
 - Plots θ_{cav} versus $\Delta \theta_{RF} = \omega \Delta t$.
- Accuracy
 - RF Phase: ±1°
 - RF Amplitude: 1% of design
 - Input energy *W*: Estimate with unknown accuracy

RF Calibration Algorithm Critique

- NOTE:
 - Application PASTA is typically run in open loop, single iteration by the commissioner (feedback loop is the commissioner)
 - All data is collected first then the solver is used to "fit" model results to the data (this is a common strategy)
- Observations
 - The solver takes a few 10s of seconds to converge.
 - Small compared to setup time to perform the scan (all data taken *a priori*)
- Comments
 - Older techniques relied on linear approximations close to the design point
 - Fast, but required a good initial guess to converge
 - With modern computers, more general approaches are practical
 - Little application of control theory and automation

RF Applications

SLACS – Superconducting Cavity Phase Scan

- Super Conducting Situation
 - Minimal effect on the beam velocity β
 - Thus ΔW can change without significantly changing β
 - Cavity transmits the bunched beam for any RF setting (wide acceptance)

• SNS

- The SNS Superconducting cavity is only 6 cells
- Same concept as PASTA
 - Scan the RF cavity and use model fits of the resulting measured effect on the downstream beam arrival times

RF Applications SLACS – Superconducting Cavity Phase Scan

• With only a few cells and minimal change to the beam beta, this sort of cavity acts much like an ideal kick (sine-wave response)

Summary

- To determine how to set RF cavity phase and amplitudes, you can use the beam
 - Come up with a beam measurement technique that clearly identifies the effect of altering the energy gain
- Use a model to estimate how much the energy gain changed and predict response
 - Provides the needed information about the RF amplitude, the cavity RF phase relative to the synchronous beam, and the input beam energy
- Use of feedback for a closed loop search algorithm