Lecture 8

Off-Momentum Effects and
Longitudinal Motion in Rings



* Dispersion (Sections 2.5.4,5.4)
 Momentum Compaction (Section 5.4)
 Chromaticity (Section12.2)

* Longitudinal dynamics in rings (Chapter 6)



Equation of Motion

« Go back to full equation of motion for x:

X"+ (K, + K2)X 52) 1 (K, + 2% — K i, X2 —% m(x? —y?) + ...

 We solved the simplest case, the homogeneous differential equation,
with all terms on the r.h.s equal to zero

X"+ (K, +K2,)x=0
« And found the solution
X(s) =C(S)X, +S(s)X,
X'(s) =C'(s)X, +S'(S) X}

*  We will now look at the highest-order energy (momentum)-
dependent perturbation term:
S = P— pO Ap

Po Po

X"+ (Ko + Ko )X = K00 = 5 py (S)



Equation of Motion

« The general solution of the equation of motion is the sum of the two
principal solutions of the homogeneous part, and a particular solution
for the inhomogeneous part, where we call the particular solution dD(s)

X(s) =C(S)X, +S(8)Xg +D(s)
X'(s) =C'(s)%, +S'(S)x; + D'(s)

 where ]ds

« The function D(s) is called the dispersion function
* We can write this solution as the sum of two parts:

X(S) =X4(S) + X,(s)

« From which we conclude the the particle motion is the sum of the
betatron motion (x;) plus a displacement due to the energy error (x;)

« We can write the trajectory above in x(s)] [C(s) S(s) D(s)T x(s,)]
terms of a 3x3 matrix that includes the X(s)|=|C’(s) S's) D(s) x(s,)
off-momentum term S 0 0 1 5




* NO betatron motion:  x;=0: x(s)=x;=3D(s)




Iﬂ“ Where Does Dispersion Come From?
QLA

* Imagine a particle entering a sector bending magnet with an energy that
Is a little lower than the design energy:

(X.y:)

1 _g5 B po
plm] cp[GeV]

P _CP _PtAP_,, ¢
Po CPg Po é13(S) =Ys = Yo = (,00 _,0) COS ‘90 +,0COS(9—(90) ~— o
oD(S) =—gp, €0s 6, + (1+ o) p, cos(6 —6,) — p,

oD(S) = op,(1—cos b,)




Iﬂ“ Where Does Dispersion Come From?
QLA

» Use the transport matrix for a sector bending magnet to calculate the
dispersion ce) s | sEIp)  psin(s )
{C'(s) S’(s)}: —p—sin(s/po) cos(s/ p,)
0

B =

D(s) = ij‘{po sin ic:osi—,o0 cosisin i}d§
Fo o Lo Lo Po Po

D(s) = p, (1— cos i}

Lo

D’(s) —sin—
Lo

« Giving the 3x3 transport matrix for a sector bend:

[ cosf®  p,sind p,(1—cosé) 1 1 0]

1 .
M, = —p—osmé? cos & sing M,=|0 1 0
o 0 1 00 1




3x3 Transport Matrices for Drifts and

Duadrupoles

« Dispersion is generated in bending magnets

« Quadrupoles and drifts are not sources of dispersion, although they
Influence the dispersion function because the off-momentum trajectory
IS bent by quadrupoles

1 | O 1 0 O
Mdrift: 0 10 ‘/MThinquad: -1/f 1 0
0 0 1 0 0 1




Propagation of Dispersion

 We can write the coordinate vector as

X(s) XGo)] %y (80)+ % (S,)
X'(s) X'(So) =M X,ﬁ(50)+X’6(SO)

o o o

=M

« Suppose we set the starting betatron amplitude and slope equal to
zero, that is, make x,=0.

X(s) | | oD(s) Xs(S,) aD(8,)
X'(s) |=| D'(s) | = M x5(s,) |= M) ID'(s,)
o o o o

« And dividing by 6 we have

D(s)
{D’(S)

1

D(s,)
D'(s,)
1

=M

* This means that if we know the 3x3 transport matrices, and the starting
dispersion functions, we can calculate the dispersion anywhere
downstream



Periodic Dispersion

 What is the dispersion in a FODO lattice?

« Construct a simple FODO lattice from this sequence
2Q-Bend- 12Q 12Q-Bend-¥2 Q
Where for simplicity the “Bend” has 0 << 1

— - - B r 5 -
1 001 L ’2p 2 00 1-L/f L L*/2p
M,=|1f 1 0J0 1 Lip |-UFf 1 0|=|-L/f2 14L/f E(uij
yo
o o1foo 1 Jo 01| ) .

We look for a periodic solution to the dispersion function in a FODO,
that is, a function n(s) that repeats itself

With that constraint, the n(s) must reach a point of maximum or
minimum at a quadrupole, that is ' =0.

n n'
0 |=M, O
1

«  Which gives with #=f/L

1

2 2 2 2

n' :f£1+Lj =LK(2K+1) n :ftl—Lj :Lx(zx—l)
P 2t ) 2p P




Periodic Dispersion

« Can solve the equation of motion:
n"+Kn=1/p
« To arrive at the solution for n(s)

Bs) "X AHs) -
2sinpn SO r(s) Cos[np-/(s) t/ (S)]ds

« Finally, the rms beamsize at a given location has two components, one
from the betatron motion of the collection of particles, and another from

the finite energy spread in the beam:

h(s) =

&, (s) =&, B(5) + 12 (s)o?

« Likewise for the angular beam divergence

2

0y (5) = /2,7, (8) + 72 (s)0?



* Suppose one location In a lattice has a
horizontal beta-function = 20 meters,
vertical beta-function = 10 meters, and
peak dispersion = 8 meters with g,= ¢, =1
mm-mrad, and 5 = 0.0007,

— calculate the horizontal and vertical rms
beamsizes



Achromaticity

 Suppose we want to arrange the lattice so that D=D =0 at some
particular location in the beamline

« Having established D=D =0 at some location, the lattice has D=0
everywhere downstream, up to the next bending magnet

 Such a lattice, or section of lattice is termed achromatic
e Start with the integral equation for D(s)

D(s) = $)|ds

* The dispersion and dlsperS|on derivative can be written
D(s) =-S(s)l,+C(s)lI,
D'(s) =-S'(s)I,_ +C'(s)I,

* In terms of the integrals
1

C(s)ds =

)S(s)ds =



The integrals can be made to vanish in a lattice segment with 360°
horizontal phase advance through a FODO section with Bends

Beta (m), Dispersion (m),

10xsin(phi)
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hl] Accelerator Lattices: SNS Accumulator Ring
CLERY

DVCX9+Q8X9+38VX9
DHCX8+QSX8+SSHX8 ovxe | QHX10 QVX11 : Qvx12 QHX13
OHX8 1
DVCX7+QSX7 M : HII . .
DHX7SVX7 \‘tHXS Drie VK8 i VGt Worklng pomt (640,630)
SHXE, i acti
e QVx7 straight section
R DHCX6 i 30
SVXE. QHXe |
DHX * DVCX5+QSX5 1 . di
! ipole
SHX4 QV)f? arc i P
aQHxa | .
DHXG Lo | I large straight quadrupole 00
VX3, | . .
Qvxs | H narrow straight quadrupole g
DHX2 DVCX3+Q8X3 ! =
BHX2 mll large arc quadrupole 10
DHCX2+QSX2+55X2 |
DHX1 | regular quadrupole
SV == quis 3
DVCX1+QSX1+85X1 ! I large sextupole o 4
: regular sextupole
DHVCX13 ! I 9 P 3
QHX10 ! ) . L ] —_
QU1 | | multipole/dipole corrector i 2 g
3 L 11 =
____________________________________________________________ w 0
1 | L _1
Four-fold symmetry 0 20 40 60
Qvxi2 s [m]
e o Arc: four FODQ cells

S.S.: doublets



IHII Path length and momentum compaction
QLA

 The path length is given by

L= @+x)ds = w+L aD(s))ds k=1/p
o,

* The deviation from the ideal path length is
D(s)

AL:L_LO:5 —ds: c

J o ke

* With the momentum compaction factor defined as
_AL/L,
’ o
 The travel time around the accelerator is
r=L/cp
At AL Ap
T L p
At 1)A A
—=(ac __2j_p=,7c_p
T Yy ) p p

« The momentum compaction is n. and tlhe transition-gamma is

" .

a




Three cases:

- v>7, N0, and At increases with energy, revolution
frequency decreases with energy

- v <7, N:<0, and At decreases with energy, revolution
frequency increases with energy

— v =7, At =0, Independent of energy. Such aring is
called isochronous

This behaviour is a result of the fact that the dispersion
function causes higher energy particles to follow an orbit
with slightly larger radius than the ideal orbit

All electron rings operate above transition

Many proton/hadron synchrotrons must pass through
transition as the beam is accelerated



Chromaticity

The focusing strength of a quadrupole is
OB/ ox[T]

k[m=?]=0.3
cp[GeV]

A beam particle with momentum error 6 sees a focusing strength slightly
different from that of a particle at the deS|gn energy

K[m2]=0 oB/ox[T]
(1+ 0)cp[GeV]
In addition to dispersion, we \\& 3

would also expect some effect
to the weaked or strengthened . -
guadrupole focusing seen by | f(Ap/p<0)

off-momentum particles e —~! Syl
- f(Ap/p>0)

This is the particle-beam equivalent of the chromatic aberration from light
optics, which arises from the dependence of the index of refraction of a glass
lens on the wavelength of light.

Special optical materials can be made in a telescope to make the image
achromatic



Chromaticity

« Go back to the equations of motion for x and y O Dipole
OO O D@ -D-Q >
y" =k, "‘Kjo)y = Kyo(5_52) —(Ky _Kjo)y5+ koKy0y2 +MXy +.... O Sext

 Plugin x:xﬂ+x5:xﬂ+§;7 y=1Y,

 We arrive at the equations of motion for the betatron amplitude,

neglecting terms proportional to &% or X42 or y?
Xy + (K + i) X5 = (K + i) X068 — MX 677
Modified focusing

Vi —(K+x0)Y, =—(K+1x50)y,8—my, strength due to

momentum error o

X% + KX, = (K—-mn)d Additional focusing

f g ( 2 ! from displaced

Yp— Kyﬂ =—(K - m77)5yﬂ closed orbit in
sextupoles due to
dispersion



Chromaticity

In the last lecture we studied gradient errors. This new term Is just
another type of gradient error, as we anticipated, which will modify the
beta-functions and therefore also the betatron tunes of a circular

accelerator
 We calculated the betatron tune shift due to gradient errors:

1
Av, =—— Ak)ds
v, == 4§ B.(8K)
« With the gradient error (k-mmn), this gives
1
Av, =5 —{ B (k-mp)ds =&,

1
Avy=5E§ﬂy(k—m77)ds=5§y

* In an accelerator without sextupoles, or with sextupoles turned off, the
resulting chromaticity is that due solely to the slightly different focusing
seen by off-energy particles. This value of chromaticity is called the
natural chromaticity, which always has a negative value!

= —7§ﬂxkds
1
» :Eifﬂykds



Why do we care?

1. Non-zero chromaticity means that each
particle’ s tune depends on energy. If there is
a range in energies, there will be a range In
tunes.

« A beam with a large range in tunes, or tune-spread
occupies a large area on the tune-plane. This
opens the possibility of a portion of the beam being
placed on a resonance line.

2. The value of the chromaticity, as it turns out, Is
an important variable that determines whether
certain intensity-dependent motion is stable or

unstable.



The field of a sextupole, in the horizontal plane is this:

° B, = mxy A B, =0
cp . Cp
B ==m(x2 - y?) iByzlmx2
cp ' 2 cp 2
: cal fi entis:  £By _myo
The vertical field gradient is: o X mx =mon

* Where the coordinates for off-momentum particles (y=0, x=6n) has been
taken.

« Therefore, the sextupole provides SR 4
guadrupole focusing in the /
horizontal plane, with focusing

strength proportional to 6

— particles with higher momentum are
focused in the horizontal plane, and

— particles with lower momentum are R —
defocusing in the horizontal plane.

« This is exactly what is needed to counteract the dependence of
guadrupole focusing on energy.

A Sextupol

i{
|
]

Ap/p=0

Quadrupol '\ |

Ap/p<0




Chromaticity Correction: Sextupole Magnets

 We can use this feature of the sextupole field to correct the
chromaticity, that is, make &, =&, =0

1
= —¢mp. nds
é:x x0 + 47Z'§ ﬂxn
L d
é:y :é:yo _47Z_§mﬂy77 S

 We need at least two sextupole magnets to simultaneously make both
chromaticities zero. Let’ s place two sextupoles in the lattice, with
strength m;, m, and Iength .

5 é:xO 72_ (m |771:Bx1 +m Iﬂzﬂxz)
5 é:yo (m |771/By1+m |772:By2)

« Sextupoles placed at Iocatlons with large dispersion are more
effective. We also need B, >> 3, at one location and (3, >> (3, at
another.



Chromaticity in FODO Cells

* The natural chromaticity in one-half FODO cell becomes:

£ = —ifﬂxkdk—i(ﬂ*]k*dwﬂ‘jk‘ds)
1
Go=—7\p"=p )k s

« Giving for a full FODO cell:

co=—t 2 Liang12)

T A% =1 T

« So a FODO channel with 90 degrees phase advance/cell has natural
chromaticity -1/n



I““ Longitudinal Motion in Rings: Phase Stability
QLEA)

The formulation of longitudinal motion in linacs holds also for rings.

The synchronous phase is set according to the need to accelerate, and
according to the sign of the momentum compaction so that phase
stability i1s achieved

1.5

® low-energy
@ on-energy

Acceleration
in linac

1 /-V
0.5

Y>V+- with accel

Y<Y+p , With accel
or energy loss

or energy loss

ot (deg)

sin(ot )

500

0.5 Y>Y+, no accel, Y<Y+r , no accel,

| no energy loss \\/ no energy loss
-1

-1.5




Phase Stability

Electron storage rings and Synchrotrons: & /2<¢.<mw

Proton storage rings and synchrotrons below transition:
0<¢p <m/2

Proton storage rings and synchrotrons above transition:
n /2 <P <m

Proton synchrotrons may start with y <,,but since the
energy increases, eventually y crosses the transition-
energy to reach y > vy,

This is called “transition-crossing”. During this event,
the synchronous phase of the RF system must jump by
180° so that the higher energy beam remains phase-
stable.

Proton accelerators often have a “gamma-t
jump”system consisting of a set of pulsed-quadrupole
magnets that momentarily varies the momentum
compaction by perturbing the dispersion function so that
the lattice vy, is pushed below the proton .



Oscillations

« Same analysis that we followed for the linac case can be repeated for
the circular case

« Results in the equation of motion for the particle phase:
O+ Q°p=0
« With an oscillation frequency given by:
OF o h7,eV, cos g,

a)rev 2
« Where 7ep
— his the harmonic number, defined by

RF — h-I:rev
— The particle’ s energy gain in one ring revolution is:
eV, sin g,

« The oscillation frequency is called the synchrotron frequency, and
the ratio of synchrotron frequency to revolution frequency is the
synchrotron tune



Longitudinal Motion

This should equal the result we obtained - 0*QE,TAsin(—¢,)
previously for a linac: @ = >3
27amc’y; B,

We can see that these two are equal by noting that,

— The convention for linacs is Ve =V, cos at

— Whereas that for rings is -

9 Ve =V, sin at
— therefore, ¢, = ¢/ + n/2, so cos(¢;"?) = cos(¢,"* + 71 2) = sin(—¢"*)
— The momentum compaction in the linac is just: 7B :(iz—acjziz
4 Y

Since a,=(AL/L)/(Ap/p)=0 since there are no bending magnets, and therefore
no dispersion in a linac

The energy gain in one ring revolution is: €V, =0QE,TC =qE;T (h44)
Putting all this together, we arrive at the same frequency that we calculated
for the linac.

The longitudinal dynamics that we learned in the linac applies directly to the
ring case as well

The various parameters expressed for the ring contain the momentum
compaction factor, which is zero in a linac



