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1. Introduction

The microwave linear accelerator or linac is a hybrid of microwave elec-
tronics, mechanical engineering, metallurgy, and craftsmanship. The pri-
mary component is a structure consisting of cups cut from copper, stacked,
brazed, baked, mounted and fed with a copper tube, a waveguide. Every
eight milliseconds the structure is pulsed with microwave power, megawatts
for microseconds. If the copper cups have been shaped and tuned to one
part in ten-thousand, they resonate in concert, driven by the incident wave.
Sparks or beams 
y through at about the speed of light, sur�ng the elec-
tromagnetic wave. Beams are wayward things and magnets are used to
guide them. At the end of the linac, high-energy physicists pan through
the debris, wondering when the statistics will improve. In these notes we
contemplate why a linac looks as it does, and how it works.

In Sec. 2 we start with the problem of acceleration and develop the logic
behind the multi-cell structure, and the electromagnetic �elds it can sup-
port. Detailed calculations aren't really necessary here, but may be found
in [1]. Appreciating the character of the �elds we may provide for acceler-
ation, we determine what manner of beam may bene�t from them. In Sec.
3 we develop the subject of beam-physics, consisting mostly of a view of a
beam as a collection of single particles, communicating, if at all, through
their collective �elds. We include discussion of beamline instrumentation,
magnetic optics, and an upstream view of �xed-target and collider exper-
iments. The topography of the whole subject is sketched in Fig. 1. We
will concentrate only on the \main linac", the region of the machine where
the beam is highly relativistic. With electrons in mind, this is most of the
machine. For de�niteness, examples are drawn for the most part from the
Two-Mile Accelerator [2, 3].
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Figure 1. A microwave accelerator consists of a number of sub-systems working together.
These include the microwave system|colloquially, the \rf" system|and the injector.
These incorporate accelerating structures, requiring cooling water, mechanical support
and alignment, and a vacuum system. The injector includes a gun, and may incorporate
a laser system or an rf bunching system. Beam transport requires magnets, and their as-
sociated power supplies and cooling. Reliable operation requires rf and beam-monitoring
by means of instrumentation circuits. In these notes we introduce the essential features
of the linac, the beam, and the instrumentation.
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2. Principles of Acceleration

2.1. ELECTRODYNAMICS

Classical electrodynamics is the foundation for the principles of accelera-
tion, and is worth a short review. We consider a particle of charge q, and
associate with it a position ~R and a velocity ~V = d~R=dt. Mechanical mo-

mentum is given by ~P = m
~V , with m the particle mass,


 =

 
1�

~V 2

c2

!�1=2
; (1)

the Lorentz factor, and c the speed of light. Kinetic energy is

" =mc2 (
 � 1) =

�
m2c4 + c2

*

P
2
�1=2

�mc2: (2)

Particle motion is governed by

d~P

dt
= ~F ; (3)

where the Lorentz force

~F = q
�
~E + ~V � ~B

�
; (4)

is determined from ~E, the electric �eld in units of V/m, and ~B, the magnetic
induction or 
ux density in units of Wb/m2 or T. This relation de�nes the
�elds, abstracts them from their sources, describes the motion of particles,
and the response of media. It is half of electrodynamics.

Where the particle is relativistic, V is close to c, and the e�ect of the
magnetic induction can be appreciable. It is easier to produce 1 T, than it
is to produce the equivalent 3�108 V/m. For this reason magnets are used
to control the motion of highly relativistic particles. At the same time, an
electric �eld is needed to do work, to \accelerate". A linac includes accel-
erating structures to shape the electric �eld for acceleration, and magnets
to shape the magnetic induction needed for beam guidance.

Associated with electric �eld and magnetic induction, are two con-
structs, the electric displacement ~D and the magnetic �eld ~H. In vac-
uum, ~D = "0 ~E and ~H = ~B=�0, where "0 and �0 de�ne a choice of
units, subject to 1=

p
�0"0 = c � 2:9979 � 108m/s. In practical units,p

�0="0 = Z0 � 376:7 
. In media, and in the frequency domain, these

expressions take the form ~D = " ~E and ~H = ~B=�. The quantity " is the per-
mittivity and � is the permeability. These �elds are governed by Maxwell's
equations,

~r � ~D = �; (5)
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~r � ~B = 0; (6)

~r� ~E = �@
~B

@t
; (7)

~r� ~H =
@ ~D

@t
+ ~J: (8)

~J is the external current density, that due to charged particles not already
incorporated in �, and � is the external charge density. It is rare in practice
to drag out Maxwell's equations, as typically one employs a derived circuit-
equivalent for accelerator structures. However, it is often helpful to refer to
conservation of energy and momentum.

We consider a volume V in which we �nd total charge density � and
current density ~J . Employing Maxwell's equations one may show that

� ~J � ~E = ~r � ~S +
@u

@t
; (9)

where the Poynting 
ux is
~S = ~E � ~H; (10)

and energy density is

u =
1

2

�
"0 ~E

2 + �0 ~H
2
�
: (11)

In practice energy conservation is employed as a check of one's understand-
ing of a circuit. In steady-state, power incident on an accelerator circuit
should be balanced by what is re
ected, transmitted, dissipated, and taken
up by the beam.

Momentum conservation also �gures prominently. The Lorentz force law
may be expressed as

d~Pmech

dt
=

Z
V

dV
�
� ~E + ~J � ~B

�
;

where ~Pmech is the mechanical momentum of the constituent particles
within the volume V . Applying Maxwell's equations one may cast this in
the form  

d~Pmech
dt

+
d~Pem
dt

!a
=

Z
@V

T abdSb; (12)

where summation is implied over repeated indices and a; b = 1; 2; 3 index
Cartesian spatial coordinates. The momentum associated with the �elds in
the volume is

~Pem =
1

c2

Z
V

dV ~S;
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and ~S is the Poynting vector of Eq. (10). The 
ux of momentum through
@V , the bounding surface, is given by the electromagnetic stress tensor,

T ab = "0E
aEb + �0H

aHb � u�ab; (13)

with �ab the Kronecker delta. This result will be helpful for structure design.

2.2. MATERIALS NEEDED

As to the matter of acceleration, Eq. (4) implies that a particle's energy "
varies according to

d"

dt
= q~V � ~E; (14)

and with this we may classify accelerators according to the method of pro-
ducing ~E: electrostatic, inductive or fully electromagnetic. The �rst two are
prominent in the history of accelerators, and to the present-day. However,
for high-energy particles there is no substitute for the last, the microwave
accelerator. It is not obvious at �rst how to employ an electromagnetic wave
for acceleration. In the 1930's this was considered a research project [4]. In
free-space, we are familiar with the mechanism of radiation pressure. Par-
ticles jitter transversely in a passing wave, and their jitter velocity causes
them to be de
ected in the forward direction by the transverse magnetic
�eld. In this way particles may be pushed along by the wave, accelerated.
This is just Thomson scattering. One intuits however that high-energy par-
ticles, with large relativistic inertia, jitter little. Thus radiation pressure
or \second order acceleration" doesn't work well at high-energy, at least
not directly. One may in principle circumvent the problem by introduc-
ing another external �eld to enforce the requisite transverse motion. This
could be another wave, or a static magnetic �eld, as is seen in the inverse
free-electron laser and the inverse cyclotron maser . The problem is solved
in laser-plasma accelerators , by arranging that the radiation pressure act
on low-energy plasma electrons, radial currents from which then induce an
electric �eld, parallel to the high-energy beam and adequate for accelera-
tion.

Historically, however, and perhaps logically, there is a more direct ap-
proach, \�rst-order acceleration". To see what this entails, we consider �rst
a wave in free-space, and �rst-order particle motion in the wave. The wave
may be decomposed into plane-waves, and at �rst-order in the applied
�elds, the impulse received by the particle is just the sum of the impulse
from each wave. Thus it is enough to analyze motion in a plane wave of a
particular angular frequency !. We denote the component of wavenumber
parallel to the particle motion, kjj = V̂ � ~k, with ~k the wavevector, and ~V

the particle velocity. Net energy gain of the particle is given by the integral
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over the particle displacement s

�" =

Z
ds Ejj cos

�
! t� kjjs

�
;

with Ejj the parallel component of the electric �eld. Energy gain depends
on the phase  = ! t� kjjs witnessed by the particle. Notice however that

d 

ds
=
!

V
� kjj > 0

since in free-space !=j~kj = c > V . Wave-crests continually 
ow past the
particle alternately accelerating or decelerating it. On average �" = 0.
Secular �rst-order acceleration in in�nite free-space is not possible.

There are two solutions to this problem. One is to terminate the inter-
action of the particle with the wave, the other is to modify the dispersion
characteristics of the wave to obtain synchronism with the particle. In the
former case, the wave is trapped in the accelerator, forming a standing-
wave; in the latter case, one has a travelling-wave. Both require the intro-
duction of media. While dielectrics, plasmas, and other media are conceiv-
able, and quite interesting as research projects, Hansen's original concept
for a geometry employed conducting boundaries [4], and in �fty years has
proved hard to beat. To see how microwaves within a conducting geome-
try may provide acceleration, it is enough at �rst to consider only a single
cavity.

2.3. THE ACCELERATOR CAVITY

We consider how to describe and design a cavity useful for acceleration.
First let us reduce Maxwell's equations to a simpler, pictorial form for a
perfect conductor-vacuum geometry, as in Fig. 2. As we will see, structures
are made frommaterial of high-conductivity so as to minimize power loss. A
high-conductivity material will quickly \short" any tangential electric �eld
at its surface. Thus due to the ease with which charge redistributes itself
over a conducting surface, electric �eld lines in a cavity terminate normal
to a boundary, or not at all, closing on themselves. Similarly, currents are
induced and 
ow to cancel the magnetic �eld within the conductor. There is
no magnetic charge, however and so magnetic �eld lines never terminate and
they can only close on themselves. This much we obtain from Gauss's Law,
Eq. (5), and the solenoidal condition, Eq. (6). Faraday's Law, Eq. (7), and
Ampere's Law, Eq. (8), combined describe the mutual excitation of electric
and magnetic �eld, and dictate oscillation in a hollow conductor. In circuit
terms, a region of space permeable to magnetic �eld presents an inductance,
and a region permitting electric �eld presents a capacitance, and where both



MICROWAVE LINACS 9

L

C

R
J

E
B

Figure 2. Maxwell's equations applied to a conductor-vacuum geometry reduce to a
prescription for �eld lines, and wall currents. In the �rst approximation, the system
behaves as an LC circuit. Equivalent resistance is low.

are present one expects to see behavior as in an LC circuit, oscillation at
angular frequency ! = 1=

p
LC. These considerations, summarized in Fig.

2, suggest that a cavity may be useful not only for �eld shaping, and thus
�rst-order acceleration, but that the LC character of the system might be
exploited for resonant excitation.

Yet conductors are not perfect. Wall currents 
ow through a lossy
medium, resistance is present. Our LC circuit is really an RLC circuit. To
quantify resistance, let us examine the matter of rf-dissipation for a normal
conductor. Ohm's law takes the microscopic form ~J = � ~E, where � is the
conductivity. Preferring higher conductivity, we might consult a listing of
materials as in Table 1, and �nd that, considering cost, there is nothing

TABLE 1. DC electrical resistivity of some example materials in units of
1:7� 10�8
-m.

Material Resistivity

stainless steel 42 (300-series)

free-cutting brass 4:0 (63% Cu, 34% Zn 3% Pb 0:15% Fe)

brass 2:2 (66% Cu, 34% Zn)

aluminium 1:5� 2:9

gold 1:4

copper 1:0 (OFE)

silver 0:93

better than the item labelled \OFE copper", the stu� of linacs. This is
99:99% pure, "oxygen-free electronic-grade" copper, \C10100" in the Uni-
�ed Numbering System for Metals. Conductivity is � � 5:8� 107mho/m.

In the Drude model the �gure � arises from electron motion in the
applied �eld, subject to drag due to collisions with the ions. With collisions,
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electrons undergo a random-walk, and thus it is not surprising to �nd that
the magnetic �eld, in the conductor satis�es a di�usion equation. In a
random-walk process, di�usion depth is proportional to square-root of time,
and in fact, the penetration depth, or skin-depth, for an rf-excitation takes
the form � =

p
2=��!, with ! the angular frequency of the excitation. At

3 GHz (\S-Band") in copper, � � 1 �m.
Knowing the skin-depth, one may determine power dissipation in a con-

ducting boundary. The wall current density J should be su�cient to cancel
the local magnetic �eld H within the conductor, on the order of J � H=�.
This results in a power dissipation per unit volume J2=� within the con-
ductor, so that net dissipated Poynting 
ux is � J2=� � RsH

2. The surface
resistance is, Rs = 1=��, 14 m
 for copper at S-Band, and varying as !1=2.
Net dissipated power may be expressed then in terms of an integral over
the conducting boundary, and quanti�ed in terms of a wall quality factor ,
Qw,

Pw =
1

2
Rs

Z
wall

~H2dS � ! U

Qw
: (15)

A factor of 1/2 arises from time-averaging, and ~H is the peak magnetic

�eld. The energy stored in the cavity, U , may be expressed in terms of ~H,
from Eq. (11), with a volume integral, permitting us to solve for

1

Qw
=
�

2

R
wall

~H2dS

R
volume

~H2dV
: (16)

Roughly speaking, in each oscillation in a volume V , with a conducting
surface area A, a fraction of the energy is dissipated, in proportion to the
lossy volume A�. Quality factor is Qw � V=2A� in order of magnitude.
Since cavity dimensions are of order the free-space wavelength � one can
see that Qw � �=4� will be a large number. The corresponding decay-time
for �elds is

T0 =
2Qw

!
; (17)

as one can check by solving dU=dt = �Pw = �!U=Qw. For an S-Band
accelerator � � 0:1m and Qw � 104; the decay-time may be quite long,
1�s, even while the oscillation period is short, 0.3 ns.

This discussion provides a description of a cavity as an RLC circuit.
Next let us consider just what kind of accelerator our cavity can be. We
picture an initially unexcited cavity, through which a beam-tube has been
cut, as in Fig. 3. We suppose the beam tube is small enough that the �elds
cannot propagate into it, but remain con�ned. We consider the transit of a
relativistic charge q through the cavity.
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q q

Figure 3. We consider the interaction of a charged particle with a cavity.

After the particle has left the cavity we suppose that energy U has been
deposited in the the accelerating mode of the cavity. From the law of energy
conservation, we expect a quadratic relation U = klq

2 for some choice of
constant kl characteristic of the cavity mode. This loss-factor has units of
V/C. After the particle has left the cavity, the accelerating mode oscillates
with some amplitude, V . To relieve the term \amplitude" of any ambiguity,
we de�ne V in units of voltage such as would be witnessed by a trailing
particle. Notice that the energy loss by the charge q itself may be seen as
arising through the action of this voltage. In transit through the cavity the
charge witnesses an electric �eld that starts at 0 and rises to its maximum
value. Thus the e�ective self-induced voltage is V=2, so that U = qV=2, or
V = 2klq. Single-bunch beam-induced voltage is determined by the bunch
charge and the loss-factor. A bit of algebra shows then that U = V 2=4kl.
This last relation, between energy and voltage must be independent of the
means by which the voltage was produced. Thus if we wish to employ
this cavity to accelerate, we must provide some energy, and the amount of
energy is determined from the voltage required, and the loss-factor. Large
loss-factor implies that the cavity is frugal with energy. It says though
nothing about dissipation|that's a di�erent kind of frugal that we'll come
to shortly. It also implies that beam-induced voltage or \beam-loading" is
large. A good accelerator is a good decelerator. This reciprocity between
externally-supplied voltage, and beam-induced voltage is referred to as the
fundmantal theorem of beam-loading.

If large loss-factor is good, how large can loss-factor be? We consider the
energetics of the accelerator cavity in more detail. Suppose the length of
the cavity is L and the cross-section is A. In terms of peak on-axis electric
�eld E stored energy is roughly

U � 1

2
"0E

2 � 1

4
�AL;

with a factor of 1=4 to account for the radial variation in E2. Next, let us
relate E to \gap-voltage" V . For an electron crossing a gap of length L,
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with oscillating �eld of amplitude E, voltage gain is not E�L, rather it is

V =

Z
dsE

�
t = t0 +

s

V

�

for an electron entering at time t0. For an electric �eld varying sinusoidally
in time, uniformly across the gap, the result is that maximum voltage gain
is V � E � L � T , where T = sin (�=2) = (�=2) is the transit-time factor ,
and � = !L=V is the transit-angle. For a �xed �eld amplitude, maximum
voltage gain corresponds to � � �. In this case, the electron enters the
cavity when the �eld E = 0 and leaves just as E = 0 a half-cycle later.

With this we may compute

kl =
V 2

4U
� L

"0A
T 2;

roughly the inverse of the capacitance of two parallel plates. At �rst one
might think that large loss-factor would be easy to obtain by lengthening
the cavity, or decreasing the plate area. However, loss-factor has a maxi-
mum at L � 0:371�; greater lengths lead to lower kl due to the transit-time
factor. At the same time, cross-section cannot be arbitrarily small, since the
electric �eld must vanish at the outer boundaries. For simple geometries,
such as circular or rectangular pipe, this implies minimum A � �2=2. This
corresponds to loss factor kl � 1="0�, or 1 V/pC for an S-Band cavity.
Shorter wavelength accelerators can make do with lower stored energy, but
they exhibit heavier beam-loading, and thus must be operated with lower
bunch charge. Associated with loss-factor is a second, more commonly em-
ployed quantity, [R=Q] = V 2=!U = 4kl=!, \R-over-Q". This is an awkward
notation, but it is conventional. Our estimate corresponds to

�
R

Q

�
� 8

�2
Z0

sin2(�=2)

(�=2)

with a broad maximum in the vicinity of 220 
 for cavity length in the
range L � �=4 � �=2. [R=Q] is a single thing, not two as the notation
unfortunately seems to imply, and it is a function only of the shape of the
cavity, not the scale.

Notice that [R=Q] and kl have no connection with wall conductivity
or dissipation. They characterize energy-loss of a short bunch, one much
shorter than a period, and very much shorter than a damping time. These
quantities know nothing of dissipation. They determine the energy that
must be stored to establish a prescribed gap voltage.

Understanding the geometric scalings for the energetics of the conduct-
or-vacuum geometry forming an accelerator cavity, we can turn next to the
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practical matter of putting energy into the cavity. For this we need a short
excursion into the subject of waveguide.

2.4. WAVEGUIDE FOR ALL OCCASIONS

To move a signal from point A to point B, one needs \waveguide", two-
conductor cable (coaxial, stripline) or hollow waveguide (rectangular, cir-
cular, elliptical). The two most common gometries are illustrated in Fig.
4, and we'll visit with these at length in Sec. 2.14. However, just now we
are concerned with the function of the guide; independent of the partic-
ular guide geometry employed, this may be pictured quite simply. There
are two directions in the guide, forward and reverse, or \+" and \�". We
consider a single-frequency, steady-state excitation, and inspect �rst the
case of a wave propagating in one direction, call it the \+" direction. We
may describe the amplitude of the wave by considering the electric �eld
between the conductors, and gauging its magnitude and phase by a phasor
with units of voltage, call it V+. There is also a magnetic �eld and we may
describe it by a phasor with units of current I+. Precise de�nitions of these
phasors would refer to a choice of normalization, and one might be con-
cerned that such a choice would be arbitrary. In fact, there is arbitrariness
in the choice of normalization for such \circuit-equivalent" descriptions of
wave systems. We can take a bit of the arbitrariness out by asking that the
quantity P+ = <V+I�+=2 should correspond to the power 
ow through the
guide, i.e., the Poynting 
ux integrated across the waveguide cross-section.
This still leaves one with the freedom to choose a normalization correspond-
ing to something with units of impedance Zw = V+=I+, referred to as the
waveguide impedance or waveguide mode impedance.

Next we consider the more general situation consisting of both forward
and reverse waves together on the line. The net voltage and current phasors
at a point z along the guide are given by

~V (z; !) = V+ (!) e�j�z + V� (!) e
j�z ; (18)

Zw ~I (z; !) = V+ (!) e�j�z � V� (!) e
j�z; (19)

where � is the wavenumber in the guide geometry. Let us abbreviate R =
V� (!) =V+ (!), thinking of this as a re
ection coe�cient due to a device
placed downstream on the cable. The actual impedance at the plane z is
then

Z =
~V (z; !)

~I (z; !)
= Zw

1 + e2j�zR

1� e2j�zR
: (20)

This result indicates that for a short length of cable, with �z << 1, spatial
phase-shift through the cable is small, and the guide is a lumped element.
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b

a 2b

2a

E

Figure 4. The two most common choices for waveguide are rectangular guide and coaxial
line.

Longer cable constitutes a transmission line for waves. Generically we may
call such a circuit, one comparable to a wavelength in size, a microwave
circuit . Above 1 GHz most circuits are microwave circuits. A linac is a
microwave circuit.

Returning to our forward and reverse waves, and the resulting standing-
wave on the line, consider that if one probes the voltage associated with this
standing-wave, as a function of z, one �nds maximum voltage jV+j+ jV�j,
and minimum jV+j � jV�j. The ratio of maximum to minimum is

V SWR =
1+ jRj
1� jRj : (21)

This voltage standing-wave ratio may be viewed as a property of the device
to which the waveguide is attached, and it is a function of frequency. Typi-
cally microwave devices come with a speci�cation for maximumVSWR over
a range of frequencies. Let us consider then the microwave device foremost
in our considerations just now, the accelerator cavity.

2.5. VIRTUES OF A RESONATOR

To power our cavity we consider a picture like that of Fig. 5. We make
a small hole in the cavity wall and attach a waveguide to it. The guide
transmits a wave through the hole or \coupling iris". This is just an elec-
tromagnetic version of the \ripple tank". The wave incident on the iris is
initially mostly re
ected. However, over time, the cavity gradually �lls and
as it does it begins to radiate; waves di�ract through the coupling hole
back into the external guide. Eventually, due to losses in the cavity walls,
the system reaches steady-state, and the di�racted wave may partially or
totally cancel the re
ected wave. If the coupling iris geometry is such that
the cancellation is total, the cavity is said to be \critically coupled". For a
critically coupled cavity in steady-state, the incident power 
ows down the
guide and into the cavity walls.
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drive turns on cavity fills steady-state

Figure 5. In the transient �lling of a cavity by a forward wave in the connecting guide,
the reverse wave is a superposition due to re
ection and di�raction.

The e�ect of wall-losses, and external coupling may be quanti�ed in
terms of the wall quality factor, Qw, and a \di�ractive" or \external" qual-
ity factor, Qe. If the energy stored in the cavity volume is U , then the power

owing into the walls is Pw = !U=Qw. If the incident power is turned
o�, then the power 
owing out of the cavity and down the waveguide is
Pe = !U=Qe. The net rate at which energy is leaving the cavity volume|
with rf drive o�| is the sum of these rates, and may be characterized by
the \loaded Q",

1

QL
=

1

Qe
+

1

Qw
: (22)

Just asQe limits the rate at which energy may leave the cavity, it also limits
the rate at which energy may be put into the cavity by means of external
rf-drive. In general, the response-time of the cavity to external drive alone
is the loaded �ll-time

Tf =
2QL

!
: (23)

If the cavity is critically coupled then in steady-state the rate of energy

ow into the cavity should match the rate at which energy is absorbed in
the walls, or 1=Qw = 1=Qe In this case, Tf = T0=2. In general we may
characterize coupling by the �gure � = Qw=Qe, the \coupling parameter".
Loaded �ll time is then Tf = T0=(1 + �).

Appreciating all this we can determine the power requirements for a
critically-coupled cavity in steady-state. The forward power PF in the con-
necting guide is just the power dissipated in the walls

Pw =
!

Qw
U =

!

Qw

V 2

! [R=Q]
=

V 2

Rshunt
; (24)

or V =
p
RshuntPw, where Rshunt = Qw [R=Q] is the shunt-impedance.

According to our calculations, a single normal-conducting S-Band cavity
may have a shunt impedance of at most about 3 M
. Thus to achieve 1 MV
of acceleration, we need a 0.3 MW source with a pulse length of about 1 �s.
This steady-state power requirement is set by dissipation in copper. Thus if
one had a less lossy material|a superconductor, for example| peak power
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(a) (b) (c)

V ≈ Z P V ≈ n Z P V ≈ n N Z P

Figure 6. Summarizing the logic leading to the multi-cell linac. Accelerating voltage V is
determined from the steady-state incident power P . The ratio V 2=P (\shunt-impedance")
will be of order Z � Z0 in free-space, as in (a). This can be improved greatly by use of
resonant excitation, as in (b), as quanti�ed by transformer ratio n, and by use of N cells
as in (c). The beam travels to the right in this view.

requirements would be lower. To emphasize the point, consider that if one
had a perfectly lossless cavity, and were running the machine at 120 Hz
pulse repetition frequency, then with 8.3 ms between pulses, rf drive at the
level of 30 W would be adequate to store the 1/4 J needed to establish 1
MV. What this means is that the shape, size, cost, and almost every other
attribute of normal conducting microwave linacs is determined by losses in
copper.

TABLE 2. Scaling of cavity parameters with frequency. No
beam-tubes yet.

band frequency Qw T0 [R=Q] Rshunt

UHF 714 MHz 3.2 �104 14 �s 2.2�102
 7 M


S 2.856 GHz 1.6 �104 1.8 �s 2.2�102
 3.5 M


X 11.424 GHz 8.0 �103 220 ns 2.2�102
 1.8 M


W 91.392 GHz 2.8 �103 9.8 ns 2.2�102
 0.6 M


The resulting scalings for cavity parameters versus wavelength are sum-
marized in Table 2; values listed there are for an idealized cylindrical cavity
with negligibly small beam-tubes. To summarize our progress thus far, we
have pursued the logic illustrated in Fig. 6, starting with a terminated in-
teraction, and forming a cavity amenable to resonant excitation. We have
arrived at the concept of shunt-impedance, something much bigger than
the impedance of free-space, and limited only by losses, since it is derived
from resonant energy storage. One sees in Fig. 6(c) the hint that we can
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do better still, than a single-cavity, and we will come to this in Sec. 2.13.
Before that, a few particulars of the single cavity bear elaboration.

2.6. SLATER'S THEOREM

Performance of a resonant circuit depends on tune and quality factor. The
matter of tune relates directly to tolerances on cell-manufacture and as-
sembly. Let us consider a closed lossless pillbox that has been excited in
a particular mode. Let the mode frequency be !, and the stored energy
U . Next we slowly make a localized inward displacement of the conduct-
ing boundary by an amount ��|a dimple. Work done on the mode in the
course of dimpling is given by

� U = �
Z
T dS ��;

where

T =
1

2
"0 ~E

2 � 1

2
�0 ~H

2;

is the local electromagnetic stress on the surface, just Eq. (13), evaluated
with the help of conducting boundary conditions. The signs and magnitudes
in this expression are easily checked, for example, for the cases of a capacitor
and an inductor. A charged capacitor feels compressive stress, and \wants"
to collapse. An energized inductor wants to explode. One can also see this in
the �eld line picture of the cavity mode, where electric �eld lines are strung
from surface to surface pulling them inward, and magnetic �eld lines are
coiled up inside, pushing out.

As we apply this displacement �� we are perturbing a harmonic oscilla-
tor. This is like varying the length of a pendulum while it is swinging. In
this case we have an adiabatic invariant,

�

�
U

!

�
= 0:

Adiabatic invariance determines the shift in mode frequency due to the
perturbation to the boundary,

�!

!
=
�U

U
=

1

2U

Z �
�0 ~H

2 � "0
*

E
2
�
�V: (25)

The integral extends over the volume excluded from the cavity by the
perturbation, and the perturbed �elds are employed in the integral. This
is Slater's theorem [5]. Pushing inward on a cavity wall where E is large
does negative work, lowers the stored energy, and therefore the frequency.
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Pushing inward on a wall where H is large requires that work be done,
raises the stored energy, and therefore the frequency.

This result provides the quantitative basis for some practical accelera-
tor bench-work, cavity tuning, and cavity �eld mapping. An S-Band cavity
tunes at about 1 MHz/mil, where 1 mil = 0.00100 = 25.4 �m.With Q � 104,
allowable mistuning is a fraction of a MHz, i.e., a fraction of a mil. This
is a constraint on machining precision and assembly, mostly assembly. The
tolerance is su�ciently severe that it implies the need for post-assembly
tuning in conjunction with bench measurements. Such microwave measure-
ments also make use of Slater's theorem in various ways. For example one
may \map" the electric-�eld pro�le in a structure by insertion of a small
bead on the beam-axis. The bead perturbs the accelerating mode frequency
by an amount proportional to E2. Thus pulling the bead through the cav-
ity and recording cavity frequency versus bead-position permits one to map
the electric �eld. The external coupling of a cavity to a waveguide may be
gauged by placing a shorting plunger on the input line, and plotting res-
onance frequency versus short position. Tune of a cavity with low Qe will
depend strongly on short position. An additional consequence of Slater's
Theorem is the need for temperature regulation. The coe�cient of thermal
expansion for copper is � � 1:7� 10�5=K, and thus temperature control at
the level of 1 K is required.

On this subject we could also mention the matter of joints . As seen in
Fig. 2, the function of the copper boundary is to carry currents. If, in assem-
bly, two copper boundaries should be joined so as to conduct current, then
they should be bonded (brazed or di�usion bonded) so as to form a good
current-carrying joint. Meanwhile, two 
at-looking surfaces merely placed
and held together may contact at as few as three points. Thus clamped
structures, often tried, often don't work, exhibiting poor tune, and low Qw.
This is easy to understand from the picture of magnetic �eld lines coiled in-
side the copper, waiting for the chance to bulge out. A small crack looks like
home to any nearby magnetic �eld, and it will move right in. Slater's the-
orem tells us that this lowers the mode frequency. Dissipation in the crack
tends to lower Qw. It is possible to make a clamped structure, however the
cuts must not interrupt the 
ow of wall current.

2.7. EQUIVALENT CIRCUIT

To understand bench-measurements involving amplitude and phase, we
need a bit more than the energetics we have considered thus far. Let us
set down a mathematical description of the single-cavity system coupled to
a beam and a waveguide. We concentrate on a single-mode.

The waveguide excitation may be described by the forward-going volt-
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age in the connecting guide VF and the reverse voltage VR. These are
coe�cients of transverse electric �eld in the guide, i.e., wave amplitudes
graced with units of voltage. Continuity of the �eld implies a condition
Vc = VF +VR, with Vc the cavity voltage, where we choose units again such
that this is the voltage witnessed by a relativistic particle traversing the
cavity. Maxwell's equations may be expressed in the form

 
d2

dt2
+ !2

0

!
Vc = [lossy walls] + [waveguide] + [beam] ;

where terms on the right are currents. The current corresponding to the
excitation from the waveguide is just the current that is \missing" due to
the coupling iris aperture. This in turn is proportional to the magnetic
�eld at the reference plane. On the other hand, the magnetic �eld polarity
is opposite for the forward and the reverse signals in the waveguide, since
the direction of power 
ow is opposite for the two. Thus the virtual current
associated with the waveguide excitation is proportional to VF � VR. The
minus sign here is the same one appearing in Eq. (19). On general grounds
then, our cavity-waveguide equation may be expressed as,

 
d2

dt2
+ !2

0

!
Vc = � !0

Qw

dVc

dt
+
!0
Qe

d

dt
(VF � VR)� 2kl

dIb

dt

It is not obvious that the re-introduction ofQw and Qe in this way is consis-
tent with our previous discussion, speci�cally Eqs. (15) and (22). However,
this may be checked by considering steady-state energetics. Similarly one
may check the beam-current term by considering a single bunch with ref-
erence to the principle of superposition.

Employing the continuity condition to eliminate reverse voltage, one
may describe the cavity excitation as a driven, damped harmonic oscillator.

 
d2

dt2
+
!0
QL

d

dt
+ !2

0

!
Vc = 2

!0
Qe

dVF
dt

� 2kl
dIb

dt
: (26)

This result permits one to compute transient and steady-state excitation
by external drive through the waveguide, or by the beam. If one prefers,
one may express this result in terms of an equivalent circuit, for example,
as in Fig. 7. In steady-state, with beam o�, and external drive at angular
frequency !, VF = < ~VF ej!t, one may express the cavity voltage as Vc =
< ~Vcej!t, with

~Vc
~VF

=
2�

1 + �
cos ej :
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Figure 7. An equivalent circuit for a cavity coupled to a waveguide and a beam.

The tuning-angle  is given by

tan = QL

�
!0
!
� !

!0

�
: (27)

Analysis of energy conservation in the steady-state provides one with the
relation of the equivalent circuit quantities VF and VR to power. Forward
power in the connecting guide is

PF = �

��� ~VF ���2
Rshunt

: (28)

This shows that the forward and reverse voltage variables we are using
should be referred to an impedance Rshunt=2�. Since this will di�er from
the waveguide impedance Zw, we put a transformer in the equivalent circuit
model of Fig. 7. The equivalent turns ratio n is given by n2 = Rshunt=2�Zw.
One can go on to express cavity voltage in terms of forward power,

��� ~Vc��� = 2�1=2

(1 + �)
jcos j (RshuntPF )1=2 : (29)

This relation is to be contrasted with the expression in terms of dissipated
power Pw, developed in Sec. 2.5, V =

p
RshuntPw. The two results are gen-

eral, but we emphasize that PF 6= Pw in general. Optimum cavity voltage,
at �xed power, with negligible beam-loading, occurs for critical coupling,
� = 1 and perfect tune  = 0. To appreciate the e�ect of errors, consider
that at  = 26� one has lost 10% of the gap voltage; this corresponds to
fractional detuning � = (!0 � !)=!0 � 1=4QL. For a critically-coupled S-
Band cavity this is a detuning of 100 kHz, equivalent to a dimension error
at the 3-�m level.

For comparison with measurement, one may express the steady-state
complex re
ection coe�cient as

S11 =
~VR
~VF

=
2�

1 + �
cos ej � 1: (30)
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This quantity was referred to as R in the discussion of waveguide and both
notations are common. The notation here refers to the scattering-matrix or
\S-matrix". As we will see in Sec. 2.14, this is in general an N �N matrix
for an N -port device. Here N = 1. This quantity is directly measurable as
a function of frequency and in modern times special instruments, vector-
network analyzers, are routinely employed for this purpose. A measurement
of S11 permits one to infer !0, �, and QL, and to assess systematics associ-
ated with temperature regulation and vacuum. Thanks to Slater's theorem,
repeated measurement of S11, as a small dielectric bead is pulled along the
beam-axis, permits one to map the electric �eld. Equation (30) represents
the contribution to S11 from a single mode. In practice one may expect that
measurement of S11 for a microwave cavity will exhibit both narrow and
broad resonances. The latter are often resonances on the connecting guide,
the former are the resonant modes residing within the cavity proper, and
they are very narrow, since QL is very large.

Appreciating what a cavity mode and a waveguide can do to each other,
let us consider the e�ect they may have on the beam.

2.8. ELECTROMAGNETIC MULTIPOLES

We consider a particle passing through a beam-tube with a structure of
some kind enclosing the tube, as seen in Fig. 8. We approximate the par-
ticle trajectory as a straight line centered on transverse coordinate ~r? and
passing some reference plane at time t0. The voltage experienced by the
beam in transit through the geometry may be expressed in terms of axial
electric �eld Es as

Vc (~r?; t0) =

+1Z
�1

ds Es

�
~r?; s; t0 +

s

V

�
;

where V is the particle speed. We may express the electric �eld in terms of
Fourier components,

Es (~r?; s; t) =

+1Z
�1

d!p
2�
ej! t ~Es (~r?; s; !) ;

with a corresponding result for voltage,

Vc (~r?; t0) =

+1Z
�1

d!p
2�
ej! t0 ~Vc (~r?; !) ;
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e-
r⊥ ŝ

Figure 8. The interaction of a beam with a cavity depends on its transverse coordinate
~r?.

where

~Vc (~r?; !) =

+1Z
�1

ds ~Es (~r?; s; !) e
j! s=V :

Applying Maxwell's equations in the vicinity of the beam-orbit, 
r2
? +

@2

@s2
+
!2

c2

!
~Es (~r?; s; !) = 0;

we can, after an integration by parts, establish that�
r2
? � �2

�
~Vc (~r?; !) = 0; (31)

where

� =

 
!2

V 2
� !2

c2

!1=2

� !


 V
: (32)

The voltage witnessed by a particle depends in general on its displace-
ment from the cavity axis. For a relativistic beam �! 0. In this limit, the
voltage imparted by a cavity mode is a harmonic function of the transverse
coordinate.

A harmonic function regular in the vicinity of the center-axis may be
expressed in the form of a multipole expansion.

~Vc (~r?; !) =
1X
m=0

rm fbm cos (m�)� am sin (m�)g; (33)

introducing polar coordinates, ~r? = (x; y) = r (cos�; sin�). Where the
geometry respects circular symmetry, and for the case of a single excited
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mode, the sum reduces to single terms, pure multipoles. In particular, the
m = 0 term is independent of position. One prefers such a \monopole"
mode for acceleration, since then gap voltage is independent of the beam
orbit. On the other hand, real structures require a power feed, and this
implies a deviation from cylindrical symmetry. Thus one is interested to
quantify azimuthal mode purity in structures.

Generally one may classify modes based on their leading-order azimuth-
al harmonic. To appreciate the e�ects of such harmonics, it helps to consider
not merely the longitudinal kicks associated with a structure excitation,
but the transverse kicks as well. Transverse impulse per unit charge may
be expressed as

~P? (~r?; t) =

+1Z
�1

ds

�
1

V
~E? + ŝ� ~B?

�
(~r?;s;t+ s

V )
: (34)

Employing Faraday's Law and the ballistic-trajectory assumption, one may
show that

@ ~P?

@ t
= �~r?Vc; (35)

the Panofsky-Wenzel theorem [6].

To make these considerations more concrete, consider an accelerator
structure respecting inversion symmetry in y, but not in x. The monopole-
mode voltage will take the form, at leading order,

Vc (x; y; t0) = <V0ej 0
n
1 +B1x+B2

�
x2 � y2

�
+ : : :

o
;

where V0;  0 are the amplitude and phase seen on-axis. An o�-axis tra-
jectory corresponds to a di�erent amplitude and phase. Keeping only the
dipole (m = 1) correction, and expressing B1 = jB1j ej 1 , one can see that

Vc (x; y; t0) � <V0ej 0ej� 
�
1 + 2 jB1jx cos 1 + jB1j2 x2

�1=2
where

tan � =
jB1jx sin 1

1 + jB1jx cos 1

Thus the absence of a re
ection symmetry permits a phase and an ampli-
tude asymmetry in the accelerating voltage. An additional consequence is
the presence of transverse de
ections associated with this mode,

~P? = ~r?<V0ej 0
j

!

n
1 +B1x+B2

�
x2 � y2

�
+ : : :

o
(36)
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Figure 9. Electromagnetic multipoles depicted according to the symmetry of the char-
acteristic voltage witnessed by a relativistic beam, travelling into the page.

or, at lowest order Px � � (V0 jB1j =!0) sin ( 0 +  1). Thus particles phased
\on-crest" (sin 0 = 0) experience a transverse de
ection determined by the
imaginary part of B1, the phase-asymmetry of the mode. Such an asym-
metric geometry permits acceleration at an angle. This is undesirable in an
accelerator cavity. This problem appears in practice wherever structures
are asymmetrically fed, as with a single waveguide feed, for example.

While the m = 0 accelerating mode represents the most important
example of a multipole, there are others, as seen in Fig. 9. The dipole
modes are essential in understanding the transverse dynamics of a high-
current beam, and arise naturally in the context of wake�elds .

2.9. WAKEFIELDS

We have seen in Sec. 2.3 that the accelerating mode is excited by the
beam, with voltage determined by the loss-factor kl. In fact, each mode
of the structure is excited by the beam, to the extent that the mode has
some parallel electric �eld component, speci�cally, non-zero loss factor eval-
uated on the beam orbit. This is not cause for immediate alarm, because
it takes some e�ort actually to design a mode to interact well with the
beam. Nevertheless, when beam intensity is high, one may be concerned.
Beam-excitation of parasitic modes is described by an elegant formulation
in terms of \wake�elds" [7].

To illustrate, let us return to the single-cavity problem of Sec. 2.7, and
solve explicitly for the beam-induced voltage in a particular mode, using
Eq. (26), with no external drive VF = 0. One can check by di�erentiation
that

Vc (t) = �
tZ

�1

dt0G
�
t� t0

� dIb
dt

�
t0
�
:

where the Green's function is

G (�) = 2kl
sin (
� )



exp

�
�1

2��
�
H (�) ;



MICROWAVE LINACS 25

with H the step-function, 
 = (!2
0� 1

4
�2)1=2, and � = !0=QL. If we suppose

cavities are placed along the beamline at separation L, we may translate
this result into loss of voltage per unit length, or gradient,

d

ds
mc2
 = e

�Z
�1

d� 0Wjj

�
� � � 0

�
Ib
�
� 0
�
; (37)

for an electron located at � = t� z=c. One can check, with an integration
by parts, that Wjj = G0=L. More generally the \longitudinal wake�eld",
Wjj includes contributions from other modes. In the frequency domain
~Vc (!) =L = �Zjj (!) ~Ib (!), where Zjj is the contribution to the \longitu-
dinal impedance" per unit length from this mode, a Lorentzian line-shape
with width set by QL,

Zjj (!) =
2j k0l! !0

!2
0 � !2 + j ! !0=QL

; (38)

where k0l = kl=L. In general, impedance receives contributions from this
and all other high-Q modes with longitudinal electric �eld non-zero on the
beam-axis. In addition to such narrow-band terms in the impedance, there
are broad-band terms at frequencies above cut-o� in the beam-tube. At
very high-frequencies quasi-optical phenomena appear, as nearby bound-
aries cause the space-charge �elds of the beam to di�ract. This e�ect is
particularly severe when the bunch-length is short, for then high-frequencies
are well-represented in the beam-distribution. In accounting for impedance
one looks for any deviation from uniformity in the beam-tube. The most im-
portant constriction in an accelerator is the beam-passing aperture between
accelerator cells. Other common pipe-irregularities include beam monitor-
ing instrumentation, collimators, bellows sleeves, vacuum port shields, and
transitions in beam-pipe dimension. Even for a smooth pipe, wall resistivity
results in energy loss, and thus one is concerned wherever the beam-passing
aperture is small and lossy. These e�ects are acute in circular machines,
where the beam orbits through an astronomical length of pipe. However,
even in a linac, longitudinal wake�elds may account for a reduction in beam
energy of several percent, when single-bunch charge is high, and bunch
length is short. To characterize such e�ects in simple terms, one may refer
to the total loss factor per unit length,

k0tot =
1

Q2
b

+1Z
�1

d!
���~Ib (!)���2<Zjj (!) ; (39)

in terms of a form-factor quanti�ying coherence at angular frequency !,
and the impedance describing the coupling to the beam-environment. So
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for example, in an S-Band structure fundamental-mode loss factor would
be 1 V/pC/cell, while total loss factor might be 4{8� larger, depending on
the bunch length and beam-port radius [7].

A more baneful e�ect in a linac is the dipole wake�eld excited by an
o�-axis beam. To illustrate, we return to the single cavity mode, and apply
the Panofsky-Wenzel theorem, to the case of a dipole-mode excitation,

Px = <
 
j

!0

@ ~Vc

@x
ej!0 t

!
: (40)

We may characterize the e�cacy of this mode as a beam-de
ector in much
the same way that we characterized the monopole mode as a beam-acc-
elerator. We de�ne �

Ra

Q

�
=

��� ~Vc (x = a)
���2

!0U
;

just the [R=Q] for this mode evaluated on an o�-axis trajectory at x = a.
In the limit a! 0, we obtain the �gure of merit

�
R?

Q

�
= lim

a!0

�
Ra

Q

�
1

a2
=

���@ ~Vc=@x���2
!0U

: (41)

For example, for the lowest dipole mode of a circular cavity of radius R one
may show that maximum [R?=Q] � 3Z0=R

2.

In terms of k? = !0 [R?=Q] =4, one may express the energy deposited in
this mode as U = k?Q

2
bx

2
b for a beam o�set xb. One wouldn't mind a small

amount of energy loss due to such a mode, particularly if the beam orbit
were well-centered | except that with this mode comes a de
ecting mag-
netic �eld. Consequently the head of a short bunch may de
ect the tail. A
rocking motion develops, and this motion is unstable, since the source of de-

ections is the beam o�set itself. This e�ect was �rst observed in operation
of linacs in multi-bunch mode, and appeared as a truncated current wave-
form on a current monitor. It was referred to at �rst as \pulse-shortening",
and later, as \beam break-up" (BBU) when it was realized that transverse
oscillations were the cause of beam loss [8]. Because of this wake�eld, and
the potential for bunch-to-bunch excitation, modern structure design en-
tails elaborate measures to cause parasitic modes to damp and decohere [9].
Structure and lattice alignment have become subjects of the �rst impor-
tance. Ground motion, girder mechanical resonances, and thermal-bowing
of girders have become subjects for research [10].

We can extract from our analysis a prescription for the transverse mo-
tion through the linac. For the case of the single cavity, we may describe
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dipole-mode excitation according to 
@2

@t2
+
!0

QL

@

@t
+ !2

0

!
@Vc

@x
= �2k?

@Ib

@t
xb;

and the circuit parameters here refer to the dipole mode, not the accel-
erating mode. Applying the Panofsky-Wenzel theorem, Eq. (35), we may
express this more directly in terms of the impulse, 

@2

@t2
+
!0

QL

@

@t
+ !2

0

!
Px = �2k?Ibxb:

The solution is

Px (t) = �
tZ

�1

dt0G
�
t� t0

�
Ib
�
t0
�
xb
�
t0
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where the Green's function

G (�) = 2k?
sin (
� )
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Notational conventions di�er on the subject of transverse wake�elds. We
will refer to the wake�eld per unit lengthWx, with the identi�cation G=L!
Wx. The rate of change of momentumper unit length may then be expressed
as

dpx

ds
= e

�Z
�1

d� 0Wx

�
� � � 0

�
Ib
�
� 0
�
xb
�
� 0
�
; (42)

in the absence of other transverse forces.
As with the longitudinal wake�eld, the transverse wake�eld picks up

contributions due to any deviation from uniformity on the beamline, as
well as wall resistivity. The narrow-band components of the corresponding
transverse impedance account for the original beam break-up problems ob-
served in multi-bunch mode on the linacs of old. These narrow-band terms,
corresponding to the \long-range" wake�eld, are diminished by detuning of
successive cells, so as to arrange destructive interference between the dipole
modes of the structure as a whole. This was achieved, accidentally, but
happily, in the Two-Mile accelerator by virtue of constant-gradient design,
followed by additional detuning in situ [11]. The broad-band terms, cor-
responding to the \short-range" wake�eld, account for single-bunch beam
break-up. This is controlled only by lowering bunch charge, or strengthening
the magnetic lattice. At the design-stage one may reduce the short-range
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Figure 10. Cutting of the beam port in the cylindrical pillbox on the left reduces [R=Q].
This can be �xed with nose-cones as seen on the right.

wake�eld by enlarging the beam port. However, a larger beam-port aper-
ture easily lowers the [R=Q]. The conjunction of these two problems leads
us directly to the matter of structure design.

2.10. CAVITY DESIGN

Thus far we have seen more or less what is desired of a cavity geometry,
in terms of coupled-cavity circuit performance, and we can appreciate that
there are consequences for beam dynamics. However, the parameters that
determine the dynamics of the cavity and the beam are determined them-
selves by cuts in copper. Let us consider then how to accomplish the desired
circuit parameters, and �eld-shape, by design, for an illustrative problem
as illustrated in Fig. 10.

As we have seen, an accelerator cavity requires a beam-port. Cutting the
port causes electric �eld lines to extend into the beam-tube, and develop
transverse components. This reduces the integrated longitudinal �eld, and
therefore [R=Q]. Reduction of the cavity radius and introduction of \nose-
cones" attracts electric �eld lines to the gap, and improves the �eld-line
shape. These considerations are illustrated with a simple estimate.

When the beam tube radius and gap are small, such a re-entrant cavity
is approximately a coaxial line with a gap in the center conductor. Let us
denote the beam tube radius a, inner conductor outer radius R1, outer con-
ductor inner radius R2, gap length L1, and cavity length L2 as seen in Fig.
11. The resonant frequency of the circuit may be determined from the ca-
pacitance and inductance. Capacitance is determined by the energy stored
in the electric �eld. If L2 is short compared to a wavelength, most of this
energy resides in the gap, and capacitance is C � "0�R

2
1=L1. Inductance

is determined by magnetic energy stored in the coaxial line, arising from
displacement current I = "0! �R

2
1E, and this is L � (�0=2�)L2 ln (R2=R1).

Resonant frequency is then ! = 1=
p
LC. Using [R=Q] = V 2=!U � 2=!C,
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Figure 11. We analyze a reentrant cavity.
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with T the transit angle factor for the gap. Inspection of these results
for frequency and [R=Q] suggests that one can in fact recover the high
impedance of the closed pillbox by judicious design. This was accomplished,
in the early days of linacs, by approximate calculations along the lines of
our example [5]. In practice, the analytic approach was supplemented with
\cut and try" on the bench, to improve on the guidance of the design equa-
tions. In modern times it is common to employ software to solve Maxwell's
equations and thereby optimize cavity dimensions.

To illustrate, Fig. 12 shows an example of a re-entrant cavity, the phase-
monitor cavity, designed by Altenmueller and Brunet for use on the Two-
Mile Accelerator circa 1965 [12]. These still see use today, for �xed-target
experiments [13]. The numerical geometry has been set-up with the code
Gd�dL [14]. In the notation of Fig. 11, dimensions are L1 = 1:023500,
L2 = 1:700500, 2a = 0:800000, 2R1 = 1:000000, 2R2 = 2:652500. These dimen-
sions were arrived at after iteration on the bench, and chosen to provide
a frequency 2 MHz low prior to brazing, so that frequency could be ad-
justed by dimpling. Altenmueller and Brunet infer from their measurements
Qw � 9600, QL � 1200, coupling parameter � � 7:0, [R=Q]=T 2 � 370 

(adjusting a factor of two conventional di�erence), T � 0:819, [R=Q] �248

. The corresponding numerical result for S11 is seen in Fig. 13. Numerical
calculation with Gd�dL indicates [R=Q] �236 
, and Qw � 1:51 � 104.
Observed temperature detuning coe�cient is 25 kHz/�F, 1� RF for 0.5 �F.

Nose-cones are but one feature of interest in cavity design. Symmetric
input and output couplers help to eliminate dipole kicks. To control long-
range wake�elds, slots may be added to cells to externally couple higher
modes, e�ectively damping them. Wake�elds can be caused to decohere
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Figure 12. An example re-entrant cavity, the phase-monitor cavity of the original cav-
ity beam-position monitor system on the Two-Mile Linac. Shown is the the numerical
geometry employed for calculation and the actual cavity, part of a triplet.

by judicious detuning of cells. Such design work takes place under the
constraint of good shunt-impedance for the accelerating mode. Interest-
ing design problems also are found beyond the structures themselves, and
include windows, couplers, mode-converters and other components of the
linac rf system [15]. For high-power handling it is important to maintain low
insertion loss, good match, and low peak �eld, everywhere but in the accel-
erating cavities themselves. Numerous codes are available and the designer
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Figure 13. S11 for the phase cavity (� � 7:0) plotted versus frequency and in
Smith-Chart form.

has quite a few tools to choose from [16].

2.11. TWO COUPLED CAVITIES

If we were to take the work of Secs. 2.3-2.5, on a single cavity with a single
waveguide-feed, and extrapolate it to a 20 GeV machine, we would �nd
that we need more than 104 power feeds, a lot of copper-waveguide. A more
economical scheme turns out to be feasible and consists of a series of cavities
placed along a common beam-tube. Power is fed by waveguide to a single-
cavity, and �nds its way to the other cavities, through the beam-tube. Such
a multi-cell accelerator behaves as a chain of coupled pendula. Coupling
constants, periods, and Q's are determined from the geometry sculpted in
copper. The concept may be designed as a standing-wave accelerator, with
a single feed. Or it may be implemented as a travelling-wave accelerator,
with an input waveguide at one end, and output waveguide and load at the
other end.

We consider �rst a two-cell structure as seen in Fig. 14. Recognizing the
similarity with the problem of two coupled pendula we expect to �nd two
modes of oscillation, a mode with V1 = V2 (\0-mode"), and a mode with
V1 = �V2, (\�-mode"). For the 0-mode each �eld line from cell 1 connects
to a �eld line from cell 2, and no �eld lines terminate on the coupling iris.
Displacement current from cell 1 
ows directly into cell 2 and no current

ows through the shared common wall. Since no current 
ows, one could
remove the common wall without disturbing the modal �eld pattern. In
this case one has simply smooth pipe terminated at each end. This is just
the original geometry of the uncoupled cells, but with twice the cavity
length. However for the accelerating mode, as seen in Fig. 2, frequency
depends only on radius. Thus the 0-mode frequency 
0 is just that of the
uncoupled cells. In the �-mode �eld-lines terminate on the coupling iris,
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Figure 14. Two cells coupled through the beam-tube exhibit two modes of oscillation,
like two coupled pendulums.

and we expect the tune to be sensitive to the iris geometry. From Slater's
theorem, we expect that removal of copper in the vicinity of large electric
�eld, and small magnetic �eld, will reduce the capacitance of the circuit,
and therefore raise the frequency. Thus we expect the �-mode frequency

� > 
0.

To treat the problem more quantitatively, let us describe the modes with
amplitudes �0 and ��. That is to say, when the structure is excited in the
zero mode, the electric �eld exhibits a certain spatial pattern that varies
in time in proportion to �0(t). In general, �elds may be a superposition of
the two modes. According to our reasoning these mode amplitudes evolve
according to

 
d2

dt2
+ 
2

0

!
�0 = 0;

 
d2

dt2
+ 
2

�

!
�� = 0:

We may express this in terms of the original cell voltages by identifying
�0 = V1+V2, �� = V1�V2. These equalities assume merely a choice of units
for �0 and ��. Substituting these expressions, and re-arranging, one �nds

 
d2

dt2
+
2

0

!
V1 =

1

2

�

2
� �
2

0

�
(V2 � V1) ;

 
d2

dt2
+
2

0

!
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2

�

2
� �
2

0

�
(V1 � V2) :

This result describes the time-evolution of two-coupled cavities in terms
of the frequency shift between 0 and � modes. The strength of the coupling
is quanti�ed by the dimensionless �gure

� = 2

2
� �
2

0


2
� +
2

0

:
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Figure 15. Equivalent circuit for two coupled cells.

In terms of this cell-to-cell coupling constant, and

!2
0 =

1

2

�

2
� +
2

0

�
;

we may express our result as 
d2

dt2
+ !2

0

!
V1 =

1

2
�!2

0V2; (43)

 
d2

dt2
+ !2

0

!
V2 =

1

2
�!2

0V1: (44)

With some algebra one can show that


2
0 = (1� �=2)!2

0; 
2
� = (1 + �=2)!2

0:

If it is helpful, one may think of the equivalent circuit of Fig. 15. One can
check that the circuit parameters satisfy 
2

0 = 1=LC and C=C 0 � �=2.
At this point, having examined the kinematics of modes, we have de-

termined that there must be a �gure �, but we haven't determined what
this circuit parameter is|how it depends on the cell geometry. To calcu-
late cell-to-cell coupling from the geometry we apply Slater's Theorem. We
suppose the cells are excited in the �-mode and sketch a cylindrical volume
with radius equal to that of the coupling iris a, as indicated in Fig. 16. In
this accelerating mode, electric �eld is large in the vicinity of the iris, and
magnetic �eld is small. As a result, the iris experiences mechanical tension
due to the pull of the electric �eld lines. This tension is transmitted by
the �eld lines through the endcaps of our imaginary cylinder to the wall
separating the cells. We may express the time-averaged balance of forces asZ

endcap

dS T zz = �
Z

sidewall

dS T zr =

Z
sidewall

dS T rr :
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Figure 16. We apply Slater's theorem to calculate the coupling of two-cells.

The �rst equality expresses conservation of axial (z) momentum, and the
second conservation of radial (r) momentum. Integrals over the cylinder
endcap centered in the iris vanish since the axial �eld vanishes there. Thus
the axial force may be estimated with an integral of T zz � "0E

2=2 over the
left endcap, in terms of the peak electric �eld E,Z

sidewall

dS T rr =

Z
endcap

dS T zz � � a2
1

2
"0E

2 � 1

2

where the last factor of 1=2 results from time-averaging. If we permit the
iris to relax adiabatically, deforming in radius by an amount �a < 0, the
mode will do work, and the stored energy U , will be reduced

�U = �a

Z
sidewall

dS T rr � 2 � � a2�a
1

2
"0E

2

where the factor of two in the �rst equality results from counting both the
left and right halves of the iris. Closing the iris, the mode loses energy

�U = ��
6
a3"0E

2:

Total stored energy is meanwhile U � "0E
2V=8, with V the total volume

of the two cells. Adiabatic invariance of U=! then implies that with the
closing of the iris, the �-mode frequency shifts by an amount

�!

!
= �4�

3

a3

V
:

Once the iris is closed we know that the frequency must be restored to
the unperturbed, closed-cavity value, and this is just 
0. Thus we have
computed the frequency separation of the 0 and � modes, �! � 
0 � 
�.
The coupling constant is then

� � 8�

3

a3

V
: (45)
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Subsituting V = 2� LR2 with L the length of a single cell, and R the cell
radius one obtains � � 1:3a3=LR2. A more precise calculation provides the
coe�cient 1.57 [1].

Appreciating the behavior of the modes let us characterize their prop-
erties for acceleration. The 0-mode is just the mode of a single cavity, and
thus its [R=Q] can be no better than the single-cell case. For the �-mode
on the other hand we see that a particle accelerated in cell 1, and leaving
this cell at about the time the �eld is reversing, arrives in cell 2 just as the
�eld in that cell is ready to accelerate. Thus one expects the net voltage
to be the sum of each cell voltage. Stored energy meanwhile is roughly the
sum of the energies stored in each cell. With twice the voltage of a single
cell, for twice the energy, we see that [R=Q] = V 2=!U is twice the [R=Q]
for a single cell. As for wall Q, the magnetic �eld is small near the iris,
thus for a given single-cell voltage, the dissipated Poynting 
ux in the walls
is unchanged by the coupling. The wall area has increased by a factor of
2, so the dissipated power is twice as large. However, the stored energy is
also larger by 2, so Qw is unchanged. This implies that shunt impedance
Rs = Qw[R=Q] is twice the single-cell case. Thus if our microwave power
source was capable of providing a 2 MV \gap-voltage" with one cell, we
should be able to arrange 3 MV with a two-cell structure.

2.12. MULTI-CELL STRUCTURES

This brush with the 2-cell structure encourages us to continue right on
to the case of N -cells, expecting shunt-impedance larger by a factor of
about N . Actually though it is simpler to proceed directly to the in�nite
structure. According to our analysis of the e�ect of a single-coupling iris,
as summarized in Eqs. (43) and (44), we expect that cell voltages in the
in�nite structure will satisfy 

d2

dt2
+ !2

0

!
Vn =

1

2
�!2

0 (Vn�1 + Vn+1) ; (46)

where n indexes the cells, and we continue to neglect Ohmic losses. Since we
have made two iris cuts in each cell, our circuit parameter !0 di�ers from
the 2-cell case, as it is shifted by twice as much relative to the unperturbed
cell frequency 
0, !

2
0 = 
2

0= (1� �).
To appreciate the behavior of this coupled system consider the case

of a single-frequency excitation, imposed somehow on one particular cell.
In steady-state, a general solution for cell voltages may be expressed as
Vn = < ~Vnej! t, for some choice of cell phasors ~Vn. The phasors describe,
among other things, the 
ow of energy along the waveguide. One could
compute this from the Poynting 
ux integrated over the coupling hole,
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Figure 17. Brillouin curve for a periodic structure.

however, it's enough for us to recognize that conservation of energy requires
j ~Vn+1j = j ~Vnj. Thus adjacent cells are related by a phase-factor, and from
periodicity, this factor must be the same for any two successive cells. Let
us denote this cell-to-cell phase-advance � (!). To the right of the cell being
excited we observe a rightward travelling wave,

~Vn+1 = e�j� ~Vn: (47)

Substituting this in Eq. (46) we �nd

!2 = !2
0 (1� � cos �) ; (48)

the dispersion relation for our periodic line. This is illustrated in Fig. 17.
Given that the result is periodic in �, and symmetric it is enough to plot the
result on the interval (0,�). The vertical scale in this sketch has a break to
indicate that the relative separation of 0 and � modes may be quite small.
This separation is signi�cant as it is the full-width of the passband , the
range in frequency, associated with the original cavity mode, over which
the structure will permit microwave propagation.

To construct a �nite periodic structure, it is enough to know that in-
terior cells in the structure support forward and backward waves with the
dispersion characteristics of the in�nite structure. A general solution for
cell voltages may consist of both left and right travelling waves, and then
must take the form

~Vn = ~V +e�jn� + ~V �ejn�:

End cells determine the boundary conditions on forward and reverse am-
plitudes ~V �.

For a standing-wave structure, one has left and right-going waves of
equal amplitude, with relative phase determined by the end cells. As we
saw in the case of the two-cell structure, maximum shunt-impedance for
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a standing-wave structure occurs for � phase-advance per cell. Structure
length is limited by mode density near �-mode, as mode separation should
be greater than the natural 1=Qw mode-width.

A travelling-wave structure employs a power feed at one end, and an
output-waveguide at the other. End cells are matched, designed to insure
that in steady-state there is no re
ection on the input line, and no standing-
wave in the structure. The rate at which energy 
ows into the coupling cell
matches the rate at which energy 
ows through the structure and into the
walls. Propagation through the structure is governed by the group velocity,
as determined from the slope of the Brillouin curve, and is given by

�g =
Vg

c
=
L

c

d!

d�
=

1

2

�
!0L

c

�
� sin �p
1� � cos �

; (49)

with L the cell period. Group velocity is maximum and dispersion is min-
imum in mid-band, and group velocity approaches zero at 0 and � phase-
advance. In steady-state, interior cell-voltages are

Vn (t) = < ~V +ej! t�jn�;

and the net voltage experienced by a particle entering the structure at time
t0 is

VNL (t0) =
X
n

Vn

�
t0 +

nL

c

�
= < ~V +ej! t0

X
n

exp jn

�
! L

c
� � (!)

�
:

Thus secular energy-gain requires synchronism between the particle, and
the forward-wave in the structure. The transit angle must equal the geo-
metric phase-advance per cell,

!L

c
= � (!) : (50)

To appreciate the scalings for multi-cell structures we should include
losses. For the standing-wave structure this is straightforward, amounting to
an e�ective wall-Q for the operating mode. For the travelling-wave structure
we could proceed by fashioning a multi-cell circuit model, as depicted in
Fig. 18. However a simpler approach is possible. We view the structure
as a transmission line, with input and output matched at the operating
frequency. We suppose a steady-state power Pin is provided to the input,
and compute the net no-load voltage.

The steady 
ow of power P through the structure at location z, at group
velocity Vg, implies stored energy per unit length u = P=Vg. Due to losses
P may diminish through the line. Picking a particular cell one may say that
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Figure 18. AnN -cell travelling-wave accelerator structure may be modelled asN coupled
resonators, or, more simply, as a transmission line.

if P� is the power 
owing into the cell, and P+ the power 
owing out, the
di�erence must be due to power 
owing into the walls,

P� � P+ � �LdP
dz

=
!

Qw
(uL) ;

where L is the cell-length, uL is the energy stored in the cell, and z is the
displacement from the input cell. This may be expressed as

d

dz
(Vgu) = � !u

Qw
: (51)

This result determines the pro�le for stored energy in the structure, in
terms of a group-velocity pro�le determined by the variation in beam-port
radius, with initial condition set by u (0) = Pin=Vg (0). Voltage may be
determined from the shunt-impedance per unit length r � R=L, with R the
shunt-impedance associated with a single-cell. Identifying the local gradient
G � V=L, with V the local single-cell voltage, one �nds

r =
Qw

!u
G2 =

G2

�dP=dz
To illustrate, consider a constant-impedance structure, one with constant
iris-radius, and therefore constant Vg. One can show that

G (z) =

�
!u

Qw
r

�1=2

= G (0) exp (��z) ;

where the attenuation constant is

� =
!

2QwVg
:
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The net voltage is then obtained by integration

V =

LsZ
0

G (z)dz = G (0)
1� e��Ls

�
;

with Ls = NL the structure length, and N the number of cells. In terms
of the attenuation parameter ,

� = �Ls =
!Ls

2QwVg
; (52)

one may express this result as

V = (PinRshunt)
1=2 �1� e��

��2
�

�1=2

; (53)

where Rshunt = rL, is larger by N than the shunt-impedance for a single-
cell. One can show that maximum no-load voltage occurs for � � 1:26 and

is given by V � 0:9 (PinRs)
1=2. The attenuation parameter also determines

the power to the load Pout = Pine
�2� , and the �ll-time, Tf = Ls=Vg, is just

Tf =
2Qw

!
�: (54)

For example, the Mark III accelerator employed constant impedance
structures, operated at 2856 MHz, and �=2 phase-advance per cell [17].
Group velocity was 0:01c and shunt-impedance per unit length was r �47.3
M
=m. Structure length was 3.05 m, and �ll-time was 1�s. With Qw �
1:0 � 104, attenuation parameter was � � 0:90. For their �xed-target ex-
periments, the Mark III group developed a 20 MW klystron, and designed
and built a linac powered by 21 such tubes. With one tube powering one
structure, no-load voltage of 47.5 MV/tube could be achieved, and maxi-
mum beam energy was 1 GeV. Subsequent adventures, with a 20-GeV beam
and a thousand or so constant-gradient structures can be found in [2].

2.13. SPACE-HARMONICS

It is not always adequate to have only the simple description of the multi-
cell structure in terms of cell voltages as sampled by a relativistic beam.
Where the sampling is done by a non-relativistic beam (in an injector), or
by a bench-measurement device (a perturbing bead), one would appreciate
a prescription for understanding the observations, and this means a more
detailed picture of the �elds in a multi-cell structure. This picture can
be approached quite readily based on the analysis of the last section. We
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consider a right-travelling wave, in steady-state, at angular frequency !.
Based on the analysis of cell voltages leading to Eq. (47), we may infer
that the steady-state axial electric �eld phasor satis�es the phase-advance
boundary condition

~Ez (~r?; z + L) = e�j� ~Ez (~r?; z) : (55)

De�ning wavenumber �0 = �=L, and

~ez (~r?; z) = e�j�0z ~Ez (~r?; z) ;

we observe that ~ez (~r?; z + L) = ~ez (~r?; z), ~ez is a periodic function of z.
This implies that we may expand it in a Fourier series,

~ez (~r?; z) =
+1X

n=�1

en (~r?) e
j2�nz=L:

This in turn provides a decomposition for the electric �eld

~Ez (~r?; z) =
+1X

n=�1

en (~r?) e
j�nz; (56)

where the wavenumber

�n = �0 +
2� n

L
: (57)

This result is Floquet's theorem. Applying Maxwell's equations to the elec-
tric �eld, we �nd that the harmonic amplitudes satisfy 

r2
? +

!2

c2
� �2n

!
en = 0:

For a structure with circular symmetry, for example

en (~r?) = EnI0

0
@r
s
�2n �

!2

c2

1
A ; (58)

with I0 the modi�ed Bessel function. In general higher multipole con-
tent may be present, when not excluded by symmetry. With this \space-
harmonic" decomposition, the problem of describing the �elds is reduced
to a determination of the space-harmonic amplitudes En.

Meanwhile, a relativistic beam on a ballistic orbit in e�ect performs a
spatial Fourier transform on the �elds in the structure, selecting out the
synchronous component at each frequency !, corresponding to wavenumber
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!=c. For the powered structure, the voltage gain of a speed-of-light particle
is determined by the n = 0 space-harmonic, as this satis�es �0 = !=c by de-
sign. This is why the model of the multi-cell structure in terms of single-cell
voltages is adequate, from the descriptive point of view. The space-harmonic
decomposition is helpful for design. In the early days, multi-cell structure
design proceeded by analytic calculation [18] and bench-measurements on
test stacks of a few cells [2]. Such calculations and measurements invoke the
space-harmonic decomposition. In modern times one may in addition em-
ploy numerical design with prescribed phase-advance boundary conditions,
as in Eq. (55).

To summarize, in pursuing the theory of the microwave accelerator we
have followed the logic illustrated in Fig. 6. starting with a terminated
interaction, and forming a cavity amenable to resonant excitation. Having
arrived at the concept of shunt-impedance, we went on to �nd that shunt-
impedance can be improved by use of multiple cells. One can achieve a high
accelerating voltage, with a low peak power, limited only by losses, and the
structure tune. These are the basic principles of the microwave linac as
formulated by Ginzton, Hansen and Kennedy [19]. They leave a great deal
of freedom to the structure designer as one can see in the literature [20, 21].

2.14. MICROWAVE CIRCUITS

To appreciate the practical aspects of a linac rf system, and associated
instrumentation, it is helpful to take a look at a few common rf compo-
nents, as depicted schematically in Fig. 19. The most conspicuous items
in the �gure are the lines, indicating waveguide and the circles, indicat-
ing connectors. We'll consider these �rst, and then look at common circuit
elements.

Considerations in the choice of waveguide include: power-handling, mul-
ti-moding, attenuation, phase-stability, coe�cient of thermal expansion,
convenience and cost. Waveguide appears in two applications in an accel-
erator system. One is for transport of high-power, and the other is for
monitoring of the beam and the rf system, \instrumentation". For instru-
mentation work, one typically employs coaxial cable or \coax", as this is
cheapest to obtain and install. The accelerator itself is a high-power ap-
plication, demanding low-attenuation, and resilience against \breakdown".
For this, hollow rectangular waveguide is a common choice.

Attenuation includes skin-e�ect losses, dominant at low-frequency, and,
in coax, bulk dielectric losses, dominant at high-frequency. Attenuation is
accompanied by dispersion thanks to the Kramers-Kronig relations [22].
Cumulative phase-shift through a length of line depends on the guide
length, and thus the temperature. Where phase between two outputs is
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Figure 19. Components commonly found in microwave circuits.

the concern, one may require temperature-stabilized water-
ow, a thermal
blanket, and/or special low-expansion coe�cient cable. For instrumentation
work, if one can arrange that phase di�erence between two cable outputs is
the relevant quantity, it may be enough that the cables are of roughly equal
length, and traverse the same run. Phase is in general sensitive to mechan-
ical 
exure, and guide should not be unintentionally crushed, dented, bent,
made to bear a load or stepped on. Intentional dimpling may be employed
to adjust phase-length of rectangular guide, which for that matter is used
to bear a load, commonly its own weight. Where precise phase relation-
ships are required within an instrumentation circuit, semi-rigid cable may
be employed, and the circuit enclosed in a box to preserve mechanical in-
tegrity, as well as to provide shielding against electromagnetic interference
and pulsed noise|\technical noise".

Rectangular Guide

A selection of common rectangular waveguide dimensions is indicated in Ta-
ble 3. Due to the proliferation of \standards" for band nomenclature, there
really isn't a single standard band designation as such, and the nomen-
clature of Table 3 may be considered vernacular. More detailed tables are
available from waveguide manufacturers, including tolerances on guide di-
mension, and an assortment of standard 
anges [23]. Accelerators have been
built and operated in all of the bands listed in Table 3.

The mode of rectangular guide with the lowest cut-o� frequency is
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TABLE 3. Common rectangular waveguide (\WR") interior dimensions, rec-
ommended operating band, and cut-o� frequency. Also indicated is the larger
band designation into which the waveguide may be classed.

Guide Size (inch) Rec. (GHz) fc (GHz) Band (GHz)

WR650 6.500�3.250 1.12 - 1.70 0.91 L ( 1.0 - 2.0)

WR284 2.840�1.340 2.60 - 3.95 2.08 S ( 2.0 - 4.0)

WR187 1.872�0.872 3.95 - 5.85 3.15 C ( 4.0 - 8.0)

WR90 0.900�0.400 8.20 - 12.40 6.56 X ( 8.0 - 12.0)

WR62 0.622�0.311 12.40 - 18.00 9.49 Ku (12.0 - 18.0)

WR42 0.420�0.170 18.00 - 26.50 14.05 K (18.0 - 27.0)

WR28 0.280�0.140 26.50 - 40.00 21.08 Ka (27.0 - 40.0)

the TE10 mode. This mode has electric �eld oriented parallel to the b-
dimension, as in Fig. 4, peaking in the guide center, and dropping monoton-
ically to zero at the edges of the guide, so as to satisfy conducting boundary
conditions. The TE10 mode dispersion relation is, neglecting losses,

�
!

c

�2

=

�
�

a

�2

+ �2; (59)

relating angular frequency ! to wavenumber � and guide long dimension
a, as in Fig. 4. This is to say that the spatial variation of a forward wave
in the guide is characterized by guide wavelength 2�=� di�erent from the
free-space wavelength 2�c=!. The dispersion relation, Eq. (59) looks dif-
ferent from that of free-space, and the reason for this is that the mode is
a superposition of two free-space waves, each propagating at an angle to
the guide-axis, and phased in such a way as to satisfy conducting bound-
ary conditions. Cut-o� occurs at frequency fc = c=2a and corresponds to a
propagation angle of 90 �, i.e., no propagation. The lower frequency listed
in column 3 of Table 3, 1:25� fc, is recommended to insure that the group
velocity, d!=d�, is not too low. The upper frequency in column 3, 1:90� fc
is just below the cut-o� for the next mode(s) in the waveguide.

Waveguide is not lossless, of course, and �nite surface resistance damps
wave amplitude, amounting to attenuation per unit length given by [24]
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At the lower end of the operating band, the wave has lower group velocity
and spends more time in a given length of guide. Thus attenuation becomes
large near cut-o�. At higher frequencies, surface resistance is increasing, and
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Figure 20. Attenuation � normalized to waveguide width a, versus frequency for three
sizes of waveguide.

so attenuation ultimately must increase. Minimum attenuation occurs at
2:3� 2:4� fc, outside the single-mode operating band. In Fig. 20 one can
see Eq. (60) illustrated for three example waveguide sizes. As a point of
reference, OFE copper WR284 has attenuation of 0.629 dB/100 ft at 2856
MHz.

As a practical matter, waveguide insertion loss must be accounted for
in the layout of the accelerator microwave network. As an example, the
\thick-wall" WR284 network for two successive tube stations in the Two-
Mile Accelerator is sketched in Fig. 21. Waveguide arm phase-lengths range
from 118 to 139 �g, where the guide wavelength �g = 2�=� � 15.3 cm.
Over these 60-ft lengths, one expects attenuation in the range of 0.37-0.43
dB. The measured results lie in the range 0.41-0.68 dB, including cou-
pler and 
ange insertion loss [2]. This means that 10{15% of the power is
lost before it reaches the accelerator. Theoretically one could reduce the
attenuation loss by a factor of about 2.3, by employing nearly-overmoded
custom-made guide. However, the cost-savings for this accelerator wouldn't
have been worth it. Even in modern-times, with a utility savings accru-
ing at 3 cents/kW-hr it would take years to \pay" for the cost of the
mode-converters from the custom-guide to standard guide. For future ma-
chines, however, where rf power consumptionmay approach several hundred
megawatts, waveguide loss is taken quite seriously. Much interest attaches
to the design of overmoded or \quasi-optical", low-loss, high-power waveg-
uide components [25].

Fig. 21 also indicates the waveguide coupler layout employed. This lay-
out can be understood in part from the discussion of Sec. 2.8, and beam
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Figure 21. Waveguide layout for a standard pair of klystrons on the Two-Mile Acceler-
ator. This con�guration \babaabab" repeats along the linac, as discussed in connection
with coupler asymmetry.

de
ection due to phase asymmetry. This e�ect was reduced by o�set of
the coupling cells, and waveguide feed layout designed to provide partial
cancellations of rf kicks. Kick cancellation is not local, however, but is com-
pleted only over the 80-ft length spanned by eight structures, and then only
approximately.

One may also �nd, for high-power systems, pressurized waveguide; these
are intended to function with electronegative gas, such as SF6, to inhibit
breakdown. These are common in continuous-wave (CW) systems, but are
found on pulsed systems as well.

Connectors and Cable

For instrumentation work, and bench measurements one may rely on an
assortment of cable and connectors. Commonly used coaxial connectors in-
clude the General Radio Corp. (GRC) connector, Navy-type (N) connector,
sub-miniature A (SMA), and Amphenol Precision Connectors (APC), 3.5-
mm and 7.0-mm. The variety of connectors re
ects the frequency range,
and some history. The GRC connectors date back to near the Paleolithic
Era, but are still to be found in legacy systems, for example, all Two-Mile
Accelerators. APC connectors are intended to be used where repeated con-
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nection and disconnection will be made, as in bench measurements and
calibrations. Type N was the predecessor for the APC-7. SMA is common,
and particularly appropriate where a relatively static connection is to be
made. It looks a lot like the APC-3.5, except that it contains dielectric inner
liner, and is therefore more subject to wear. BNC is really a di�erent cat-
egory of connector, perfectly adequate for low-frequency signals, but not
recommended for microwave work. Other commonly used connectors in-
clude \instrument 
ange" �ttings for rectangular waveguide, and adaptors
from waveguide instrument 
ange to standard coax, and precision adap-
tors. For accelerator work one has in addition vacuum-waveguide 
anges
that mate to knife-edge gaskets to form a crush-seal. These and associated
adaptors to instrument 
ange are not commercial standards.

While folks often refer to cable in terms of the connector they are ac-
customed to seeing on it, the cable itself may have a name, here are a
few.

� RG-214 is often referred to as \N-type cable" and sees routine use
for microwave signals in an S-Band linac system. It has a black poly-
vinylchloride jacket with 0.425" outer diameter (OD), and a polyethy-
lene dielectric. Attenuation constant is 18 dB/100 ft at 3 GHz and 27
dB/100 ft at 5 GHz.

� HeliaxTM is a brand name of Andrews Corporation, for coax with a di-
electric that is mostly air, with outer conductor supported on a helical
foam ribbon. As a result of the diminished volume of lossy-dielectric,
attenuation per unit length is low. It can be delivered, already cut
to length and connectorized, in a variety of sizes. It is excellent for
high-frequency beamline instrumentation, particularly where low sig-
nal level and noise are concerns.

� RG-223/U is often referred to as \BPM cable" as it is commonly used
to transmit signals from beam position monitor (BPM) striplines. It
shouldn't be used for microwave work, unless attenuation and disper-
sion are desired. Attenuation constant is 3.2 dB/100 ft at 100 MHz,
16.5 dB/100 ft at 1 GHz and 46.0 dB/100 ft at 5 GHz.

� RG-58C is often referred to as \BNC cable" and isn't to be used
for microwave frequencies. RG-58C has an attenuation constant of 4.9
dB/100 ft at 100MHz.

RG-214, RG-58C and RG-223/U have a group velocity of 0.66c. In addition
to these, there is a wealth of specialty cable available commercially, designed
to provide either low loss, low thermal expansion, insensitivity to 
exure,
or mechanical ruggedness.

Having employed low attenuation cable to extract a marvelous beam-
induced or other signal, one will probably need an attenuator . These can
be �xed, or variable, for example, mechanically variable, by knob or screw
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Figure 22. A directional coupler permits one to monitor a circuit. The circuit sketch
on the right illustrates a typical use, to monitor forward power to a device-under-test
(DUT) attached to port 2, with a matched load on the reverse arm, port 4.

adjustment. Beams are pretty variable, so variable attenuators are good to
have. Like most microwave components, attenuators come with a rating for
VSWR and insertion loss over a speci�ed bandwidth.

To understand a circuit it often helps to disconnect a new device and
replace it with a matched load . Matched loads come in all shapes and
sizes, with a speci�cation for VSWR and bandwidth. A cavity with � = 1
is an example of a matched load. Generally however one prefers a match
over a broad band, and this implies use of high-loss material, equivalent to
very low Qw in the parlance of cavities. S-Band structure output loads may
employ a Kanthal-loaded tapered geometry, for example.

Directional Coupler

To monitor the waves in a circuit it is helpful to tap o� a small bit of the
forward and reverse waveforms, while not interfering appreciably with the
circuit. One needs a directional coupler as depicted in Fig. 22.

The function of many basic components can be understood from their
description in terms of an S-matrix, and the directional coupler is a good
example of this. The S-matrix for an N -port device is an N � N matrix
de�ned with respect to reference planes on the connecting waveguide, and a
common normalization for waveguide impedance. With phasor ~V +

k incident
on port k, and all other ports terminated in a matched load, the outgoing
phasor on port l is Slk ~V

+
k . For elements that are free of sources the S-

matrix is symmetric and unitary, and this is a fair approximation even
for copper boundaries with their �nite resistivity, provided the microwaves
don't spend too much time in the device, i.e., for a broadband device.

In this context, an ideal directional coupler is a four-port element that
is symmetric upon re
ection, is lossless and is perfectly matched. These
conditions, together with unitarity restrict the S-matrix to the form

S =

0
BB@

0 � j
p
1� �2 0

� 0 0 j
p
1� �2

j
p
1� �2 0 0 �

0 j
p
1� �2 � 0

1
CCA ; (61)
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Figure 23. A tee is a three-port element with symmetry between two arms.

for some parameter � � 1, and some choice of reference planes. A real
directional coupler is described by coupling C and directivity D, de�ned
with respect to the quantities indicated in the sketch: power incident on
port 1, Pi, transmitted power to port 2, Pt, forward power on port 3, Pf ,
and reverse power, Pr, on port 4. The coupling and directivity are, in units
of decibels (dB),

C = 10 log10

 
Pi

Pf

!
; D = 10 log10

�
Pf

Pr

�
: (62)

The isolation is de�ned according to I = 10 log10(Pi=Pr), so that C+D = I.
The 3-dB coupler is rather special in that, with a matched load on one arm,
it can distribute power equally to the two output arms. Couplers come in
high-power, vacuum waveguide and low-power, instrument-connectorized
versions.

Tee

The simplest-looking element is the tee as illustrated in Fig. 23. Normaliz-
ing all ports to a common impedance, one may apply unitarity to determine
the form the S-Matrix must take. After a choice of reference planes (L and
D in the �gure), one can show that the S-Matrix may be parameterized in
terms of two real variables � and �, such that [25]
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The ideal lossless tee cannot be matched (jS11j 6= 0), except in the degen-
erate case, sin � = 0.

The tee forms the basis for many useful devices. With a shorting plane
on arm 3, and a signal incident on port 1, the signal transmitted through
from port 1 to port 2 is a superposition of a wave transmitted directly to
port 2, and one that travels down arm 3, and, after multiple re
ections
in arm 3, returns to be split between arms 1 and 2. The impedance seen
looking into arm 1 then depends on the position of the shorting plane on
arm 3. A \stub-tuner" consists of one or more such tees, with moveable
shorting planes, and can be quite helpful in providing a match when arm
2 is connected to a DUT. A tee with moveable short can also function as
a re
ective switch. Considering the frequency dependence of the construc-
tive or destructive intereference, one recognizes that this device may also
function as a tunable band-pass or a band-reject (\notch") �lter.

Speaking of which, we have it seems already touched on the basic el-
ements needed to fashion �lters. Hollow waveguide is a high-pass �lter,
due to the phenomenon of cut-o�. A tee can function as a band-pass �l-
ter. A resonant cavity can serve as a narrow-band �lter. More generally
an assortment of tee's and cavities (\poles") can be employed to fashion a
two-port element with a custom-made S21. One can �nd a wide assortment
of commercial tubular, cavity and waveguide microwave �lters, �xed �lters,
mechanically-tuned, or voltage-controlled.

Magic Tee

A hybrid tee is a four-port device as illustrated in Fig. 24. In the ideal
case, it is lossless and the symmetry seen in the �gure precludes coupling of
ports 1 and 4. A magic tee is a hybrid tee that is matched on all ports; in
practice, matching relies on obstacles situated in the junction. Constraints
of symmetry and unitarity reduce the possible forms of the S-matrix to
just one, after a choice of reference planes,

S =
1
p
2

0
BB@
0 1 1 0
1 0 0 �1
1 0 0 �1
0 1 �1 0

1
CCA : (64)

From this result, or just from the symmetry evident in Fig. 24, one can
show that for two incident voltages, on ports 2 and 3, port 1 provides a an
output proportional to the sum, and port 4 an output proportional to the
di�erence. In conjunction with a phase-shifter and a variable attenuator,
the magic tee can be employed to balance two large signals, permitting easy
inspection of a small residual.
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Figure 24. A magic tee is a symmetric four-port device matched on all ports. With
signals incident on through arms 2 and 3, the H-plane arm, port 1, provides a sum
signal, and the E-plane arm, port 4, provides a di�erence signal.

Circulator, Isolator

An ideal circulator is a three-port element described by

S =

0
@ 0 0 1
1 0 0
0 1 0

1
A :

Inspecting this S-matrix one can see that the device is matched on all ports,
and a signal incident on one arm is circulated to only one adjacent arm.
Based on our analysis of the tee, one might think that such a device would
be impossible to construct; however, our analysis of the tee assumed a re-
ciprocal device, one with symmetric permeability and permittivity tensors.
A circulator meanwhile incorporates �-material and a static magnetic �eld,
and is non-reciprocal, by design. A real circulator has noticeable insertion
loss. With one arm terminated in a matched load, a circulator becomes
a two-port device, then called an isolator . These devices are almost es-
sential for isolating a source from a load, to avoid pulling of the source
frequency or amplitude, and in isolating one part of a circuit from another,
to avoid an inadvertent standing-wave and resulting modi�cation of the
circuit operating point. Mention of operating point hints that some circuits
are non-linear. Let us consider the basic non-linear elements.

Crystal Detector
To monitor the time-variation of a low-frequency voltage one may use an os-
cilloscope. This method doesn't work well with microwaves, however, since
typical scope bandwidths are lower than 1 GHz, and typical microwave fre-
quencies are above 1 GHz. To monitor amplitude one needs a microwave
diode, a crystal detector . A diode is a non-linear element, with ideal charac-
teristic i = is(e

eV=kBT � 1), where kB � 1eV=(38.7� 300 K) is Boltzmann's
constant, T is temperature, and is is the saturation current. A microwave
diode is a diode encapsulated in a matched waveguide mount (coaxial or
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other). The problem of designing such a mount was once a major research
problem [26]; nowadays there is a variety of commercial detectors to choose
from, depending on one's needs for dynamic range, bandwidth, sensitivity,
and output polarity. Microwave diodes are ubiquitous elements, appearing
in all microwave detection circuits. In addition to power-detectors, there are
also special-purpose diodes, including step-recovery diodes for generating
harmonics, as in a frequency-multiplier, and PIN diodes for fast switching
or phase-shifting.

The �rst characteristic to know about a diode is that it can be destroyed
by too high an input level. If routine operation will involve extreme signal
ranges, one needs also attenuation and a limiter . A limiter is a two-port
element that changes state (\breaks down") above a certain power level,
absorbing or re
ecting the incident signal. A limiter is essential where ex-
pensive test equipment is employed with beam-induced signals. At high-
power limiters may generate un-wanted harmonics, and this is not usually
desirable; they are intended to function like a circuit-breaker.

It is instructive to consider a simple model of the ideal microwave diode.
Let us apply a single-frequency voltage waveform to the ideal diode char-
acteristic. We express eV=kBT = A cos� with � = ! t+ �0, t is time, ! is
the angular frequency of the signal, and �0 is the phase of the signal. Using
the identity,

eA cos� =
+1X

k=�1

Ik (A) e
jk�; (65)

with Ik the modi�ed Bessel function, we may express the current through
the diode as

i =
+1X

k=�1

ik (A) e
jk�;

for some coe�cients ik. The \DC" component is

i0 = is (I0 (A)� 1) � 1

4
isA

2;

and in the last equality we employ the small-argument expansion for I0.
Combined with a low-pass �lter characteristic (integral to the crystal mount
or in the output circuit) crystals evidently provide a \square-law" response,
for small signal amplitude, with current output proportional to incident mi-
crowave power. Where the crystal is being employed as the primary power-
monitor, it could be labelled, calibrated, and re-calibrated occasionally. For
best results, the calibration waveform should mimic as closely as possible
the waveform to be monitored, because a crystal mount will not trans-
mit all frequencies equally. Crystals may be employed beyond the range of
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square-law response; this requires a polynomial �t based on the calibration
data covering the full range of power-levels to be employed.

As an example we could consider monitoring an S-Band klystron-amplif-
ier output. A typical setup would include a 50 or so dB directional coupler,
a low-pass �lter to block out harmonics generated by the klystron, atten-
uators, and a crystal mount, with a replaceable 1N21B cartridge. Where
high-precision is required, an occasional check of calibrations might em-
ploy calorimetry, inferring average power based on temperature variation of
cooling water to a load. In addition, there are several instruments that can
greatly simplify circuit tests, as well as instrumentation problems them-
selves. These include the power-meter, frequency-counter, spectrum ana-
lyzer, and the scalar or vector (phasor) network analyzer. Items such as
these come with documentation roughly proportional to cost, and thus the
manufacturers' literature provides a wealth of additional information.

Mixer
Where phase-information is of interest it is common to employ a mixer ,
a three-port device, accepting two high-frequency inputs, and providing
output at the di�erence frequency. The simplest concept for a mixer consists
of a tee to sum two signals, labelled R and L, and a diode to detect the
output. The voltage across the diode takes the form eV=kBT = AR cos�R+
AL cos�L, where �R = !R t+�0R, and �L = !L t+�0L. Using the identity,
Eq. (65), twice, we may express the diode current as

i = is

+1X
m;n=�1

Im (AR) In (AL) e
j(m�R+n�L) � is:

Thus one may expect the output to include all frequencies of the form
m!R + n!L. This isn't usually satisfactory, since one is interested in the
component at the intermediate frequency (\IF") !IF = !R�!L << !R; !L.
To remove the \DC" o�set

i0 � is (I0 (AR) I0 (AL)� 1)

the mixer may incorporate two diodes, exposed to opposite polarity versions
of the R signal, with outputs subtracted. This can be accomplished for
example with a magic tee, the L-signal incident on the H-plane arm, the
R-signal on the E-plane arm, and diode mounts on the thru-arm ports,
with balanced outputs. The lowest frequency component remaining is then

iIF = 2isI1 (AR) I1 (AL) cos (�R � �L)

In phasor-form we may write this as iIF = <~iIF ej!IF t, where
~iIF = 2isI1 (AR) I1 (AL) e

j(�Ro��Lo):
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This last result is quite helpful, for conceptual purposes. Ideal operation
of a mixer invokes a CW signal of known, constant amplitude and phase
for the L port. If one thinks of the R input in simple phasor terms, as
VR = < ~VRej!Rt, with phase referred to the L signal, then the IF voltage
produced by the circuit VIF = < ~VIF ej!IF t is simply a phasor ~VIF � k ~VR
providing an approximately linear analog of the input signal, referred in
phase to the L port, with IF carrier frequency. The last equality is written
with the approximation AR << 1, in mind, and the constant k depends on
the mixer speci�cation, and the L-amplitude. This conversion, as well as
features of the unwanted higher-frequency terms will be described in plots
provided by the manufacturer for the particular mixer.

Mixers come in a variety of forms more sophisticated than a simple
balanced mixer. The \IQ" or \dual-output" mixer is a four-port device,
providing two IF outputs representing the in-phase and quadrature compo-
nents of the R-signal referred to the L-signal. One output provides VIF�I =
< ~VIF ej!IF t, and the other VIF�Q = = ~VIF ej!IF t. In practical terms, mix-
ers permit one to take a high-frequency signal down below 1 GHz, where
�lters, ampli�ers and other components are cheap, at the expense of some
additional caution in designing the circuit. Related to the mixer concept
is the \modulator", where a pulsed bias voltage is applied to shift the
phase or amplitude of a high-frequency signal, to produce a modulated
high-frequency signal.

Oscillators and Ampli�ers

Just a few words about oscillators and ampli�ers, as there are libraries
on the subject. When using old, cast-o�, or \don't-know-where-it's-been"
sources or amps, one should keep in mind that front-panel displays are for
monitoring not measuring. A frequency-counter and power-meter are help-
ful to check what an instrument is actually putting out. Since diodes have a
temperature-dependent characteristic, most solid state devices accept tem-
perature as a \control knob". So it is good practice to exert some control
over temperature. Silicon is a good particle detector, so it is preferable not
to situate solid-state components in an accelerator vault.

We could also say a word about \noise". For a system in equilibrium
at temperature T , thermodynamics tells us to expect, in a bandwidth �f
noise-power Pn = kBT�f . Most systems aren't yet aware of this equilib-
rium. Accelerator vaults and associated areas are 
ooded with all manner
of signals, ranging from ionizing radiation, to rf frequencies leaking out of
unterminated couplers, to pulsed noise from the modulator circuits, and ac
noise at the power-line frequency and harmonics. Diurnal variations round
out the low-frequency end of the \noise" spectrum.

Ampli�ers also don't do as well as the black-body, and so usually come
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with a speci�cation for \noise �gure" or NF . Given power gain G for the
ampli�er, one may determine the noise power output by the device PN ,
above that expected at the operating temperature T , according to

NF = 1+
PN

GkBT�f
:

Operationally, in terms of loss in the ratio of signal-to-noise,

NF =
(S=N)input

(S=N)output
:

By convention NF is speci�ed at 290 K (17�C), usually in decibels, as
10 log10NF , or in terms of equivalent noise temperature Teq = (NF � 1)T .

With microwave circuit components in-hand, we can turn to instrumen-
tation; but �rst let us examine what there is to instrument.
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3. Physics of Beams

Thus far we have discussed the microwave accelerator in detail, and left the
beam pictured as a little point charge. In this section, we take a closer look
at the beam, �rst some formal-looking details and then the more colloquial
aspects of beam physics. The theoretical development of the subject of
beams is extensive, but what is actually known about beams is limited by
the instrumentation available.

3.1. FORMAL-WEAR FOR BEAMS

For purposes here a beam is a collection of electrons of comparable mo-
menta, moving at about the speed of light in the lab-frame. One may be
concerned that this de�nition excludes discussion of low-voltage beams, but
even an 80 keV electron is moving at 0:5c. And typical accelerating �elds
are on the order of several MeV/m, so we omit at most about an inch of
linac, and actually, not even that.

To describe our beam, we might at �rst be inclined to pull out quantum
electrodynamics and set to work. Then we realize as we observe collisions,
that we need to pull out the whole Standard Model. At this point we
realize that we really can't describe beams completely until we have �gured
out the Theory of Everything. Fortunately such a complete description of
beams isn't needed. Accelerator phenomena take place at low center of mass
energy where electrodynamics rules. If we trace the evolution of a beam
from emission through collisions we �nd that it's behavior is well-described
by classical mechanics and electrodynamics, with only a few exceptions.
For the present work, we will limit ourselves to the linac, a classical venue.

Kinetic Theory

Adopting a classical description then, we may associate with each electron
a position ~R and a velocity ~V = d~R=dt, and momentum ~P . Let us suppose
our beam contains N electrons. The beam is completely speci�ed given the

positions and momenta
n
~Ri(t); ~Pi(t)

o
, with i = 1; :::; N at some instant of

time t.

In principle, to describe the evolution of this system, one need merely
determine the �elds at this time, including �elds due to the beam, and then
solve 6N ordinary di�erential equations coupled to Maxwell's equations.
This is really too much work though, and all to produce too much infor-
mation. Such a solution would include the Coulomb �eld of each and every
electron, and detailed information on electron-electron collisions mediated
by these �elds. And electrons don't even collide too often, so one is storing
quite a lot of information in RAM, in order to accurately model something
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that is really a higher-order e�ect. There is a simpler, approximate method
of describing such a beam.

We start from the Klimontovich distribution,

F (~r; ~p; t) =
NX
k=1

�3
h
~r � ~Rk (t)

i
�3
h
~p� ~Pk (t)

i

the density in the six-dimensional space with coordinates (~r; ~p). We observe
by di�erentiation, and use of the Lorentz force law, that

@F

@t
+ ~v � ~r~rF �

e

m

�
~E + ~v � ~B

�
� ~r~pF = 0;

where ~v is velocity. We emphasize that this is a rather odd equation, not
because of its form, a continuity equation, but because F is a spiky thing,
and ~E; ~B also behave badly in the vicinity of each electron. A clearer picture
of the system may be formed by selecting a length-scale that distinguishes
between the microscopic and macroscopic features. We average on this mi-
croscopic length-scale,

f = hF i ; ~e =
D
~E
E
; ~b =

D
~B
E
;

permitting us to express,

F = f + �f; ~E = ~e+ �~e; ~B = ~b+ �~b:

The smoothed distribution satis�es,

@f

@t
+ ~v � ~r~rf �

e

m

�
~e+ ~v �~b

�
� ~r~pf =

e

m

D�
�~e+ ~v � �~b

�
� ~r~p �f

E
:

In the absence of 
uctuations in the actual density, the right-side vanishes.
Such 
uctuations disappear however only in the formal limit, e! 0,m! 0,
e=m constant. In this limit, all cross-sections vanish, there are no single-
particle emissions or collisions as such. With �nite e, 
uctuations represent
a correction, but a small correction, and not a dominant e�ect. Thus we
do well to describe the distribution in iterative fashion. At lowest-order,
neglecting two-particle correlations, we have the Vlasov equation,

@f

@t
+ ~v � ~r~rf �

e

m

�
~e+ ~v �~b

�
� ~r~pf = 0: (66)

At this order too, we have Maxwell's Equations (for the smoothed �elds)
determined by moments of f ,

� (~r; t) = �e
Z
d3~pf (~r; ~p; t) ;
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~J (~r; t) = �e
Z
d3~p~v f (~r; ~p; t) :

One can check that
@�

@t
+ ~r � ~J = 0:

To simplify our notation we will denote the smoothed �elds by ~E, ~B.

The Vlasov equation is a continuity equation in phase-space. It states
that the convective derivative of f along a physical orbit vanishes. If one
moves with an electron in phase-space, one �nds that the local density of
electrons, f , is constant. Said di�erently, trajectories in phase-space don't
cross.

Let us emphasize a few points to put aside some common misconcep-
tions. Beam-induced �elds are not omitted in this treatment, merely mi-
croscopic 
uctuations in these �elds. Thus �elds of electrostatic character
(\space-charge" �elds) �t perfectly well in this description. But let us not
call them \Coulomb �elds", since we have averaged out the 
uctuations that
this phrase suggests, and neglected the collisions that these �elds mediate.
Collisions of course would exert a force speci�c to the scattering parti-
cles and cause phase-space trajectories to cross. In addition to intra-beam
scattering, we have also omitted other collisions, for example, between an
electron and an ion resident in the beamline. Radiation is not omitted in
this treatment, merely 
uctuations in the radiation �elds, radiation seen by
one electron, but not its neighbor. But let us not say that \incoherent radi-
ation" is omitted, since an externally-produced wave with poor coherence
�ts easily in this description. Finally we emphasize, as a caveat, that im-
portant exceptions to this picture appear in beam-physics problems other
than the electron-linac. These are 
uctuation-dissipation problems, associ-
ated with scattering, radiation, or cooling. In these problems, corrections
to the right-side of the Vlasov equation may often be approximated as in
the Fokker-Planck equation.

Vlasov Equation

To fully enjoy the Maxwell-Vlasov equations we should consider a practical
computational interpretation. Suppose that we start at t = 0, and solve
these equations for the distribution and the �elds, taking note of the �elds
at every step in time. Then let us return to t = 0, and generate a �nite
collection of \test-particles", i.e., coordinates (~r; ~p). We'll suppose this ini-
tialization or \loading" in phase-space represents a sampling of the original
initial Vlasov distribution, when smoothed on some appropriately small
length scale (\binned", \allocated"). We then \track" these individual test
particles by integrating the equations of motion in the �elds already deter-
mined. As far as the particles are concerned, these are prescribed external
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�elds. Along the way, we compute charge and current densities associated
with the test particles, averaged on the microscopic length-scale. When we
are �nished tracking, we should �nd that we have computed the evolved
Vlasov distribution, with precision limited by the statistics of our origi-
nal sampling. Actually we realize that we could return to t = 0 again, and
track the particles while computing the �elds from the \macroparticle" dis-
tribution itself. We should arrive at the same result, if we have adequately
modelled the charge and current densities with our sampling.

This is the basis for \particle-in-cell"simulations of beams. It is also the
basis for a Hamiltonian description of beams, in which we picture individual
particles with motion described by a single Hamiltonian, H . Particles do
not interact with each other directly, they simply move in a Hamiltonian
prescribed by the electromagnetic �elds. The Vlasov equation may then be
expressed simply in terms of the Poisson bracket in canonical coordinates
(~q; ~p),

[f;H] =
@H

@~p
� @f
@~q

� @H

@~q
� @f
@~p
; (67)

as
df

dt
= [f;H] +

@f

@t
= 0: (68)

Viewing each particle as an independent Hamiltonian system, and the beam
as a statistical ensemble of such non-interacting systems, the Vlasov equa-
tion amounts to a statement of Liouville's theorem.

3.2. BEAMS AT WORK

Time-Structure of Beams
In describing the beam and the accelerator it is helpful to distinguish be-
tween the main-linac, the region of linac where V � c, and the injector ,
where V < c. Our work on the accelerator structure dictates some basic
features we must require of our beam distribution in the main-linac. In this
section we describe these requirements.

At high-gradient it is not economically (nor thermally) feasible to oper-
ate the linac continuously, thus it is pulsed . Machine pulses repeat at some
frequency frep with 10{360 Hz a typical range. The length of the rf pulse
should be enough to �ll the structure, at least about 1 �s at S-Band. The
maximum length is constrained by the klystron modulator circuit, with 1{
10 �s typical. Within an rf pulse, beam electrons should reside near the
accelerating peak of the voltage. In this way one arrives at the picture
of Fig. 25, depicting the time-structure of the beam, as dictated by the
accelerating mechanism.

Some freedom still remains within this picture. Depending on the capa-
bilities of the injector, one may operate with every bucket �lled, where then
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Tp ≈ 3 µs

Figure 25. Typical time-structure of a beam in a normal conducting rf linac, viewed on
three di�erent time-scales. For illustration here pulse repetition frequency frep = 120 Hz,
macropulse length Tp �3 �s, with every bucket �lled, so that micropulses or \bunches"
are spaced at the rf period 1=frf �350 ps.

bunches are spaced at the rf period 1=frf , one may skip buckets, or one may
�ll just one bucket. The beam pulse duration Tp may be the full length of
the rf pulse, or shorter, 50 ns{3 �s being typical. Intrapulse current is set by
the requirements for experimentation, and limited by collective e�ects, lon-
gitudinal and transverse wake�elds, beam-loading and beam break-up. For
de�niteness we often picture a single bunch as a Gaussian current pro�le,

Ib (t) =
Qbp
2��t

exp

 
� t2

2�2t

!
; (69)

as a function of time t, corresponding to bunch charge Qb and bunch length
c�t. Real bunch pro�les exhibit a variety of shapes, and may contain �ne
structure. In general one should be alert to the fact that there are typically
three currents that may be quoted in connection with a beam. The peak
current within a bunch is quite high, approaching 103 A. For a bunch-train,
the average current, within the pulse, is just Qbfrf , when every bucket is
�lled, and this may be on the order of 100 A. Finally the average cur-
rent is just the total charge per pulse multiplied by the machine repetition
frequency, and this may be on the order of 10�5 A.

In the limit of low-current, where collective phenomena may be ne-
glected, the function of the linac rf system is quite simple. Let us consider
an electron entering the main-linac at time t. We suppose there are N
klystrons powering the linac, and each klystron may be powering one or
several structures. Consider the net voltage witnessed by the relativistic
electron, absent beam-loading (\no-load" voltage),

V =
NX
n=1

Vn cos (! t+ 'n) ;



60 D.H. WHITTUM

ṼN
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Figure 26. Net no-load voltage in a linac is a sum of phasors from each tube.
Phase-closure need not be achieved locally. It does require \overhead" in achievable
voltage.

where each klystron is responsible for a voltage-phasor ~Vn = Vne
j'n estab-

lished in the structure(s) it powers. This may be expressed more simply as
V = < ~V ej! t, where

~V =
NX
n=1

~Vn:

Thus we may express V = j ~V j cos(!t+ '), with ~V = j ~V jej'. Evidently, in
the absence of beam-induced voltage, and considering only the longitudinal
phase-space, the linac is simply a sinusoidal kick. It is quanti�ed by a single-
phasor, the no-load voltage of the linac. Considering then an electron bunch,
one can see that if one tube is improperly phased, then the center energy
and the energy spread deviate from the design after propagating through
the structure(s) powered by this tube. However, since the result at the end
of the linac is determined simply by a sum of phasors, a later tube may be
re-phased to correct the error and achieve \phase-closure", as illustrated in
Fig. 26.

Notice that the e�ect of the phase-error is to reduce the net length of the
no-load voltage phasor. This implies that phase-closure requires \overhead"
in maximum voltage available to the linac from the tube complement. This
may be achieved for example with spare tubes on \stand-by", operating
at the machine repetition rate, triggered after the beam has passed, but
available to be put on the beam on short notice.

In the meantime, phase-closure is no guarantee that the beam hasn't
noticed the mis-phased tube, for the transverse motion depends on energy,
and the consequence of mis-phasing is a change to the energy pro�le along
the linac. In fact, to understand the beam dynamics in detail, it is impor-
tant to appreciate the local variation in beam energy as the simple picture
of \linac as sine-wave" does not provide su�cient detail for tracking par-
ticles through the machine. An electron's local energy variation (absent
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Figure 27. Energy spread of the beam is determined in the �rst approximation by bunch
length and phasing.

wake�elds) may be described by

d

ds
mc2
 = eG cos( + �); (70)

where the voltage produced by the local structure has been quanti�ed in
terms of local gradient G, and phase �. The electron phase relative to a
properly-phased (� = 0) accelerating wave is  = � s � ! t, and varies
according to

d 

ds
= � � !

V
: (71)

With V � c and phase velocity of the accelerating mode V� = !=� � c,
the phase  is constant. The electron is \frozen" longitudinally, unless it is
bumped by a mis-phased tube.

This model is helpful in understanding the structure required of a mi-
cropulse, the collection of charge residing within one bucket, a single bunch.
The longitudinal structure of a single bunch is constrained in the �rst ap-
proximation simply by the sinusoidal shape of the accelerating waveform.
The problem is sketched in Fig. 27. Let us suppose for illustration that
the initial distribution for the bunch takes the form of Eq. (69), and let us
express this in terms of phase,

dQb

d 
=

Qbp
2�� 

exp

(
�
�
 � � 

�2
2�2 

)
:

Using this distribution and Eq. (70), and performing integrals one can check
the simple rule of thumb relating root-mean-square (rms) phase-width and
asymptotic rms energy spread

� (
�RF ) � 6:8

q
�
 (%): (72)

This is just the �rst approximation to the beam energy distribution,
valid at low charge. The actual voltage witnessed by beam particles is a
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Figure 28. Illustrating projection of the phase-space distribution

superposition of the applied (or \no-load") voltage, and an e�ective volt-
age due to collective radiation, the longitudinal wake�eld. The longitudinal
structure determines the frequency components present in the beam spec-
trum, and thus the character of coherent radiation in the linac. Where
single-bunch charge is high and bunch length is short, the wake�eld results
in a signi�cant loss in mean gradient, of order a few percent. At the same
time, due to wake�elds, phasing ahead of crest can actually reduce energy
spread, below that of Eq. (72). Long and short-range wake�elds are im-
portant in determining the energy distribution of the beam, be it a single
bunch, or a train of bunches. Energy spread is not all bad, by the way, pro-
vided it is erased before the high-energy experiment can see it. Temporary
use of energy-spread, along some region of the linac, may help to inhibit
beam break-up (\BNS damping").

In connection with energy-spread, transverse oscillations and the like,
it is important to distinguish between the distribution in 6-dimensional
phase-space, to which Liouville's theorem applies, and projected distribu-
tions. This is illustrated in Fig. 28, showing a sampling of two distributions,
in energy and time. Such a sketch invites one to distinguish between pro-
jected distributions and the full distribution. As one can see, a projection of
the distribution onto the energy-axis (histogram by energy) shows merely
energy-spread. In the full distribution, energy-spread may in fact be corre-
lated or uncorrelated with another phase-space dimension. The two samples
seen in Fig. 28 have the same \microscopic" density in 2-dimensional phase-
space, but this fact is lost in projection. We could add that a distribution
in E; t is itself a projection, so the actual phase-space density is not made
clear in this �gure, either.

This matter of microscopic density in the full-phase space is some-
times referred to in terms of \correlated" and \uncorrelated" beam at-
tributes, energy-spread being just one example. Liouville's theorem tells us
that we cannot increase the density in 6-dimensional phase-space. Uncorre-
lated energy-spread cannot be removed then, in the absence of 
uctuation-
dissipation e�ects. However, where a correlation exists, it may be exploited.
The phase-closure problem illustrates this practical di�erence. If uncorre-
lated energy spread were present on injection, it could not be reduced by
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Figure 29. We consider the problem of propagating a beam through a pipe.
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Figure 30. Beam motion in a drift corresponds to shear in trace-space.

re-phasing a tube.

In this section we have glimpsed the requirements on the time-structure
of the beam. Let us consider next requirements on the distribution projected
in the transverse variables.

Transverse Phase-Space

High rate for an experiment imposes requirements on the transverse phase-
space permitted to the beam. However, before considering such things, there
is a logical prerequisite: What is required to get the beam through the linac?
Let us illustrate the �rst and most basic ingredient, emittance. We pose the
problem illustrated in Fig. 29 of transmitting a beam through a pipe.

We expect at �rst to pull out the Lorentz force law. However, let us
suppose there are no externally applied forces. Let us neglect also forces
generated by the beam itself. For a relativistic beam, electrostatic and
magnetostatic forces cancel to within a factor of 1=
2. Radiative forces,
wake�elds, are present but we may neglect them if charge is su�ciently
low. We consider then simply a relativistic, low-intensity, ballistic beam.
What determines the behavior of such a beam in a drift?

Since motion is ballistic, particle trajectories are straight lines deter-
mined by initial position x0 and initial angle x00,

x = x0 + x00s; x0 = x00;
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Figure 31. We consider a \slice" of beam.

where s is the displacement down the pipe, and the angle of the trajectory
is x0 = dx=ds = px=ps. One can predict the outcome of the experiment
pictured in Fig. 29 with some simple sketches as seen in Fig. 30. There we
see a sampling of the beam distribution, projected onto the x � x0 plane.
This is sometimes referred to as a \trace-space" depiction of the beam,
since with it, one may trace out the evolution of the beam. A particle's
angle is constant, and the transverse position coordinate varies linearly
with displacement s. Asymptotically one can see that the size of the beam
will diverge with s, and the beam will scrape the pipe if the drift length
L is large enough. Analyzing the geometry of this bundle of rays, we may
quantify this divergence.

Let us de�ne the beam position in the horizontal plane as xb = hxi. The
brackets h:::i indicate an average over some subset of the beam distribution.
Oftentimes this subset will refer to a single bunch. However, what subset
we choose depends on the application, and given the variety in the time
structure of the beam, we have many choices. In practice one may consult
what is measurable, but for now we will refer to this subset simply as a
\beam-slice" or just \the beam" for short, with a picture as in Fig. 31. The
beam position behaves as a single-particle travelling at angle x0b = hx0i.
Steered properly one could imagine a single particle making it through a
great length of pipe. However, unlike a single particle, the beam has a �nite
size, one that eventually grows with s. Let's see this. Second moments of
the beam are

�2x =
D
x2
E
� hxi2 ; �2x0 =

D
x02
E
�


x0
�2
; �xx0 =



xx0
�
�


x0
�
hxi :

In our drift, the second moments vary according to
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=
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Completing the square in the expression for �2x one can show that

�2x (s) =
"2

�2x0
+ �2x0 (s� s�)

2

where
"2 = �2x�

2
x0 � �2xx0 : (73)

The quantity " is referred to as the root-mean-square emittance. One can
show that it is a constant in such a drift. The beam forms a waist at s� =
��xx00=�2x0 , and the spot-size there is �x� = "=�x0 . This expression shows
that to make a small spot, one must arrange a high angle of convergence
�x0 . Equivalently one may write

�2x (s) = �2x� +
"2

�2x�
(s� s�)

2 = �2x�

(
1 +

(s� s�)
2

�2�

)
; (74)

where �� = �2x�=". This form emphasizes that a small-spot implies rapid
divergence, on a length-scale varying quadratically with the minimum spot-
size.

This divergent behavior (\hourglass") in a drift is similar to the di�rac-
tion of light, also a bundle of rays. Di�raction of coherent light causes the
intensity-weighted beam-size to double after a waist in a Rayleigh length
LR = 4��2x=�, where the rms width may be expressed in terms of the
laser waist w as �x = w=2, and w determines the �eld amplitude variation
/ exp

�
�r2=w2

�
. Roughly speaking then, a beam of electrons behaves like

a beam of photons, with wavelength � � 4� ". This might seem odd given
that di�raction in the case of photons is sometimes described as a char-
acteristic feature of their wave-nature. In fact, we have seen, one doesn't
need waves to see di�raction. The wave nature of photons lies instead in the
statement that the photon beam has emittance no less than �=4�. Similarly,
one may infer that the emittance of an electron beam can be no less than
�D=4�, where �D is the de Broglie wavelength. Beams today are orders of
magnitude away from this quantum-limited emittance, leaving us plenty of
room for advances in beam-physics.

We may translate this analysis of the beam drifting through the pipe,
into a statement about the beamline consisting of the pipe and the drift,
and what emittance it can \accept". Given that a beam with too large an
emittance will be scraped by the pipe, let us determine how to maximize
transmission. We suppose that by adjustment of the incoming beam mo-
ments, we may place the waist at the pipe center. We adjust the waist �x�
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so as to minimize the beam size at the pipe exit, and thereby minimize
scraping. One can show then that maximum beam-size is �2 = "L, with L
the pipe length. So, for example, if our beam is round, of uniform density
with radius rb(s), then � = rb=2, and scraping occurs if rb > R. Stated
di�erently, scraping occurs if " > A, where A = R2=4L, with R the pipe
radius and L the pipe length L. This is the acceptance of a circular pipe
for a uniform beam, with waist centered in the pipe.

This notion of acceptance is a useful �gure of merit, and may be gener-
alized to more elaborate beamlines. Evidently speci�cation of the beamline
for this purpose means a description of the physical aperture as a function
of s, and the beam \optics". While in principle one may con�gure an aper-
ture and optics to \select" an emittance, this is not common on microwave
linacs. Intentional scraping appears only in special apertures, \collimators".
These may be employed, for example, to de�ne energy or to remove beam
\halo". Halo refers to a small population of electrons separated by several
� from the beam \core", and may be produced by scattering upstream.
Other than the aperture of the collimator jaws, the smallest aperture on a
microwave linac is typically the cell-to-cell coupling iris of the accelerating
structure, about 100 in diameter at S-Band. Good transmission through this
narrow constriction requires magnetic focusing.

Appreciating the signi�cance of emittance, one might like to generalize
the notion, to devise a quantity that is invariant and descriptive of limita-
tions on focusing the beam. However, while our beam may be described by
some Hamiltonian, there are quite a few we could cook up, and they may
generate di�erent invariants. Nevertheless, in the vicinity of the target, or
the beam-collision point, the beam still passes through a drift, and its op-
tical behavior still refers to the emittance already de�ned. The normalized
emittance, "n,

"2n = (�2x�
2
px
� �2x�px)=m

2c2: (75)

is a useful �gure of merit, as one can show that this quantity is a constant,
in the presence of acceleration that is uniform throughout the beam-slice.
This one can understand since x and px are unchanged by a Lorentz boost.
Normalized emittance is also constant for a linear restoring force in x. For
a high-energy beam then, and given "n, one has " � "n=
 and this is useful
for simple calculations. This is to say that if one knows the normalized
emittance at the 1 GeV point in the linac, one may hope that the same
�gure applies at the 45 GeV point, so that the emittance is smaller by �45.
In practice, one will �nd that normalized emittance grows through the
linac. To appreciate how this occurs, one must contemplate a number of
features of the beam dynamics: the choice of beam-slice, and the non-linear
and energy-dependent (\chromatic") character of the forces at work. While
Liouville may assure us that microscopic density in phase-space is constant,
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high-energy experiments represent projections of phase-space. As we saw in
Fig. 28, Liouville's theorem does not prevent a projected distribution from
becoming diluted.

Before we get too far out in phase-space describing beams, let's take a
look at what is observable in practice.

3.3. INSTRUMENTATION

As we have seen a beam may be described in theory by a distribution in
six-variables, 3 position variables, and 3 momentum variables | a distribu-
tion in phase-space. The task of the machine physicist is to produce beams
with the phase-space desired by the high-energy experimentalist. This im-
plies a requirement to monitor the relevant attributes of the phase-space
distribution.

In fact, many attributes are not monitored, due to technical di�cul-
ties, and the problem of beamline instrumentation is a very active area of
research. It is quite feasible to monitor intensity and �rst moments on a
pulse-to-pulse basis, transverse position, phase, and energy. Monitoring of
second-moments from shot to shot is more of a challenge. Quantities typ-
ically available over several machine pulses include transverse size (rms),
transverse asymmetry (skew), and energy spread.

To diagnose attributes of a beam-distribution, we must cause the beam
to couple to an external circuit. This coupling may be electrostatic, in-
ductive or electromagnetic, and we may classify instruments accordingly.
Inductive pickups may be coreless (fast) or employ a high-� core. The
workhorses of beamline instrumentation are typically low-frequency elec-
trostatic or inductive pickups. \Low-frequency" refers to the frequencies
actually employed in the output circuit; all pickups exhibit parasitic high-
frequency coupling impedance (wake�elds) to some degree. Within the cat-
egory of radiative diagnostics there are coherent and incoherent radiators,
including microwave cavities, gaps, and other structures, as well as sources
of synchrotron, Cherenkov, transition or other radiation. At frequencies
much lower than 1=�t one might employ a microwave detection circuit, and
at much higher frequencies a camera, or streak-camera. This classi�cation
is not all-inclusive, as there are diverse ways to employ foils, secondary
emission, kickers and screens.

Let us illustrate some common instruments, and for de�niteness we may
think of the beam in terms of the picture of Fig. 25. At 120 Hz, one beam
pulse arrives every 8.3 ms. A beam pulse may consist simply of one bunch
of charge with a length of 1 mm, and transverse size of 100 �m - 1 mm, or
a pulse may consist of a train of such bunches, a train lasting from 100 ns
to 3 �s.
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Ion-Chamber
The most basic instrument for an accelerator is one that registers beam loss .
Without such a monitor, symptoms of a mis-steered beam may still be vis-
ible, appearing on other instrumentation, that we will discuss, toroids and
beam-position monitors. Without instrumentation of some kind, deposition
of MW/cm2 in a beamline component might appear �rst on a temperature
monitor, and perhaps not long after that, a vacuum pressure readout (e.g.,
an ion pump current). Protection of the machine favors a dedicated diagnos-
tic of beam-loss, and an ion-chamber [27] is the most common instrument
for this purpose. Slightly more elaborate is a length of gas-�lled coaxial
line, as proposed by Panofsky, with a high-voltage suitable for operation as
a proportional counter. Stretched the length of the linac such a \Panofsky
long ion-chamber" (PLIC), can serve as a monitor of localized loss, with
resolution on the order of a meter. In addition to machine protection (shut-
o� or rate-limit), a PLIC can assist in beam-steering. At the SLC there are
eight PLIC systems, implemented with 250 V applied to 1/2" HeliaxTM

(Andrews Corp.), loaded with 95% Ar gas, with Freon and CO2 [28]. The
primary concern in the design of such a system is to avoid shadowing of
the cable by beamline components, and this may dictate pairs of cables, or
threading of cable through magnet bores where feasible.

Toroid
One step up from a beam-loss monitor is a current monitor, most com-
monly for microwave linacs, a toroid. As seen in Fig. 32, a simple current
monitor can be fashioned from a toroidal ring wrapped with a coil of N
turns, coupled out through cable of characteristic impedance R. The az-
imuthal magnetic �eld produced by the beam current Ib and the toroid
circuit current i is, from Ampere's Law,

H =
(Ib � iN)

2� r

with r the mean radius of the toroid. The magnetic 
ux through the toroid
circuit is then

� = �AN
(Ib � iN)

2� r
;

with A the cross-section of the toroid. Faraday's law then determines the
voltage developed across the terminals V = d�=dt. With output terminated
in impedance R, the circuit current satis�es

di

dt
+
R

L
i =

1

N

dIb

dt
;

where the inductance is L = �AN2=2� r. If L=R is large compared to the
beam-pulse length then V � IbR=N . In this limit the circuit is equivalent to
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Figure 32. A toroid current monitor and equivalent circuit.

a current-source providing i � I=N to the cable. Example implementations
may be found in the literature [29, 30].

Screens and Radiative Diagnostics

Screens or \paddles" are among the simplest and most common instruments
employed on a linac, usually in combination with a camera. A screen is
generically a piece of metal or ceramic with a phosphorescent coating, and
a graticule to register scale in the tranverse dimensions x; y. The light from
the screen is imaged and employed to infer the transverse beam distribution.
As a monitor of position the screen aids in steering, and as a check of
beam energy, when employed after a bend magnet. Placing a screen at an
image point for a target permits one to tune up the beam on the screen
�rst, before delivery to the target. The drawbacks to screens are that they
are destructive to the beam and are eventually destroyed themselves by
an intense beam. Operational issues include burn-spots on the screen and
saturation of the camera. In addition, beam-jitter on the screen a�ects
the inference of beam-moments. Examples of di�erent screen, graticule and
camera con�gurations can be seen in [31, 32, 33]. Analysis of beam pro�le
data from a screen may be found in [34].

Other radiative diagnostics include transition radiation (e.g., from the
front or rear of a screen), synchrotron radiation from a bending magnet or
wiggler magnet, and Cherenkov radiation. Depending on the application,
diagnosed spectra may extend from the infrared through the ultra-violet
and X-ray. Time-resolution, if needed, can be aided by �ltering the light.
Detection may be through a scintillator and photo-multiplier tube in the
case of ionizing radation, or a photo-diode for wavelengths up to 20 �m.
A more elaborate system may employ a gated CCD [35] or streak-camera
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[36, 37]. The latter permits resolution of features on the scale of a single
3 ps bunch. Time resolution is not always important though. An early
application of synchrotron and Cherenkov radiation for monitoring of a
beam spot in the mm-cm range can be seen in [38]. At the other extreme one
�nds modern work employing Compton-scattering of laser-light to measure
a 100-nm beam spot [39].

Beam-Position Monitor

There are several di�erent kinds of BPM in common use, button electrode,
stripline, and resonant cavity. Let us consider the stripline as it is fairly
common; the geometry is seen in Fig. 33.

A transient current (a beam) propagating through a conducting pipe
is accompanied by equal and opposite current 
owing through the pipe-
wall. The distribution of current around the pipe depends however on the
beam position relative to the pipe-axis. The stripline BPM cuts the pipe
wall and intercepts some of this wall current. Considering one stripline, as
seen in Fig. 33, there is a net current �i incident on the upstream end
of the stripline. For example, for a centered beam, stripline width w and
pipe radius r, this current is just i = Ib(w=2�r). As the beam arrives at
the upstream end of the BPM, current is induced on the coaxial output,
and the interior stripline. If the characteristic impedance of these lines is Z,
then the voltage induced on each is V = Zi=2, since they appear in parallel.
In this way two waves each with current i=2 are launched, one up the coax,
the other down the interior stripline. As the beam reaches the downstream
end of the BPM it induces an opposite polarity pulse on the output coaxial
line corresponding to current �i=2. If the phase-velocity of the wave on
the stripline matches the beam velocity, this signal cancels the forward
TEM wave on the downstream coaxial output. A current �i=2 is then
launched backward on the interior stripline. Thus the voltage appearing on
the upstream coaxial output is bipolar in character,

VU (t) =
1

2
Z

�
i (t)� i

�
t� 2l

V

��
;

with l the stripline length. A matched stripline of this type is sometimes
referred to as a directional coupler, since VD � 0. This implies that such
a device may be employed to monitor two counter-propagating beams in a
common pipe.

To determine the position dependence of the wall current �i, we may
employ the method of images [22], and expand the result as an in�nite
series

i =
w

2� r
Ib

"
1 + 2

1X
n=1

�
�

r

�n
cosn(� � �)

#
:
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Figure 33. A stripline BPM, side-view of one stripline, and assembly end-view.

where � speci�es the position of the stripline, r is the pipe-radius, and the
beam-position is given by x = � cos�, y = � sin �. The BPM illustrated in
Fig. 33 shows four striplines at angles � = 0, �=2, �, and 3�=2. We can
illustrate the problem of position monitoring more simply however with two
striplines at angles � = 0 and � = �. In this case we have wall currents

i�=0 �
w

2� r
Ib

"
1 + 2

x

r
+ 2

x2 � y2

r2
+ 2

x3 � 3xy2

r3
+ : : :

#
;

i�=� �
w

2� r
Ib

"
1� 2

x

r
+ 2

x2 � y2

r2
� 2

x3 � 3xy2

r3
+ : : :

#
:

In processing the signals from the coaxial outputs, one may employ tees to
form sum and di�erence signals

�i = i�=0 + i�=�;�i = i�=0 � i�=� (76)

The sum provides a normalization signal with which to extract position x
from the di�erence. Evidently BPM's exhibit intrinsic non-linearity.

The electronics processing the stripline readouts will perform a low-pass
(�50 MHz ) �lter on each channel, and add and subtract by means of tees.
Following this will be a combination of limiters, ampli�ers and digitization.
The processor circuit will also exhibit non-linearity, as well as scale and o�-
set errors. One may �nd too that BPM processor outputs are multiplexed
(\MUX'd") for readout from the control system, and this can on occasion
cause confusion, since orbits inferred from MUX'd BPM readouts may cor-
respond to di�erent machine pulses, and not a single physical orbit. Further
discussion of BPM electronics may be found in [40, 41].
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Figure 34. A simple phase-monitor comparing the �ltered signal taken from a stripline
within the accelerator vault to a signal sampled from the klystron output waveform.

Beam-Phase Monitor

In a microwave linac one typically has a number of phases to control and
this implies, to monitor. The injector system de�nes a reference phase and
one wishes to control all tube phases relative to the injector, in principle.
Maintenance of accurate phase-relationships in a multi-tube linac requires
a single clock, a \master oscillator" from which all rf signals are derived. In
addition, one would like this drive signal to be distributed to all tubes in
a phase-stable fashion. Meanwhile, to set the phase of a tube, one requires
a diagnostic of the tube phase relative to the beam. So for example, a
beam traversing an unpowered structure will induce a microwave signal on
a forward coupler placed on the structure output to the load. If the tube is
phased to put the beam on the accelerating crest, then the beam-induced
voltage as seen on the output will be � out of phase with the component
due to the tube. This is the basis for the \induction" phasing technique
employed for the original Two-Mile linac rf system [2]. Beam-phase relative
to a tube can also be assessed with the help of a BPM placed downstream,
after a bend magnet. In this case adjustment of an in-line phase-shifter at
the tube input will produce a sinusoidal variation of beam-position. On-
crest acceleration corresponds to the phase setting where the BPM reading
is at an extremum. Thus there are a number of ways to get at the phase-
information one requires.

To appreciate the systematic issues associated with a phase-monitor,
consider the system seen in Fig. 34, comparing local beam-phase to klystron
output phase. This could provide a pulse-to-pulse beam-phase reference, not
an absolute �gure, but one whose phase o�set could be calibrated out by
comparison with one of the other techniques. Cable lengths may vary due
to temperature drifts associated with the diurnal cycle, or thermal equili-
bration of the accelerator vault. In this case the phase-monitor output will
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drift. In the SLC, the full range of daily temperature variation is 20�C up-
stairs in the klystron gallery and 1�C downstairs in the tunnel. To monitor
for phase-drift one may employ resistive temperature detectors, and to con-
trol it one may employ phase-stabilized cable, self-regulating heater tape,
and still more elaborate measures [42]. A more conventional solution is to
provide for temperature control of electronics buildings. However, even in
this case it is possible to \detect" the air-conditioner cycle with the help of
the electronics in one's processor. If one actually employs a single stripline
signal then the output is weakly dependent on position and this will appear
in the phase signal. This can be corrected by combining the stripline out-
puts. The same principles can be employed to monitor the pulse-to-pulse
timing jitter of two bunches [43].

Bunch-Length Monitor

The simplest monitor of bunch length employs a gap in the beam-tube to
permit the beam to radiate coherently, as seen in Fig. 35, with gap length
L and pipe radius R. The power spectrum radiated will depend on the
geometry, and the beam spectrum. For example, for a Gaussian beam, the
Fourier transform is

~Ib (!) =

1Z
�1

d!p
2�
e�j! tIb (t) =

Qbp
2�

exp
�
�1

2!
2�2t

�
; (77)

Roughly half of the incident spectrum lies at wavelengths below � � 4��z,
and this determines the frequency range of interest for the detection circuit.
For a 1 mm bunch length, one is interested in frequencies in K-band. A
crystal detector, looking into a �lter blocking out low-frequencies, provides
a monitor of power radiated. The crystal should be positioned outside the
vault, well away from any pulsed-noise or ionizing radiation sources. One
can then extract a signal to monitor bunch length, after normalization by a
beam-intensity signal derived from the low-frequency part of the spectrum
or a toroid.

In addition to frequency, we require some appreciation of the signal level.
In the �rst approximation, this system is just a gap with capacitance of
order C � "

0
�R2=L and loss-factor kl � 1=C. However, for this application

one is interested to grasp the frequency dependence of the coupling. In
practice one will �lter out the low frequency signal to permit clean detection
of the high-frequency components. For typical parameters R;L >> �z,
and we are interested in frequencies for which the geometry is no longer a
lumped circuit, but an obstacle that serves to di�ract the beam self-�elds
out of the pipe. We may estimate the power radiated by considering the
beam self-�elds in the frequency domain Er = Z0I=2�r, H� = I=2�r, and
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Figure 35. A gap-based monitor makes use of the radiation of a beam through an
interruption in the return current-path in the beam-pipe, bridged by a dielectric gap.

the Poynting 
ux near the pipe wall, S = ErH� = Z0(I=2�R)
2. We need

only compute the fraction of this 
ux that leaves the pipe, to gauge the
signal level to be expected. We treat the dielectric liner as transparent, for
simplicity. If we were to compute in detail the �elds at the far side of the
gap, we would �nd a superposition of waves with transverse wavenumber k?
and longitudinal wavenumber kjj, satisfying k

2
jj+k

2
? = (!=c)2. To represent

�elds di�racting from a radius r = R� �r, we expect to require transverse
wavenumbers k? � �=�r. In the high-frequency limit (!R=c >> 1), all
component plane-waves propagate at small angles and the deviation in kjj
from the unscattered value !=c is small �kjj << kjj. Meanwhile, waves add
constructively at the far side of the gap, when they are in phase �' �
k?�r+ �kjjL � 0. Combining these estimates one arrives at a �gure for the

annulus that leaves the pipe,

�r �
 

L

4� kjj

!1=2

This determines the area intercepted due to di�raction, A � 2�R�r. The
radiated spectrum is then

dU

d!
� 2SA �

�
Z0

�R

��
L

4� !=c

�1=2

j~Ibj2;

and the factor of two accounts for positive and negative frequencies. Con-
sidering a 
at high-pass �lter on the interval [!c;1], we integrate to obtain

keff (!c) =
1

Q2
b

!Z
!c

d!
dU

d!
=

�(1=4)

8 �5=2
Z0c

R

�
L

c�t

�1=2

f (!c�t) : (78)

The function

f (u) =
1

�(1=4)

1Z
u2

dx x�3=4e�x;
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Figure 36. Use of a wire target to infer beam-size, for example, by detection of
bremsstrahlung photons with a scintillator, PMT and GADC.

and f (0) = 1, with �(1=4) � 3:6. For results more precise than this one
may employ a numerical �eld-solver. As an example, for L � 1 cm, R �
1:27 cm, and c�t �1 mm, we have keff (0) � 0:7 V/pC. Thus a 1 nC
bunch deposits about 0.7 �J, in about 33 ps, or 20 kW peak. Even after
dispersion in the connecting guide the peak power will be quite high, and
this must be accounted for in the �ltering. One may guess that from the
point of view of nearby beamline instrumentation in the vault, a gap is also
an excellent \noise" generator, unless it is enclosed in a conducting box.
Further adventures with bunch length monitoring, and gap-pickups can be
found in [43].

While we have computed the energy radiated out of the pipe, in fact,
half of the energy is radiated into the pipe. Associated with the gap there is
a high-frequency wake�eld that may interact with particles that follow [7].
This con�rms that any discontinuity in the beam-pipe will interact with
the beam, as claimed in Sec. 2.9. In fact, this di�raction-model impedance,
evaluated for the accelerating structure iris, is the dominant contributor to
the broadband impedance of a linac.

Wire-Scanner

A direct approach to extracting beam-pro�le information is to move a wire
target through the beam path, over the course of several beam pulses. A
proportional signal can be derived either from secondary electron emission
or bremsstrahlung [44]. In the latter case, at each wire position, the beam
produces bremsstrahlung radiation that may be detected with the help of
a scintillator and photo-multiplier tube (PMT), and acquired with a gated
analog to digital converter (GADC). The scheme is depicted in Fig. 36.
The principle of operation is that a histogram of counts versus wire posi-
tion provides a root-mean-square (rms) width dependent on the beam size.
Adopting coordinates u; v in the transverse plane, as seen in Fig. 37, let us
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Figure 37. We consider orthogonal coordinates u; v in the transverse plane, with a wire
oriented in the u-direction, and travelling along an axis � oriented at an angle � to the
wire. The beam travels into the page.

denote by Ne(v) the beam distribution in the transverse plane, integrated
over a time-scale corresponding to the gate-width for the GADC, and pro-
jected onto the v-axis. The number of 
's generated by an in�nitely thin
wire is proportional to Ne(v). Thus by moving such a wire in �, with small
steps ��, inferring the step in v, �v = sin(�)��, and determining N
(v), one
could in principle compute Ne(v) up to an overall scale factor depending
on the geometry traversed by the 
's and the detection system. This distri-
bution N
(v) will have the rms width �v of the actual beam distribution in
v. The second moment of the inferred distribution referred to a coordinate
origin vw is then



v2
�
=


(vb � vw)

2
�
+ �2v , where the brackets indicate an

average over all wire positions weighted by N
 . A wire of �nite dimension
may be thought of as a collection of in�nitesimal wires each with a di�er-
ent position vw with respect to the wire-centroid. The inferred distribution
N
(v) in this case is just the sum of the individual distributions from each
wire and the rms width �v may be determined from

�2
v =

D
v2
E
� hvi2 =

D
(vb � vw)

2
E
+ �2v = �2v + �2w;

where the brackets again refer to an average over all (in�nitesimal) wire
positions weighted by N
 . For example, �2w = D2=16 for a wire with circular
cross-section of diameter D. Thus a 50-�m diameter wire contributes 12.5-
�m in quadrature.

These �gures refer to the coordinate v normal to the wire-orientation.
Typically several wires are employed and it is convenient to refer moments
to a common coordinate system x; y. If the u; v axes are obtained from the
x; y axes with a rotation by �w, so that v = �x sin(�w) + y cos(�w) then

�2v = �2x sin
2 �w � �xy sin 2�w + �2y cos

2 �w:

Evidently one may infer three second-moments with three wires, provided
the wire orientations �w are not degenerate, for example, 0�; 45�; 90�. Fit-
ting of inferred distributions can be quite elaborate in that asymmetric
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Figure 38. Some of the features one may see with a wire-scan.

pro�les reveal beam dynamics signi�cant to the process of machine tune-
up.

Systematic issues are illustrated in Fig. 38 and include background from
upstream sources of ionizing radiation 
ux (e.g. beam-scraping and linac
\dark current"), wire-breakage, wire-vibration, and beam orbit motion from
pulse to pulse. The latter can be corrected with the help of the BPM sys-
tem and the control software. The last sketch actually may be showing
something related to beam dynamics, a beam pro�le asymmetry or \tail".

Due to problems with breakage, wire-scanners are an ongoing area for
research. In the earliest wire-scanners, tungsten wire (gold-plated to permit
soldering) was chosen for its high Z = 74. More recently, carbon wire has
been employed, with detection of electrons at 90� to the beam-axis, rather
than small-angle bremsstrahlung photons. The di�culty of maintaining the
small diameter wire needed to resolve micron-beam dimensions has moti-
vated development of a \laser-wire" system based on Compton scattering
rather than bremsstrahlung.

3.4. MAGNETIC MULTIPOLES

Appreciating what features of the beam are observable, let us consider next
the matter of getting a relativistic beam through the main linac. We found
in Sec. 3.2 that even a relativistic beam will diverge due to emittance and
for this reason some beam-con�ning forces are necessary. We have already
�gured out that magnetic forces are preferable to the electric variety, in the
case of a relativistic beam. What manner of magnetic forces may we apply?

Following the �rst rule of beamline design, we put the magnets on the
beamline, not in the beam. In this case, the applied magnetic induction
satis�es ~r� ~B = 0 and ~r� ~B = 0, within the beam-path. Thus we have a
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Figure 39. De
ection by any \thin magnet" may be decomposed into multipoles.

choice, we may express ~B as a curl or a gradient; we choose gradient,

~B = ~r': (79)

The solenoidal condition then implies that the magnetic potential ' satis�es
Laplace's equation, r2' = 0. Boundary conditions then determine the
character of the magnetic potential, and they are shaped by the magnetic
materials and coil currents outside the beam-pipe, or at least outside the
beam-path.

Laplace's equation is a strong constraint on the form the magnetic po-
tential can take. To see this, consider a magnet of some kind as depicted in
Fig. 39; let us compute the net kick to an incident electron, with the ap-
proximation that the electron orbit is ballistic through the magnet (a \thin"
magnet). We integrate to compute the impulse received by the electron,

�~p = �e
+1Z
�1

dt ~V � ~B;

or

�px = �e
+1Z
�1

dt (VyBs � VsBy) = �e
+1Z
�1

ds

�
Vy

Vs

@'

@s
� @'

@y

�
:

Since we are calculating the impulse to �rst order in the �elds, Vy may be
taken to be constant and this term integrates to 0. Proceeding in a similar
fashion with �py, we �nd that

�~p = �eŝ� ~r? ; (80)

where,

~r? = x̂
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+ ŷ
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 (~r?) =

+1Z
�1

ds ' (s; ~r?) : (81)

Thus the kinds of kicks we may impart to a paraxial beam at �rst order in
the applied magnetic �eld are described by the function  . Notice that,

r2
? (~r?) =

+1Z
�1

ds r2
?' (s; ~r?) =

+1Z
�1

ds
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� @2
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!
' (s; ~r?) = �Bs (s; ~r?)j+1�1 = 0:

In the region of the beam-pipe then we may express  as

 (~r?) =
1X
m=0

rm fam cos (m�) + bm sin (m�)g; (82)

or, in Cartesian coordinates,

 = a0+a1x+b1y+a2(x
2 � y2)+2b2xy+a3(x

3 � 3xy2)+b3(3x
2y � y3)+: : : :

These terms come with nomenclature as indicated in Table 4. Together

TABLE 4. Magnetic multipoles associated with a thin magnet,
and the corresponding �rst-order kicks, per unit charge.

Term �px �py Nomenclature

a1 0 ea1 vertical bend

b1 �b1 0 horizontal bend

a2 2a2y 2a2x skew quadrupole

b2 �2b2x 2b2y normal quadrupole

a3 6a3xy 3a3(x
2 � y2) skew sextupole

b3 �3b3(x
2 � y2) 6b3xy normal sextupole

with this mathematical description in terms of multipoles, one may con-
struct a picture for each multipole, based on the corresponding magnetic
equipotentials.

There is more variety to magnets than is illustrated by the simple kicks
given here. A su�ciently thick or strong magnet can appreciably perturb
the beam orbit within the magnet itself. In the case of linacs however one
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Figure 40. The horizontal bend, and the normal quad are the basic building blocks for
optical systems.

is interested simply to transport the beam from the injector to the applica-
tion (target, collision point) controlling the beam-orbit and the beam-size.
Typically one prefers that x and y be uncoupled. For simplicity one prefers
that the orbit should lie in a plane. With these assumptions, one is inter-
ested primarily in the horizontal bend and the normal quadrupole as in
Fig. 40. These two kinds of magnets are the starting point for the subject
of beam-optics.

Applying Ampere's Law to the geometries shown one may relate the
kick seen by the beam to the coil currents. For the horizontal bend magnet
we have ~B = Bpŷ; and the pole-tip �eld Bp = �0(2NI=g); in terms of the
gap g, and the product of coil current I, and the number of turns N .

A normal quadrupole �eld corresponds to ~B = ~rfkxyg where k =
@Bx=@y = @By=@x is the quadrupole gradient. This �eld is de�ned by an
equipotential surface xy = R2=2, a hyperbola, with R the radial distance
from the center-axis to the pole-tip. The �eld at the pole-tip is then Bp =
kR. We suppose that the magnetic 
ux is driven by coils carrying current
NI placed with the symmetry indicated in Fig. 40. We may compute k in
terms of the current and the geometry, using Ampere's Law,

�2NI =
I
~H � d~l =

Z
pole

~B

�
� d~l +

Z
gap

~B

�0
� d~l:

Since � >> �0, we need only the integral in the gap and this is

Z
gap

~B

�0
� d~l = 1

�0

R=
p
2Z

�R=
p
2

Bydy =
kR2

�0
:
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Thus we �nd k = �0(2NI=R
2), expressing quadrupole gradient in terms

of the coil current. The validity of this analysis requires that the pole tip
�eld be small enough that the permeability is not driven to saturation.
Beyond saturation, the di�erential response of the material to any further
increase in coil current, is that of vacuum; additional magnetic 
ux ceases
to be con�ned by the magnet material, and the on-axis gradient increases
less rapidly with coil current. Moreover the m = 2 symmetry is no longer
enforced by the pole-tip geometry and aberrations appear. For iron this
implies a maximum �eld of 2 T, and for quadrupoles, a maximum pole-
tip �eld of 1 T. These numbers are important constraints on our ability to
con�ne beams. In practice the \strength" of the lattice is the ultimate limit
on tolerable single-bunch charge, due to the e�ect of wake�elds. Further
reading on \iron-dominated" magnets may be found in [45].

3.5. MOTION IN A PLANE

To formulate linac optics it would be simplest, and nearly correct to con-
sider only quadrupoles. However, an o�set quad introduces a dipole com-
ponent. In addition, dipoles are present in the form of correctors , used to
compensate o�set quads and to steer the beam. Dipoles are also useful
in that they can be employed for energy analysis and longitudinal bunch
compression. For these reasons it is useful to formulate a description of the
motion incorporating dipoles, and not just quadrupoles. Higher multipoles,
particularly sextupoles, are also handy; however, they may be treated as a
higher-order correction to the motion governed by dipoles and quads. We
assume bend magnets are separated from accelerating structures, so that
we may take the electromagnetic �elds to be zero in the following analysis.

We de�ne a reference orbit in the machine corresponding to the motion
of a particular particle, with position ~r0, velocity ~v0 and momentum ~p0,
varying in time. We suppose this motion lies in a plane, and designate by
ŷ the unit vector normal to the plane. We denote the local tangent to the
orbit ŝ = ~v0=j~v0j, and we de�ne x̂ = ŷ � ŝ. These unit vectors form the
basis for a local right-handed coordinate system. We may parameterize the
orbit with variable s such that ds=dt = j~v0j; s is arc-length traversed by the
reference particle. Geometry dictates that there is a quantity �, such that

dŝ

ds
= ��x̂; dx̂

ds
= �ŝ;

dŷ

ds
= 0:

� is the local curvature of the orbit. We may view a length ds of the reference
trajectory as a section of circular arc with radius � = 1=�. Consulting the
Lorentz force law,

d~p0

dt
= j~v0j

d~p0

ds
= j~v0j

d

ds
j~p0j v̂0 = j~v0j j~p0j (��x̂) = �e~v0 � ~B (~r0) ;
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x̂
ŷ

reference orbit

ŝ

ρ

Figure 41. We describe particle motion relative to a reference orbit with local curvature
�.

we see that the assumption of motion in a plane requires Bx = 0 on the
reference orbit. The curvature is determined by By,

� =
1

�
=
�eBy (~r0)

j~p0j
: (83)

In practical units, 3.34p0(GeV/c)= B(T)�(m).

Having determined the reference orbit, we may locate orbits of nearby
particles relative to it, parameterizing their motion by s as well. We consider
one such particle, �nding it at local coordinates ~r? = xx̂+yŷ, as depicted in
Fig. 41. We describe this particle's motion to linear order in deviations from
the reference orbit. Taking into account the rotation of the horizontal axis
due to curvature, we express the rate of change of position with reference
arc-length s as

d~r

ds
= x0x̂+ y0ŷ + (1 + �x) ŝ:

Thus the rate at which length is traversed by the particle is

dS

ds
=

q
(1 + �x)2 + x02 + y02 � (1 + �x) :

This states that at linear order the particle orbit is tangent to the reference
trajectory, and has the appearance of a concentric circular arc, with bending
radius �1 = �+ x.

The Lorentz force law then takes the form

d

ds
p1
dx

ds
� p1

�1
+ e

�
By � y0Bs

�
;

d

ds
p1
dy

ds
� �e

�
Bx � x0Bs

�
;
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x̂
ŷ

ŝ
ρ

Figure 42. Two circles in a plane intersecting twice. One orbit is \focused" about the
other.

and we permit a momentum deviation p1 = p0 (1 + �).

With the assumption of motion in a plane , we have set a1 = 0, in
the notation of Eq. (82). We will make the additional assumption that
am = 0 for all m, considering such skew terms to be small corrections to
paraxial motion about the design orbit. This amounts to the assumption
of mid-plane symmetry , ' (x; y; s) = �' (x;�y; s). In this case, on the ref-
erence trajectory, @By=@y = Bs = @Bx=@x = 0. Since @Bx=@y = @By=@x,
from Ampere's Law, the local magnetic �eld is characterized by just two
quantities, the dipole component By and the quadrupole gradient @By=@x
evaluated on the reference orbit. Paraxial �elds are then

By (~r0 + ~r?) � By (~r0) +
@By

@x
x; Bx (~r0 + ~r?) �

@By

@x
y

The equations of motion reduce to

x00 + (1� n) �2x = ��; (84)

y00 + n�2y = 0; (85)

where the �eld-index

n = � 1

�By

@By

@x
;

is evaluated on the reference orbit.

The result for zero gradient, n = 0, may be understood with reference
to Fig. 42, corresponding to constant curvature, i.e., motion in a uniform
magnetic �eld. Where two circles are displaced from each other, one will
appear, to be \focused" about the other. If the radii (momenta) are dif-
ferent, there is in addition a constant o�set. Meanwhile, there is no way
for particles to distinguish the reference plane from another displaced in y.
Thus y perturbations are not restored to the reference trajectory.

A modest gradient, 0 < n < 1, evidently provides focusing in both
planes. Excursions in y are met with a horizontal �eld de
ecting particles
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toward the axis. Excursions in x see a diminished vertical �eld, but are still
de
ected toward the reference orbit, provided the gradient is not too large.

Less evident is the possibility to con�ne a beam without a dipole �eld,
employing only a quadrupole gradient alternating in sign. This concept
of \alternating-gradient focusing" was �rst recognized (and patented) by
Christo�los in 1950 [46]. Omission of the dipole �eld implies in practice
a reduction in magnetic �eld energy, a smaller magnet, and a more com-
pact, high-energy, \strong-focusing" machine. Historically the development
of these concepts took place in the context of circular machines. For the
linac lattice, we are interested exclusively in alternating gradient focusing.

A general solution for Eq. (84) may be expressed as a superposition of
a particular solution of the inhomogeneous equation, and a solution of the
associated homogeneous equation. Thus we may express

x = x� +D�; y = y� : (86)

The terms x� and y� are referred to as betatron oscillations , since they
were �rst investigated for an accelerator of the same name. The term D

is referred to as dispersion and quanti�es the separation of o�-momentum
rays due to a bend. The betatron oscillations satisfy

d2x�

ds2
+ K̂xx� = 0; (87)

d2y�

ds2
+ K̂yy� = 0; (88)

where the focusing or \K-model" is speci�ed by the reference momentum
and the arrangement of dipoles and quadrupoles,

K̂x = � e

p0

@By

@x
; K̂y =

1

�2
� K̂x: (89)

with � the local radius of curvature. The dispersion satis�es

d2D

ds2
+ K̂xD =

1

�
; (90)

Dispersion may be computed directly by fashioning a Green's function
from two independent solutions of Eq. (87), and convoluting it with the
bending radius. That is to say, after a bend magnet, dispersion behaves
as a betatron oscillation would, given the same initial conditions. Thus an
appreciation of linear optics requires attention to the betatron motion. This
motion is no more involved than what one �nds in a normal quadrupole
lattice, the problem of primary interest to us, in any case, for the linac.
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Figure 43. A quadrupole is a lens.

3.6. LINEAR OPTICS

Let us examine beam motion with normal quads. Consider an electron
travelling down the beam pipe and encountering a quadrupole �eld. The
motion is depicted in Fig. 43. By convention we refer to a quad that
de
ects electrons toward the x-axis as a focusing or \F" quad. Notice then
that an F quad is defocusing for electrons in the y-plane, and focusing for
positrons in the y-plane. Just to the left of the quad the electron horizontal
position is x0, and its angle with respect to the beamline axis is x00. Just
to the right of the quad its position is still x0, since this is a thin quad,
but its angle has changed to x0f . If we know the normalized integrated �eld
strength for this quad, at its present current setting, we may compute the
kick �x0 = �x0=f , where the length f is determined by the integrated �eld
gradient, and the electron momentum,

1

f
= �e

p

+1Z
�1

ds
@By

@x
: (91)

The motion as a whole is mapped through the element according to,

x0f = x00 �
x0

f
; xf = x0

The quantity f is the focal length for this quad, at this momentum. Trans-
port through the quad may be expressed in matrix form as�

x

x0

�
f

= R

�
x

x0

�
0

; (92)

where

R =

�
1 0

�1=f 1

�
Similarly one may describe a drift of length L by the map,

R =

�
1 L

0 1

�
: (93)
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L

1/f1 -1/f2

Figure 44. A quad doublet can provide focusing in both planes.

Such \R-matrices" are handy in that one can concatenate them to deter-
mine the overall e�ect of a series of elements. Moreover one can show that
any such matrix may be decomposed into an equivalent drift-quad-drift,

R =

�
R11 R12

R21 R22

�
=

�
1 q

0 1

��
1 0

�1=f� 1

��
1 p

0 1

�
: (94)

Thus any combination of quads and drifts may be characterized by the lo-
cation of the 1st principal plane forward from the element entrance, p, the
e�ective focal length f�, and the location of the 2nd principal plane, back-
ward from the element exit, q. For example, it is straightforward to show
that the beamline depicted in Fig. 44, consisting of a quad with focal length
f1, followed by a drift of length L, followed by a quad of focal length �f2
may provide positive f�|focusing|in both planes. For this reason such
a \doublet" is a handy building block for more elaborate optical systems.
The simplest linac lattice is just a periodic arrangement of such doublets,
a \FODO" lattice. The principal of such alternating-gradient focusing el-
ements is that the beam envelope may be large in a focusing quad, and
small in a defocusing quad, so that the average radial \pressure" provided
by the magnetic �elds is positive.

In general one is interested to know the beam-behavior throughout the
lattice. This would seem to imply knowledge of the map between any two
points. However, the most general description of transport is simpler than
that. In an arbitrary lattice of quadrupoles and drifts, particle motion sat-
is�es

d

ds


dx

ds
+K (s) x = 0; (95)

where quad locations and settings determine K � 
K̂x, and we suppose
V � c. For a prescribed energy pro�le 
(s) there are two independent
solutions to this homogeneous second order ordinary di�erential equation.
Selecting an initial reference location, s0 on the beamline, we may de�ne a
\cosine-like" solution C(s; s0) with initial conditions C = 1 and C 0 = 0, and
a \sine-like" solution S(s; s0) with initial conditions S = 0 and S0 = 1. In
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terms of these functions, an arbitrary \betatron" orbit may be represented
as x = x(s0)C + x0(s0)S. The R-matrix for transport from s0 to s is then

R(s0 ! s) =

�
C(s; s0) S(s; s0)
C 0(s; s0) S0(s; s0)

�
: (96)

Evidently, the C and S functions provide a complete description of the
transport properties of the lattice. They also determine the Green's func-
tion with which one may incorporate perturbations to Eq. (95), due to
correctors, quad-misalignments, rf kicks as in Eq. (36), and wake�elds as
in Eq. (42).

A complementary approach employs the \machine functions", or \Twiss
parameters". We consider Eq. (95) in the absence of acceleration and look
for a solution of the form

x = <
�
A (s) ej�(s)

�
;

with A and � real functions, to be determined. Plugging this into the equa-
tion of motion we �nd

A00 + K̂A�
�
�0
�2
A = 0; (�0A2)0 = 0;

where the prime denotes the derivative with respect to s. One can check
that these equations are solved by

A (s) = c1

q
� (s); � (s) = c2 +  (s)

for any two constants c1 and c2, provided the functions � and  satisfy

d2

ds2
�1=2 + K̂�1=2 =

1

�3=2
; (97)

 (s) =

sZ
0

ds0
1

� (s0)
: (98)

The most general solution of the equations of motion may then be expressed
as

x = <
�
�
q
� (s)ej (s)

�
;

where the phasor � = c1 exp (jc2) is a constant. This constant may be
expressed, after a bit of algebra as

�ej =
xp
�
(1� j�)� jx0

p
�;
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Figure 45. The Courant-Synder invariant de�nes an ellipse parameterized by �; � and

T .

where we introduce

� = ��0=2: (99)

One can go on to show that tan c2 = ��0 � �0x
0
0=x0, and c

2
1 =W , where

W = j�j2 =
�
�p
�
x+

p
�x0

�2

+
x2

�
= 
Tx

2 + 2�xx0 + �x02; (100)

and we abbreviate


T =
1+ �2

�
: (101)

The quantity W is an invariant of the motion, as noted by Courant and
Snyder. This all implies that the constants c1 and c2 determine the orbit,
and are determined by the initial conditions. The optical functions (or Twiss
parameters) � and � describe on the other hand, the lattice, independent
of a particular particle's initial conditions. The form of the Courant-Synder
invariant indicates that a particle orbit in trace-space may be depicted as
motion on an s-dependent ellipse as seen in Fig. 45. The optical functions
specify the rotation and deformation of such ellipses as a function of s.
Particle motion is speci�ed by the action variable, labelling the particular
ellipse the particle is on, and an angle variable labelling the location of
the particle on the ellipse circumference. One then may picture the beam
as a whole in terms of a collection of concentric ellipses, each ellipse with
particles distributed around its circumference.

Since lattice transport is, we �nd, governed by � and �, we should be
able to express the cosine-like and sine-like functions in terms of them. In
fact,

C (s; 0) =

s
� (s)

� (0)
(cos + � (0) sin ) ; (102)
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S (s; 0) =
q
� (s)� (0) sin ; (103)

as one may check by con�rming that these expressions satisfy the equation
of motion, and the appropriate initial conditions for the C and S functions.
With this we may express the R-matrix as

R (s; 0) =

0
BB@
r

�(s)
�(0)

(cos + �0 sin )
p
� (s) � (0) sin 

(�0��) cos �(1+�0�) sin p
�(s)�(0)

r
�(0)
�(s)

(cos � � sin )

1
CCA : (104)

One can show also that optical functions themselves may be \trans-
ported" according to0

@��

T

1
A
s

=

0
@ C2 �2SC S2

�CC S0C + SC 0 �SS0
C 02 �2S0C 0 S02

1
A
0
@��

T

1
A

0

; (105)

and for that matter, the beam second moments may be mapped using0
@ �2x�xx0
�2x0

1
A
s

=

0
@ C2 2SC S2

CC S0C + SC 0 SS0

C 02 2S0C 0 S02

1
A
0
@�2x�xx0
�2x0

1
A

0

: (106)

While the C and S functions are unique, the � function is not. This
might seem like a mere mathematical curiosity, in fact it is a physics prob-
lem, the problem of matching . For example, in a FODO lattice with quad
separation L, and quad focal length f , alternating in sign, there is a periodic
solution for the beta function with maxima and minima given by,

�� = 2f

 
1� L

2f

1� L
2f

!1=2

: (107)

Phase advance � per period (length 2L) is given by sin(�=2) = L=2f . One
may check this using Eqs. (97) and (98). The existence of this solution,
however, does not imply that the beam will be able to �nd it by itself. To
see this, let us suppose that at s = 0 a beam is incident on our lattice. We
follow the beam through the lattice and de�ne at each point s

�̂ =
�2x
"
; 
̂T =

�2x0

"
; �̂ = ��xx0

"
:

One can check that 
̂T �̂ � �̂2 = 1. One can show that �̂; �̂ are also solu-
tions for the optical functions, by comparing Eqs. (105) and (106). Thus
the beam will also de�ne a choice of �-function, one that depends on the
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optics prior to injection. This suggests two questions. What initial condi-
tions should be employed to insure that �̂(s) matches the intended �(s),
the design ellipse? And, is there a particular �(s) that is better than oth-
ers? We would like to design a linac lattice and match into it. The problem
is not unlike that of an old television set, also a kind of accelerator. If
the picture is fuzzy, one will need to turn some knobs (\matching"), and
such tuning is predicated on the assumption that the machine has been
designed to provide for a good picture within the range of knob settings
(\lattice design"). First we describe matching.

3.7. MATCHING

The beam optical functions �̂; �̂ generate ellipses labelled by the invariant,

Ŵ = 
̂Tx
2 + 2�̂xx0 + �̂x02:

This is a single-particle quantity, one that depends, through �̂ and �̂, on
the initial conditions at injection into the linac, and the linac lattice. After
averaging over the beam, we �nd thatD

Ŵ
E
= 
̂T�

2
x + 2�̂�xx0 + �̂�2x0 = 2":

Thus the beam-based Courant-Snyder invariant is determined by the emit-
tance. Let us compare this result to the lattice Courant-Synder invariant,
averaged over the beam. With some algebra we see that

hW i = 
T�
2
x + 2��xx0 + ��2x0

= 
T

�
"�̂
�
+ 2� (�"�) + � ("
T ) = BM

D
Ŵ
E

where

BM =
hW iD
Ŵ
E =

hW i
2"

=
1

2

�
1 + �2

� �̂
�
+
1

2

�
1 + �̂2

� �
�̂
� ��̂; (108)

is the \beam magni�cation" factor. Minimum BM = 1 corresponds to �̂ =
�, �̂ = �, and a matched beam.

In practice the problem of matching, of arranging BM = 1, is tied to the
problem of emittance inference. Operationally it falls under the heading of
\tune-up", preparation of the machine for experiment. There are several
techniques employed for emittance inference, and the most common man-
age to rotate the beam in phase-space for display in coordinate space as
seen in Fig. 46. This rotation may be achieved with a drift, by chang-
ing a quadrupole setting (\quad-scan"), or by some combination of these.
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Figure 46. Rotation in phase-space and measurement of beam-size permit inference of
emittance.

Measurement of size at three non-degenerate points in a drift is enough
to determine " in principle, assuming no x-y correlations. One can see an
example of this technique in [47]. Measurement of size at additional points,
and in x and y, should be anticipated as it permits an assessment of errors.

The quad-scan technique is illustrated in Fig. 47. The set-up consists
of a thin focusing quad with focal length 1=k, a drift of length L and a
pro�le monitor (screen or wire-scanner). We are able to scan the quad
strength, and measure beam-size at each quad setting, and we ask what
this may tell us about emittance, and the beam optical functions. While
the paraphernalia of linear optics may be brought to bear on this problem,
let us pursue the more elementary approach employed to derive Eq. (74).
In terms of beam-moments just after the quad (at s = 0+), the beam-size
at the screen may be expressed as

�2x (k; L) = �2x
�
0+
�
+ 2�xx0

�
0+
�
L+ �2x0

�
0+
�
L2:

Beam moments just after the quad may be related to those just before the
quad (s = 0�) according to

�2x
�
0+
�
= �2x

�
0�
�

�xx0
�
0+
�
= �xx0

�
0�
�
� k�2x

�
0�
�

�2x0
�
0+
�
= �2x0

�
0�
�
� 2k�xx0

�
0�
�
+ k2�2x

�
0�
�

Putting these results together one can see then that beam-size at the screen
is a quadratic function of quad-strength, with a minimum. Without loss of
generality, we may refer quad-strength to the value for minimum spot, so
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L

k

Figure 47. Emittance can be measured, and a beam matched, with the help of a quad-
-scan.

that k = 0 refers to this minimum. This is equivalent to the assumption
�xx0 (0

�) = ��2x (0�) =L. After some algebra one can show that

�2x (k; L) = L2

(
"2

�2x (0
�)

+ k2�2x
�
0�
�)

= �2x (0; L) +
k2L4"2

�2x (0; L)
:

Thus the minimum size in the quad-scan, combined with the curvature
of the parabola permit one to infer the emittance. With quad set for the
minimum size (k = 0), one can determine

�̂ =
�2x (0; L)

"
; �̂ = � �̂

L
;

at the screen location.
We have mentioned a couple of techniques for emittance measurement

and matching; however, it is not clear yet why matching might be desirable.
For example, for given values for the beam �̂ and �̂ at injection, one could
simply de�ne the lattice � and � such that the beam is \matched". Thus the
implication of \matching" is really that some choices for � and � are better
than others. What are \good" choices of optical functions to be matched
to? How to design a linac lattice?

3.8. CHROMATICITY

At the crudest level a lattice should insure a beam-size small enough to
avoid current-loss. The more subtle issue in lattice design may be found
in the circumstance that beams are not mono-energetic, they include a
distribution in momenta, and particles of di�erent momentum are de
ected
by di�erent angles in a magnetic �eld. For example, a beam with zero
emittance and zero momentum spread may be focused to a point in x by
a lattice consisting of a quadrupole and a drift. With momentum spread
the spot is blurred. In view of our discussion of the optics of a drift, in Sec.
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3.2, we may infer that the beam has developed an rms emittance due to
the lattice. The density in phase-space is unchanged, but in projection it is
diluted. A \good" lattice should minimize projected emittance despite the
momentum-dependence of the optics, \chromaticity".

Recalling � = (p � p0)=p0, the fractional deviation of a particle mo-
mentum p from the design momentum p0, the chromatic properties of the
lattice may be quanti�ed in terms of �� = @�=@�. Associated with this
\beta-function chromaticity" one has also \phase-advance chromaticity"
corresponding to  � = @ =@�. Due to  � particles with di�erent momenta
advance through betatron oscillations at a di�erent rate. Due to the beam
collective behavior (wake�elds), some amount of phase-advance chromatic-
ity is quite helpful as it inhibits the beam from acting in a coherent manner
in driving destructive microwave modes of the linac. The problem for lat-
tice design is to maintain a narrowly bounded �-function for o�-momentum
particles, i.e., small ��.

Thus to control chromatic emittance growth one prefers that the �-
function be well-behaved for momenta represented in the beam distribution.
Taking the FODO lattice as an example, there is a distinguished choice for
the �-function, namely the periodic solution. For the periodic lattice, there
is a nearby solution for the �-function for o�-momentum particles that is
also periodic, and the net dependence of � on momentum at any point
is not more than is accumulated over a single period. In the absence of a
distinguished symmetry, lattice designers typically proceed by attempting
to maintain quasi-periodic machine functions. Beyond the linac, to further
diminish chromatic e�ects, one may employ chromatic correction derived
from the interaction of dispersion with sextupole �elds [49].

3.9. LATTICE DIAGNOSTICS

Having implemented an ingenious lattice design, and carefully matched
to it, the next task in commissioning a new lattice is to �gure out why
the beam won't go through the pipe. One needs methods of diagnosing
errors in the lattice. An excellent, broad review of the subject of lattice
and other diagnostics can be found in a recent article by Zimmermann
[48]. Uncertainties in this problem are of two types: model errors and BPM
errors, and we discuss each in turn.

The description thus far, of the magnet system and its e�ect on the
beam, has considered the ideal case, where magnets perform as designed.
In fact a \lattice" in practice means a lattice with errors, and they can be
sporadic, recurrent and time-consuming to identify as such, and locate. The
most common errors are (a) electrical - backwards wiring of a magnet, (b)
mechanical - positioning of a magnet (rotated, tilted), (c) sporadic opera-
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tional failure - turn-to-turn short in a magnet coil. Item (a) is a particular
concern during turn-on after work has been done on the beamline. Item
(b) is always present to some degree. Item (c) can occur at any time. As
a matter of routine, one may expect to account for hysteresis, the circum-
stance that a given coil current setting does not correspond uniquely to
a particular magnetic 
ux. Rather the 
ux depends on the history of the
magnet since it was last measured. In practice, one may adopt a procedure
for \standardizing" magnets by cycling of the coil currents.

Typically magnets are carefully designed to reduce spurious multipole
components, but what components are present, measured and tabulated we
needn't consider an error, as they may be incorporated in our model, after
generalizing the linear map R, to include higher-order terms, the \T" and
\U" coe�cients [49].

Mechanical errors are always present to some degree and it is up to
the designer to determine, from their analysis of beam dynamics, to what
precision mechanical surveying and alignment are required. In practice,
beam-based orbit analysis is more accurate in locating quad and BPM cen-
troids than mechanical alignment is capable of achieving or correcting [50].
As to sporadic operational failures, these can be time-consuming in a large
accelerator complex. They occur because coil insulation is not impervious
to radiation, because the earth moves, because electrical circuits do not
function properly when wet, etc. To locate the problem one must examine
the beam dynamics, compare observed orbits to those predicted from the
model, and by means of sleuth-work narrow down the \bad" region in the
lattice to one or a few elements. At that point one can stop the beam, en-
ter the vault and employ a compass to look for wrong-polarity or visually
inspect for misplaced magnetic materials. Failing this one may examine the
voltage drop across the coils to locate the short, with due safety precau-
tions. If all else fails, one may disassemble the questionable magnets one
by one. Accurate lattice diagnosis from \upstairs" is appreciated.

To identify \good" and \bad" regions in a lattice, one analyzes orbit
data, looking for discrepancies. To illustrate in the simplest fashion, suppose
one observes a betatron oscillation on a collection of beam position monitors
numbered n = 1; 2; :::; N . Accepting a model for the lattice, embodied in
cosine-like and sine-like functions, one chooses launch variables (x0; x

0
0) as

�t parameters in such a way as to minimize the error in the �t

�2 =
1

N

NX
n=1

�
xBPM (n)� x0C (sn)� x00S (sn)

	2
One can show that this is accomplished with the choice,�

x0
x00

�
=

1

C2S2 � (SC)2

�
S2 �SC
�SC C2

��
Cx

Sx

�
;
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where the vertical bar represents an average over the BPM positions. In
practice, pursuing such a procedure, one quickly develops an interest in
BPM errors. These include scale, o�set, linearity, rotation, cables misla-
beled, etc. Thus for model-checking one must go to greater lengths. The
weighting may be improved by incorporating known BPM errors and the
expected � function. Averaging may be employed to beat down BPM er-
rors. Errors in energy pro�le lead to errors in inferred quad focal length;
thus � is an important variable and one may want to include dispersion in
the orbit-�t. For that matter, to allow for x-y coupling a 5x5 R-matrix may
be in order, with �tting for (x0; x

0
0; y0; y

0
0; �). Wake�elds too a�ect the beam

orbit, in a current-dependent fashion, with current varying from pulse to
pulse. A single bunch passing through a misaligned structure will appear
to kick itself. Multiple bunches talk to each other thanks to undamped
dipole modes. Each structure provides a kick due to coupler asymmetry.
The energy distribution is not merely a function of all klystron phases and
amplitudes, but is coupled to bunch-length through the longitudinal wake-
�eld. As the number of variables proliferates, and one realizes that most of
them are hidden, the dynamical relations become obscure and one may call
on singular-value decomposition to analyze large collections of variables at
once. This e�ort is aided by new and better software and new beamline
instruments.

Having produced our high-current, low energy-spread, possibly low-
emittance and rock-steady beam at high-energy let us consider how to
arrange collisions. There are two kinds of schemes, �xed-target and col-
lider. We consider each in turn, as they are implemented in the Two-Mile
Accelerator complex seen in Fig. 48.

3.10. FIXED-TARGET

A generic �xed-target experiment is illustrated in Fig. 49, indicating a
polarized electron gun, a diminutive linac, a signi�cant-looking target, and
a calorimeter. Not shown are magnets and collimation arranged to perform
energy analysis and to remove backgrounds prior to the calorimeter. The
energy available for collisions in the center-of-momentum (c.o.m) frame isp
s, with

s = (E1 +E2)
2 � c2 (~p1 + ~p2)

2 ; (109)

where E1 is the beam energy, E2 is the energy of the target particle and
~pi are the corresponding initial momenta. For a stationary target particle
and a relativistic beam, s � 2E1E2, and c.o.m. energy varies as the square
root of the incident beam energy.

To determine the event-rate we suppose the target is larger than the
beam and uniform in the region of the beam, presenting a density nt of
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Figure 48. Layout of the Two-Mile Accelerator complex, indicating �xed-target and
colliding beam con�gurations.

scattering centers, distributed over a length l. If there are Nb beam electrons
incident per pulse, there are Nbntl� events or counts per pulse for a process
characterized by cross-section � for scattering into the detector. With the
experiment run at machine repetition frequency frep we may express the
rate as L�, where the luminosity is

L = (Nbfrep) (ntl) ; (110)

a product of two factors, one from the accelerator, and one from the target.
The total number of events over the course of the run is then N = TL�,
where T is the time for which both the accelerator, the detector and all
sub-systems are \up" and operating together. Luminosity, c.o.m. energy,
and polarization circumscribe the capability of an accelerator for �xed-
target experimentation. Beamline instrumentation may also be critical. We
consider an example.

The E-158 experiment [13] proposes to scatter a polarized electron beam
on the atomic electrons of an unpolarized liquid hydrogen target and to
measure the asymmetry, ALR = (�R � �L)=(�R + �L), between the cross-
sections for Moller scattering of right and left-handed electrons. The moti-
vation for this is that the cross-section may be calculated precisely in the
Standard Model, and thus a precision measurement may be employed to
accurately discern deviations from the Standard Model. With the scheme
depicted in Fig. 49, the left-right asymmetry may be inferred from the dif-
ference over many pulses between calorimeter readouts for a left-circularly
polarized beam and a right-circularly polarized beam. One merely needs to
count, precisely.

The setup consists of a Two-Mile linac, a transport line to the target
(the \A-Line"), a liquid hydrogen target 1.5 m in length, and 300 in diameter,
magnets, and a calorimeter. With each pulse, a 5-kJ \blowtorch" of ejecta
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Figure 49. Scheme of a �xed-target experiment.

and disrupted beam will emerge from the target, and pass through a series
of magnets that serve to bring scattered electrons with momenta from 12-24
GeV/c to the calorimeter, 60 m downstream. Most of the 500-kW average
beam power will pass through the center hole of the annulus formed by
the detector, and will dissipate itself in a beam dump. For this experiment
E2 �0.511 MeV, so that

p
s �

p
E1, in units of MeV, and for E1 � 40� 50

GeV,
p
s �200 MeV. Luminosity is estimated from the target length l �

1:5 m, and the number density of electrons in liquid hydrogen, nt � 4 �
1022 cm�3, so that ntl � 6 � 1024 cm�2. At 120 Hz, with Nb � 1 � 1011

electrons per pulse, L � 8� 1037 cm�2s�1. To appreciate this number one
must consult the statistical requirements for the experiment. How many
Moller-scattered electrons are needed for an interesting experiment?

The theory of electroweak interactions predicts that ALR � 2 � 10�7,
and the goal of the experiment is to test this prediction at the 10%-level,
requiring an uncertainty �ALR � 1� 10�8, or less. For a sample of size N ,
one expects statistical 
uctuations with an rms 1=N1=2. Thus one should
expect to make use of a sample at least as large as N � 1= (� ALR)

2 �
1 � 1016. Meanwhile, the Moller di�erential cross-section integrated over
the angular acceptance of the detector gives a cross-section � � 14�barn
for a 50 GeV beam, where 1 barn=10�24cm2. The total number of Moller-
scattered electrons expected in up-time T � 1 � 107 s (4 months) is then
N = TL� � 1016, with Nb � 1011. A more detailed accounting of the
statistics, and allowance for 50% down-time, puts the requirement on the
pulse intensity at Nb � 4� 6� 1011.

Notice that none of these considerations consulted emittance. The target
is big, and the beam may as well be big too. The high-charge requirement
does strain the linac energy budget, and requires creative techniques for
beam-loading compensation, to maintain a narrow energy spectrum. Per-
haps most challenging though is the high-precision required. If we imagine
repeating this experiment many times, our con�dence in results inferred on
any one experiment would depend on the scatter in ALR. If one requires
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this scatter to be as low as 10% of ALR, then with 109 machine pulses,
one must bound single-pulse 
uctuations at the level of 10�4 or so. So, to
this level of precision, one must be able to bound or identify and tag any
non-electroweak e�ects that could result in 
uctuations in the combined
probability of Moller electron production and transmission to the detector.
Spurious e�ects could arise in principle, for example, if the laser on the gun
jitters transversely in a manner correlated with laser polarization. In this
case, the beam on the target might jitter, and so too would the scattered
electrons. For this reason the BPM cavity seen in Fig. 12 is essential to the
experiment.

From this example we see that for a precision �xed-target experiment,
beamline instrumentation is crucial. Some practical limits are set by achiev-
able no-load voltage with beam-loading compensation.

3.11. COLLIDING-BEAMS

To reach the highest energies it is desirable to collide a beam with another
beam. For beams of equal energy E, the c.o.m. energy is then simply

p
s =

2E. The drawback in this concept is that luminosity is much lower than in
a �xed target experiment. The physics goals for the Two-Mile Accelerator
operated in this \SLC/SLD" mode are described in [51].

To determine luminosity, consider two beams with number densities
n1; n2, interacting with cross-section � to produce events at instantaneous
rate per unit volume dn=dt = 2�cn1n2. We model each bunch as a tri-
Gaussian,

nk =
Nk

(2�)3=2 �xk�yk�zk
exp

(
�(x� xk)

2

2�2xk
� (y � yk)

2

2�2yk
� (s� Vkt)

2

2�2z

)
;

with k = 1; 2 and V1 = c; V2 = �c. We suppose bunches collide at a rate
frep and arrive at the average rate at which events are produced

_N = 2frep�c

Z
d3~r dt n1n2 = L�:

After some integrations, luminosity may be expressed as

L =
N1N2frep

2��x�y
exp

(
�(x1 � x2)

2

2�2
x

� (y1 � y2)
2

2�2
y

)
; (111)

where
�2
x = �2x1 + �2x2; �2

y = �2y1 + �2y2: (112)

For illustration, values typical of the last SLC run are seen in Table 5
[52]. The rms beam sizes, omitting chromatic contributions, correspond to
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TABLE 5. IP parameters SLC/SLD'97 [52].

parameter e-x e-y e+x e+y

"n (10�5 m-rad) 5.3 1.3 5.1 0.9

�� (mm) 2.9 1.7 2.2 1.4

�� (�rad) 439 269 489 249
p
"�� (�m) 1.27 0.46 1.08 0.35

�x � 1:67�m,�y � 0:58�m, or �x��y � 0:97�m2. For example, at 120 Hz,
with N � 3� 1010, this gives L � 1:1� 1030cm�2s�1. On the Z-resonance,
with a cross-section of 30 nb, this comes to 200 Z's per hour.

Equation (111) represents just the �rst approximation to the luminosity.
In fact, chromatic e�ects are important and chromatic correction in the �nal
focus is essential [49]. In addition, when such �ne, intense beams collide
it is important to account for the e�ect of beam-�elds. Two oppositely-
charged counter-propagating beams pinch each other, and this may result
in luminosity enhancement, if they have enough time to constrict. Thus the
bunch length should be long as long as is consistent with the depth of �eld,
about 1 mm for the parameters of Table 5. This pinch e�ect accounted for
a factor of two in luminosity during the last run. As particle trajectories
are de
ected by the oncoming beam, in the course of pinching, they will
radiate synchrotron photons, or \beamstrahlung", and this is useful as a
diagnostic [53]. Luminosity is also a�ected by slow drifts in machine optical
parameters, and pulse-to-pulse orbit jitter, due for example to wake�eld
ampli�cation of \noise" at the machine front-end. One may appreciate the
tolerances on such e�ects based on the optics of a drift. Waist motion in
s at the level of 1/3 of �� provides a 10% reduction in luminosity. Typical
orbit jitter is about 1/3 of the rms beam size, corresponding to a 20%
reduction in luminosity. One can intuit that high luminosity requires a large
constellation of systems to be functioning as one. Integrated luminosity
requires exceptional attention to maintenance, and choreography by a team
of expert operators, aided by beamline instruments, software and feedback
[54].
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4. Epilogue

We have covered a fair bit here, but there's more. A thorough discussion
of the microwave aspects of colliders may be found in [55]. The subject of
microwave linacs is also now available in textbooks [56, 57]. Beam optics is
introduced in numerous texts [58, 59]. Features of collective beam dynamics
are introduced in [7]. More specialized topics are easily located in the curric-
ula of the US Particle Accelerator School, the CERN Schools, and the Joint
Accelerator School. In between schools, there are many occasions to hear of
the latest exploits, at the US Particle Accelerator Conference (PAC), the
European PAC, the Asian PAC, and numerous other conferences. If one
should tire of schools and conferences, there are many linacs in operation
around the world where exciting work is taking place, for collider research,
and for �xed-target experiments. And there is one linear collider.
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