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Electromagnetic Wave Equations

To obtain the electromagnetic wave equation in a vacuum using the modern method, we begin with the modern 'Heaviside'
form of Maxwell's equations. In a vacuum and charge free space, these equations are:

V-E =10
0B

VxE = _W

V-B =10

JE
VxB = MOEOW

Taking the curl of the curl equations gives:

9, O*E

VxVxE = —EVXB——MOCOW
9 B
VxVxB = [.tgcﬁogv x E = —H05087

By using the vector identity
2
Vx(VxV)=V(V-V)-V°V
where V is any vector function of space, it turns into the wave equations:

O*E

aT_COQ'VQE =0
2
da—t?— 0’ - VB = 0

where cp=—— = 2.99792458 x 10° m/s is the speed of light in free space.
VA0 =0 g



J°E. 1 a( aE,.) 1 9°E.
5+ — F—=|—— 5 =0
dz” roor\ or c- odt”

The solution 1s usually given in the form of a product of functions of one variable:
E. (zjt) = Z(z) R(r) T(2)

Knowing E ., one can compute the other electromagnetic field components: E, with the
divergence theorem

divE=L2 (vE )+ %E=
ror az
giving
1 ., 0E.
E(r)=—-— ~r'dr’,
(=1 e,
and By via
rot B=iﬂa—E :
c- ot
giving
dBy _ 1 JE,
dz ¢t It



E
Standing wave:  Z(z)T(t) = E, cos(k,z)cos(wt) = 2" [cos(wt—k z) + cos(wt+kz)]

accelerating wave opposite wave
: 27c
Cyclic frequency of RF field w=—== 27 fror
2 2m
Wave k.= L ﬁ

number
: : E (z, r,t)=Ecos(wt -k z)R(r)
Equivalent traveling

wave

Ce : : : 10d OJR , O
Substitution into wave equation gives for radial field 5 (57— R(k; =—5)=0
component:
o’ o’ k?
k? - 5= kX (1— kjc2)= k: (1_[32):7
. . kzr
Solution for radial field component: R(r)=1,(—)

where / (x) is the modified Bessel function



Finally, equivalent traveling wave is

&=Ebé§nmam-@a (5.1)

a:mﬂﬁﬁgum-mx (5.2)

39=-Lﬂthé$5gnam«kg) (5.3)
C

Effective traveling wave can be represented in Hamiltonian by a potential
function

%:i@ﬁ%nmmp@a (5.4)

Particle, which velocity coincides with the velocity of the accelerating wave,
is called synchronous particle. Dynamics of the synchronous particle is
described by the integration of equation for synchronous particle momentum,
P, and position, z;:

dPs _

qE cos @y
dt
dZs — Py
at mys’

where @y = ot - k;z5 1s the synchronous phase.



Hamiltonian of particle motion in RF field
Particle motion is governed by the single-particle Hamiltonian (Kapchinsky, “Theory of
resonance linear accelerators”, Harwood, 1985):

2 2 )
=px+py R
2my 2my

U,
2

Y

H +qUext+q

3

Uei = £ [Io(k}zlr) sin(Qs- kzC) - sin@s+ k;{ coss] + G; "22

<

Pys Dy transverse momentum
p: =P, - Pg longitudinal momentum deviation from synchronous particle
{=2z-2z deviation from synchronous particle
0} synchronous phase
2
k,=— w a ve numbe r
BA
U p o tential of external field

U, space c harge potential of the beam

a mplitude of accelerating wave
g r a d ient of the focusing field



Hamiltonian of particle motion in RF field: Derivation

Consider Hamiltonian in a focusing channel with RF field:

K= c«/m 2c24 (Px—qAx)2+ (Py- qu)2+ (P,- qAZ)2 +qU s+ qU o+ qUp, (5.9)

where U, 1s the potential of electrostatic focusing lenses, and U, 1s the scalar potential of field

of the beam. For the further analysis, let us introduce new variables

pz=P2'Ps> C:Z_ZSD

(5.10)

which define deviation from synchronous particle. Generating function of the transformation is

F3(C, Pz, 1) = - (§+ z5)(P; - Py),

which can be easily verified by differentiation:

_ 0F3 __0F;3
Pz = - ’ l=- .
¢ dP;
New Hamiltonian is given by
— e m2c? 2 2 2 oF3
T=cNm?c*+ (Py-qAy) + (Py-qAy) +(Ps+ pr-qA;) + qUa + qUe + qUp + —=
ot -

(5.11)

(5.12)

(5.13)
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Consider separately expression for square root in Hamiltonian:

s (Px» Py» ) = A m>cH+ pE+ pl+Pg+ pp) (5.14)

where for simplification, the components of canonical momentum are substituted by that
of mechanical momentum, p, = Py -q Ay, py = Py -q Ay, and an additional variable is

pn =pz-qA;. Typically, momentum of the synchronous particle is much larger than
transverse particle momentum and longitudinal momentum spread, Ps >> py, py, pp. Let
us expand expression for square root in the vicinity of s(p,, p,, p,) up to the order of pZ,
2 2.
py b pn
as as as

2 2
s=Nm?2c*+ P2+ —— Px+ py+ Pyt 19%s %+ 197 )%+
opx apy apn 2 9pi 2 opg

925 92 1 9%

pypn, (5.15)
2 dpydpny

where all derivatives are taken at p.= 0, p, = 0, p,= 0. Calculations of expansion gives:

p} Py Pi
C\/m2c2+px+py+(Ps+pn)—mc Y + pi + =2 4 +

2my  2my MY opmy3o (5.16)

where reduced energy is

Y = 1+ (P—S : (5.17)9
mc



Time derivative of the generating function, Eq. (5.11), is:

%3=@V4&+4a+gm. (5.18)
4

where dot means derivative over time. Taking into account that the particle velocity is z; = P_S,

my
the following expressions in time derivative, Eq. (5.11), are:
: Py : p?
ZSPZ=W(PS+pZ)7 ZSPS:I’)’I_Y’ (519)
and the time derivative of the generating function is therefore
3 _ep  PsPzy ; p (5.20)
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Substitution of expansions, Egs. (5.16), (5.20), into Eq. (5.13) gives for the new Hamiltonian,
H=T-m*cy:

gAY (PygAy  (p.-gAL) :
H=(Px qAy) Ly qAy) N (Pz-qA7) +qU,+ qU,+ qUy, - qPsAz + Py(zs+0). (5.21)
2my 2my 2my3 my

The term P,z, can be excluded, because it does not depend on canonical variables and does
not contribute to equations of particle motion. The acceleration of synchronous particle

according to Eq. (5.7) is P, = gE cosq,. The term P can be combined with the accelerating
potential:

qU,+ Pl =q kE [10(’%) sin (@s - k-8) + k-Leosoy]. (5.22)

Z

Finally, the new Hamiltonian is

2
o Pr-g A By -a A (g A)
2my 2my 2my3

+qE [10(%) 5in (@5 - kO) + k.Leosogl + qU, + qUp - %. (5.23)

zZ
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Consider the following terms in the Hamiltonian:

2
(Pz-q A7) _qPsA; _ p: _qPsA; (1+-P__ qAz ). (5.24)
2my3 my  omy3 ™MV Psy® 2Pgy?

As soon as p, << P, gA. << P,, the second and the third terms in parentheses in Eq. (5.24) can
be omitted:

CIPS714Z(1 + Pz 5" q AZ2) ~ qPSAZ = qﬁCAZ (525)
my Pgy® 2Pgy my

The vector - potential 1S A; = A; nagn + ﬁ Up. Therefore, in the adopted assumptions, the
c

Hamiltonian becomes:

2
Py-q A, By a4y p?

H= +
2my 2my 2my3
E kot . Up
+q k— [10(7)51” (@s- k:8) +kzCcosg] +q(U, - PeA, magn) +4 — (5.26)
z Y

12



Consider separately structures with quadrupole focusing and with longitudinal magnetic focusing.
In the absence of longitudinal magnetic field, transverse components of the vector potential ar ¢
A= 0, A, = 0, therefore, the transverse components of canonical momentum coincide with that of

mechanical momentum: p, = Py, p, = P,. The term U, — 3cA. maen 1s the focusing potential of the

structure. Averaged potential of quadrupole structure is given by

2 2
Ul - BeAz magn = Gi &+ 7). (5.27)

2

where G, is the gradient of averaged focusi ng potential. The Hamiltonian for particle motion in

RF field with quadrupole focusing is

2 2 2
H=PE P 2 g ke 0 + keleosps] + G YD) 4 g

Ub  (5.28)
In presence of longitudinal magnetic field, the Hamiltonian, Eq. (5.26), is
P —gA)? (P, —qA) 2 E  kr_. U
H:( . —94.) +( > —94,) T 3 + 4 [1,( Zr)sm((ps—kzé’)+kzgcosgos]+q{—‘2’ (5.29)
2my 2my 2my”  k, 14 4
where transverse components of vector-potential are given by
Y
A, yugn =B 5 (5.30)
X
Ay iagn :BE (5.31)
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Transformation to Larmor system is given by
X =xcosO—ysin0,

y=xsinf+ ycos@,

—~

P =P, cosf— P, sin6,

—~

P, =P cos+ P, sinf .

9B

where angle 0(z) = Ja)L (z)dz and Larmor frequency @, =
2my

Z()

Hamiltonian of particle motion in magnetic field :

ﬁ2+ﬁ2 2 E k 2 U
H=""" P 5 + 4 [ ( Zr)sin(gos—I<Z§)+/’<ZCCOS(,DS]+m}/a)ir—ﬂ—q—;’
2my  2my” k. Y 2 14
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Example of beam dynamics in accelerating structure. (Courtesy of Larry Rybarcyk.)
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Longitudinal oscillations in RF field with @s = - 90°. (Courtesy of Larry Ryb%cyk.)



Paraxial Approximation of Hamiltonian:
Transverse Particle Motion in RF Field

Hamiltonian of particle motion in RF field:

2 + 2 2 E k 5
p=P P e 4B KT Gk Otk Ceos e my@2 1 qe
2my  2my’  k, y 7
Near-axis approximation: 7 kr. 1 k.r

2 2

px+py 2 U
2 —kC)+my Q. —+

2my 4k( )’ sin(p, — k.§)+my 5 Cly

Hamiltonian of transverse motion: H, =

qE k1., _ gEnr’
4k, y " 2PBr°A

17



Transverse Oscillation Frequency in RF Field

Expansion near synchronous particle: sin(p, —k.C) =sing, —k {cosp, =sing (1-yctgy,)
Phase deviation from synchronous particle y=k&

Hamiltonian of near-axis, near synchronous particle motion, with U, = 0:

P+ pyz qEm

2

H = + sin@_(1—yct r’+m ol
t 2m’y 2,3’)/22, gDS( l// ggDS) ,J/ r 2
2w qE \sinq)
. . . . . Q2 — s
Frequency of longitudinal oscillations: A m By
iltoni p.+p,  my r’
Hamiltonian becomes: H =" L 1-wetgp )r’ + my QP —
2my 4 2
2 + 2 Qz
H =00 Mg 2 yetee)]
2my 2 2
oL : Q°
Transverse oscillation frequency of synchronous particle Q =Q>——

in presence of RF field:

Phase advance of transverse oscillations of u o= |y _le(L)z
synchronous particle in presence of RF field: ® ° 2 Be 18




Parametric Resonance in RF Field

2 2 2
Hamiltonian becomes: H = P: TPy + my r*(Q° +Q—wctg(p )
t 2m’}/ rs 2 N

Longitudinal particle oscillations with

amplitude @ and frequency Q : Yy =-Csin(Qu+y,)

2 2 2
Finally, Hamiltonian is: H = P:* P, Ly r Q2 —Q—ct Osin(Qr + v )]
t rs gq)s l//0
2my 2 2
: . d*x Q?
Transversal equation of motion: W + x[Qfs — 70tgq0S® sin(Qf +y )]=0
Transverse particle oscillation frequency in Q° .
RF field: P 9 y Q o= \/Qfs — 70tg(pﬂ>sm(£2t +v,)
Parametric resonance occurs when Q = gQ, n=1,2,3

19



General form of Mathieu - Hill equation

. . . 2
Mathieu - Hill equation % +7%(a—2qsin27T)x =0
T

Unstable solutions are around a = n°, or when average frequency of oscillator is close to
half-integer value of that of driving force.

First region of parametric instability b < a<a,

where
b =11 12+ ]‘ 3
1 1
a =1 Sy S i R
1 +q 8‘] 64

The second region of parametric instability is

by <a< as,
;-?- where
1 9
=4 — —g° . -
b, 127 7 138917
e of iy D2 163
Shaded are stable regions o ¢ 127 13824

solutions of Mathieu-Hill equation.
20



Regions of Parametric Resonance

Condition for parametric resonance

Qm:gQ, n=1,2,3..

Z < 2, < \/Z

2 Q 2

where for the first two regions of instability, n = 1, 2, the parameters an, b, are:

The regions of parametric instability are

2 3 2 3

a1:1+q—q——q—, b =1- . (10)

8 64 8 64
2 4 2 4
+5q _ 763q pooa 9 5q

a, = : 2 B,
12 13824 12 13824
and the parameter

(11)

g= D o
g0, 150,

In linac, the transverse oscillation frequency is typically larger than the longitudinal
oscillation frequency, and the first n=1 parametric resonance instability region is avoided.
The potentially dangerous region in this case is the second parametric resonance bandwidth
where n = 2. Instabilities of higher-order resonance regions are typically unimportant

21



Let us introduce phase advance for synchronous particle in RF field u,=Q [3—
.C
and defocusing factor 1 I
Yo =—Q ()
4 B

Parametric resonance regions. 22



Experimental Observation of Parametric Resonance
(L.Groening et al, LINAC2010)

0.40 -
) .
g ®— Experiment

0

E 5.5 - DYNAMION )
= < - TraceWin _,..-/+
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g p 4 o
@ 030 - [ AT
é. ol e
S so
S o025
£
)
2

0.20 w

0.0 0.5 1.0 1.5 20

Initial Depressed Tune Ratio o/ o+

Figure 8: Mean of horizontal and vertical rms emittance at
the DTL exit as a function of the 1initial ratio of depressed
longitudinal and transverse phase advance.
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Effective Beam Emittance Growth OQutside of Parametric
Resonance

2

Q> —Q?

E

=1+ Dctgp, 1

Phase space of transverse oscillations in presence of

RF field (from Kapchinky, 1985).
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Details of RFQ Beam Dynamics

Dynamics of 35 mA proton beam in 201.25 MHz 4-rod RFQ (courtesy
of Sergey Kurennoy). 25




Longitudinal - Transverse Parametric Resonance in RFQ

In RFQ, the Hamiltonian of particle motion is given by

P P\ P
2m

2.2
UT —k{)+k cosp ]+ m, r

H = +qU,. +qU, (1)

ext

U

ext

)

where p, and p, are transverse momenta, p, =P — P, is the deviation of longitudinal

momentum from the momentum of the synchronous particle, { = z—z, is the longitudinal
deviation from the synchronous particle, U, is the intervane voltage, T = (7w /4)A where A
is the efficiency of acceleration, k, =27 /A is the wave number, ¢@_ is the synchronous

phase, and € is the transverse oscillation frequency without vane modulation:

0=_2 ,%

— 3
r \/52 () ()

where @ =2mc/ Ais the circular frequency, y is the focusing efficiency, a is the radius of
aperture, and U, is the space charge potential.

For small oscillations,
H @&, p) = (1/2) p* + (Q¥/2) 1o (kr) 2 (245218]
+ (¥/k tg @) (1o (kr) — 1] €.

We have introduced the following notation into the last

expression:

:r .
02 == @2 CULT | sin g | 26
mgve



Longitudinal Particle Oscillations in RFQ

Injection of low-velocity particles into an RFQ results in dependence of the longitudinal oscillation
frequency on transverse particle position. Neglecting space-charge forces, the equation of small-
amplitude longitudinal oscillations for off-axis particles is given by :

2 2
d—2 + QZI()(er)C = Q
dt T ko]

[1,(kr)—1] . (12)

Averaged transverse oscillations can be approximated by r = RcosQ, ¢. Periodic function 7 (k. Rcos€2, 1)

can be expanded in Fourier series:

[

k.R = R
I,(k.RcosQ, t)=1] (;—) +2). 12 (%) -cos2mQ_t (13)

m=1

Because the amplitudes of the terms of the Bessel function drop off quickly, only the first two terms are

important, resulting in the following equation of motion:

Q 2
k. 180,

? R R R R
%+Qz{,’[13(kz'7)+2112(%)-c0s2§2mt] = [If(k*"2 )—1+2112(kz'7)cos2§2”t] (14)

27



Analysis of longitudinal parametric instabilities includes

(i) consideration of a Mathieu-type equation parametric resonance instability neglecting
the right-side part of Eq. (14), and
(i)  external resonances, taking into account the right-hand external driving force of Eq.

(14).
Longitudinal parametric resonances occur when the following condition is fulfilled:
k.R
0, M50
B = n=1,2,3,. (15)
Q n
with the region of parametric instability defined as:
k.R k.R
150 1)
< rs \2 < 16

" ) b (16)

where an, b, are given by Egs. (10), (11), and the parameter
=(—) 1 (). 17
q (Qm) 1(2) (17)

The first significant parametric resonance area is when n = 1. This leads to the following
resonance bandwidth defined by Eq. (16):

kR
2

k.R kR Q. k.R
13(?)—15<7><<3~>2 <I( >+13<7). (18)

R : Q
An external resonance occurs when the transverse oscillation frequency is = > I,(k.R/2).

rs

. . . Q.
Both external and parametric resonances can be avoided simultaneously when ﬁ >, (kal2)
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Required Transverse Focusing in Presence of RF field

D2 |, D2 .
Hamiltonian of particle motion in RF H = P+ +my ﬁ (0 — Q° sing )+ g U,
field with solenoid focusing 2my 2" 2 sin Q, y?
Transverse oscillation frequency in , , 0? sin @
presence of RF field Q =0, ———
2 sin@,
2 2 2
Envelope equation d"R _2 + £, R— 21 =0
dz> R (Bo) IL(By)R
2 2
e .. d’R Q E) 21
Beam equilibrium condition e — R,+—-— =0
PR Bey R I(BY’R,
2
C,, 3 21
o= Bop 2
R~ R, I.(By)
Required magnetic field B= 2mepPy \/ ( > ) + 21 T+ qE/;L) smq03 (Re )
gR, \ 'R~ L(Py) mc” (By)” A
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Acceleration in Non-ldeal Accelerating Structure

g 49s,
4—\—>1
| g\ gk
// \\ //‘__‘_\\
4[/1_,’-?“\ \ ga // g(]{ \\
| +> ’/”_ ‘“\\\ / 75 ~ \\
~ - =3 e T e K, i / / \
\ 0 ‘-}-’ // lp I// // R, \[Dz { \ \
N / L - I |
~ | PR \\ S 0 e ¢’1 / LP A\ \ 0 /
“‘*—f—"’” \\\ s e T ,// \ \\ // /
‘ e g /
\\ P
. "
Fig. 1.10 Effect of an abrupt change of the P e
P ) . : . < >
equilibrium phase on the longitudinal oscil- §2< Q2 §25> 52
lations of particles. a b

Fig. 1.12 Effect of an abrupt change in frequency
on longitudinal oscillations of particles.

Fig. 1.11 Effect of an empty space on longitudinal
oscillations of particles.
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Acceleration in Non-ldeal Accelerating Structure (cont.)

Relative momentum deviation g = P~ D
from synchronous particle 23
Dimensionless longitudinal Q_ (qu) sing,
oscillation frequency ) mc”® " 2mBy’
Dimensionless eE T Acosg
. W — o S
acceleration rate A e’

(ANg.) = ]/ —| 02 ( = ) (OWP)2 |,
& d, :_ ’ &/ ‘ o \ : l ‘

e " 32



Transverse Displacement of Accelerating and
Focusing Elements in 805 MHz LANSCE Linac
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0.15K

—~ 0.10
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= z::z: /" i O’IZ|0r|1a l | I
ol e ek IR VAN A NPT T
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-0.10
Vertical

-0.15

—0.20 4 . . . . . 1 . 1 . . . . . . . .
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z (inch)
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Transverse Oscillations in Non-ldeal Focusing Structure

Rms increase of amplitude of transverse oscillations . 4G Quadrupole
. =

Ng r e g o] . - mcfy strength
(A4} = l/ 3 LE(L\:C'“)"—;— -%z (At J .

¢ Ratio of drift space
p tolenslength
()

» = phase advanve

1) slope of longitudinal axis of the lens

(Ax*) = a K2 (Ary);  (Ax*) = b,K? (Ary);

2) parallel shift of axis of the lens Ar shift of axis of the lens

(Ax*) = @K (Aro);  (Ax*) = b,K* (Aro);

Ar Shift of the end of
. k
3) rotation of transverse axes of the lens

magnetic axis

(Ax)* =4aK2A | A9 5 (Ax*)=4b,K24 ) (Ag)ts

F:()r. F:(:)[:)(:) a = - 1}.2_ [- | _%_ :ii?_ <: 1 _+_:2 _%%_:) '] 1/4 :
01-,"" '
Structure 1<'4 e,
— ___g_ 2._‘]\3 / 5 g 3 gz 1/
a=[(1+5 s (e btede)]”s
— 1/ 9 *__KZ“ o & \l 1
by=}2 |1 4(1_120/1 N

Fig. 2.15 Effective emittance caused by
random beam perturbations.



Beam Bunching in RF field

|-— Drift Space 4-{

"Buncher" "Catcher"
Cavity Cavity
Density of Electrons
Cathode \ Collector

Electron Beam

s I 1[%

Microwave Input Microwave Cutput

Layout of klystron beam bunching scheme (from
http://en.wikipedia.org/wiki/Klystron)
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’ZqUO
Initial particle velocity after extraction voltage U, Vo = "
Equation of motion in RF gap of width d and applied voltage U, ﬂ _ iﬂsina)t
dt m

t()Lll
Longitudinal particle velocity in RF gap v=v, + iﬂ J sin Wt dt
m
tin

q U . (pin + q)out . (pout B qoin
Longitudinal particle velocity after RF gap v=vy,+ _—123111(7) SIH(T)

m od
. (pin + goout _
RF phase in the center of the gap T, - 1,
o wd 0. -0, 6
Transit time angle through the gap 0, =— Tow Fin _ 71
v, 2 2
Longitudinal particle velocity after RF gap V=V +V,Sinwt,
Amplitude of modulation of longitudinal velocity v, =V, U, M,
0
. 0,
Transit time factor of RF gap sz
M, =

i 37
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: : : Z Z v, .
Time of arrival of particle to the second gap t,=t + . ~t,+—(——Lsinwt,)
v, + Vv, sinot, v, v,
: . Z v, .
Phase of arrival of particle into the second gap Wt, —O— = Of, — O —-SinWr,
@ ti’ -9 £y

7 -

JL

——— ————— — ——

wt, —0 =wt, — Xsinwt,

Transit angle between gaps 0 = 0=
%

4

¥
!
i
[
i
i
i
{
I
I
1
1

T wt Bunching parameter | X = ® 21 _ 17
‘ 1% 2U, v

4

o

Phase of arrival of particle into second gap as a
function phase of the same particle in the first gap.
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Conservation of charge idt, = iydt,

. dt, 1
- RN, T dr,
Beam current in the second gap dr, di,
dt,
Beam current in the second gap as a function of RF phase ;= 1
in the first gap and bunching parameter 2 1=Xcos of,
Ly
== T X<1
: g ;
g -7/—/¥:7/“k | X=1
0 -t
Lop |
l: B U _____ U o X> 1
0 =
| i i

Current in the second gap as a function of time.
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Phase of arrival of particle into second gap x=wmt,— 0=, — Xsinwt,

Expansion of the current in the second gap in Fourier L(x)=A + iAn COS /X

series n=1
Fourier coefficients LT, 27
A :—Jzz(x)dx A :—Ilz(x)cosnxdx
n o ﬁ o
Differentiation of RF phase dx = wdt,
17 dt
Constant in Fourier series A, = ;Jld—tla)dtz =1
0 2
. : . : 21§ ,
Other coefficients in Fourier series A = —jcos(rwot1 —nXsinwt,)dot, =21J (nX)
T

17 :
Bessel function (integral representation)  J (z)= —_[cos(ngo —zsin@)do
T

o

Beam current in the second gap i(x)=1+ 212 J (nX)cosnx

n=1 40



Jn (nX)
0,50

0,25

-0.25

=L

Bessel functions determine amplitude of the fist, third and tenth
harmonics of induced current in two-resonator buncher.
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The first harmonic of the induced beam current in the second gap —L
I

as a function of z for different values of voltage at first gap.

=2J,(X)
The optimal value of bunching parameter is X, = 1.84.
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Beam Bunching in Presence of Space Charge Forces

Gauss theorem 2FE = g—ZZp
o,
| 5 E, 1D longitudinal space charge field E, = g—zp
2

Longitudinal oscillation in presence of d Zp —g(E. —E)

space charge field, E,, and external dr> ext

field E,,;
—p £

dzzp 2 q
Substitution of space charge field gives: dr? T2, = ;Eext

o = gp _2c | 1
Plasma frequency P me. R\ 1B
1
Space charge density of the beam P= TR*Be
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Reduction of Beam Plasma Frequency in Presence of Conducting Tube

Reduced plasma frequency of the beam o, = /Fp ,

GIII I III IV IS II IS 717, of radius R in the tube of radius a
|
| e [gear 2 | J| (2-4a)
% ——————  Plasma frequency reduction factor F, =2.56 576
2alb 1+ =
: mmmmr_r_rrTrTx wa
! )
s S A ’ vV,
. o d’z )
Longitudinal plasma oscillations in tube 7 2p +0,z, = 0
4
Longitudinal particle oscillations under space charge forces Z,= B, sin wq(f —1,)
Longitudinal velocity of particle oscillations under & _
space charge forces: g B,w, coso,(t—1)
. \ . ey g Zp .
Constant B, is defined from initial conditions for d—(tl) = B,w, =v sinwt,
particle velocity after first RF gap: !
B, =—sinwt,
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Effect of space charge repulsion on beam bunching.
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Finally, particle oscillations under space charge forces z,= Lsina)q (t—t,)sinwr,

in the moving system

Particle drift

Multiply by @

RF phase in the second gap

Modified bunching parameter in
presence of space charge forces

Condition for maximum bunching:

q

z=v,(t,—1)+z,

v, . .
z=v,(t,—t))+——sinw, (t, —t,)sinwt,
®
q

v,

<
— =wt, -0t +

o q o

sinw, (¢, —,)sSIn ot

wt, —0=0wt, — X'sinwt,

v, .
X'=—=sinw,(t,-1)
v
q o
: Z
sin(@, —)
V
X':X [
£
a)q v
. < Z T
sin(w, —) =1 O, —=—
v, v, 2
" UlMl ( w ) I 46
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Bunched Beam in RF Field: Problems with Ellipsoidal Bunch
Model

-101- UCRL-18454

APPENDICES

A. The Nonexistence of Uniformly Charged

1. There is no 6D distribution e
function which results in 3D e e v an Ensesbile of Blixes=dinenstons] hammonle
uniformly charged ellipsoid in oscillators with the Hamiltonian
linear field (see F.Sacherer BE D - P rad, o<HSL . (a1)
Thesis, 1968).

Because of the inequality, the accessible region in phase space is a

six-dimensional unit sphere; in configuration space it is a 3-sphere.

2. RF ﬁeld across Separatrix iS Does there exist a spherically symmetric distribution f£(p
essentia”y non-lineal’_ has a uniform projection onto the 3-sphere? The following necessary

+q°) that

condition for the existence of such a distribution has been found by

Maurice Neuman.

3_ There are SpeCiaI cases When Theorem: The spherically symmetric distribution f‘(p2 + q2> does not

5
rofo

ellipsoid is a self-consistent pinh8 s el Bl = G
Solution. following inequalities:

2vad % .
+q°)d’p violates any of the

) = 7572 .
<_‘2‘(E:) ) OS"’S{‘)
bt
o(T)
8 Z
s 5 Vi-7 , fsTgl (a2)

The maximum permissible value of p(7), which corresponds to the equal

ign, is shown in Fig. (Al). An immediate consequence of this theorem

7]

s s o . . s s s s 2 2
is the nonexistence of a spherically symmetric distribution f£(p~ + q%)

)
with a uniform projection, o(q“) = constant.
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Space Charge Dominated Bunched Beam in RF Field*

Assumptions
1.  Beam is accelerated in traveling wave w2ith constant amplitude E
TTC
2. Beamis bunched at RF frequency ® = - Particles between bunches are

removed.
3. Focusing is provided by a continuous z-independent focusing structure

4. Beam is matched with the structure, i.e. there are no envelope oscillations
(both transverse and longitudinal)

What is the self-consistent particle distribution within the bunch and what is
the limited beam current?

Y
‘m‘b; """ >
— > >

Sequence of bunches in RF field.

48
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Equation for Field of Moving Bunch

The space charge density distribution of a moving bunched beam has the form p = p (x, y, z -vs?).
The moving bunch creates an electromagnetic field with a scalar potential U, = U, (x, y, z -vst)

and a vector potential A, = A, (x, y, z -vit), which obey the wave equations:

2
AU, - 19U __ P (5.50)
¢t ot &
— azX
AAp - L EEh =y, j, (5.51)
c” ot

where j=p v, is the current density of the beam. The current density has only longitudinal
component

Jx=jy=0,  jz=vsp (x,y,2- vs), (5.52)

and, therefore, the vector potential has only a longitudinal component 4 _.

In a moving coordinate system where particles are static, the vector potential of the beam is zero,

A =0. According to the Lorentz transformation, the longitudinal component of the vector
potential in the laboratory system is A, = 8, U, / ¢ while transverse components 4, = 0, 4,= 0.
Therefore, to find solution of the problem it suffice to solve only equation for the scalar potential
(5.50). Substitution of the value 4 _into the wave equation (5.51) gives the equation for the scalar

potential:

2 2 2
an+an+an=—L
ox? dy? y2aé‘2 €o

p(x,y,0). (5.53)



Self - Consistent Problem for Bunched Beam

Equation (5.53) has to be solved together with the Vlasov equation for the beam distribution
function:

df -1 9, ,of, o

of OU . of U . of aU._
Py+2p2) - 4( + + )=0 (5.54)
di my ax oy ol

dpx 0x Opy dy Opz; 9¢

where U = U, + v ~2U, is a total potential of the structure. Eqs (5.53), (5.54) define the self-
consistent distribution of a stationary beam which acts on itself in such a way, that this
distribution is conserved.

The general approach to find a stationary, self-consistent beam distribution function is to

represent it as a function of Hamiltonian /= f(H) and then to solve Poisson's equation. Because
the Hamiltonian is a constant of motion for a stationary process, any function of Hamiltonian is

also a constant of motion which automatically obeys Vlasov's equation. A convenient way is to
use an exponential function f= £, exp (- H/ H,):

2myH, 2mYy>H, H,

2+ 2 2 %)
ffoep(- X700 Pl Yt bV 7 (s 55
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Beam Equipartitioning in RF field

Let us rewrite the distribution function, Eq. (5.55)

2 2
+ 2 -2
Fetrep2BXTP ppz g Ueat Upy 7y

p[2 p12 H,

(5.56)

where p, =2 V<pi> =2 V<pi> and p;=2 \<p2> are double root -mean-square (rms) beam sizes in

phase space. Transverse, &, and longitudinal, &, rms beam emittances are:

g =2 P <x?> =2ﬂ\/<y2>,
m

c mc

er=2PL V<>
mc

The value of H can be expressed as a function of the beam parameters:

2 2 2
166H, =M c? & —_m ¢’ & —_m c? € .
Y o«x> YV <>y <>

Equation (5.59) can be rewritten as

& — &1
R 7yl

where R = 2V<x?> is a beam radius and [ = 2\ <¢?> is a half-length of the bunch.

(5.57)

(5.58)

(5.59)

(5.60)
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Self-Consistent Solution for Beam Distribution

The first approximation to self-consistent space charge dominated beam potential is:
2

Vp =- 17_/'_ s Vext
where parameter 0 = 1 <<1
bk
o . 2 I R
and b, is a dimensionless beam brightness of the bunched beam: b, = B—E—z
7/ c 81

The Hamiltonian corresponding to the self-consistent bunch distribution is as follows:

2 2
+ 2
=Px Py + Pz 3+C]( 0 ) Ues.
2my 2my 1+06

H

Equation (5.88) indicates that in the presence of an intense, bright bunched beam (6 << I) the
stationary longitudinal phase space of the beam becomes narrow in momentum spread, while the
phase width of the distribution remains the same in the first approximation.

Low brightness beam, b <</ High brightness beam, b >> |

1.51073 151073 T T — .

100 | | 1.0-1073
1.0-10 i — \ _ i
50104 yd 50104

2~ 0.0100 </ 2~ 0.0100 )Y
-5.0104 . \\ / ] 50104
-1.0-10°3 I \\/ ] -1.0-103
-1.510°3 L ! : . s 15103 " - L
15 -1.0 0.5 0.0 0.5 1.0 -15 1.0 0.5 0.0 0.5 1.0 52
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Analogy with Plasma Physics: Debye Screening

screening. If a positive test charge of magnitude Ze is placed in a plasma, it
attracts clectons and repels ions in such a way that its Coulomb electrostatic
potential ¢, x Ze/4nz,r is attenuated at distances beyond a Debye length. To
calculate this effect, we solve for the potential ¢(r) gencrated by such a test
charge. Assuming the plasma to be in thermal equilibrium, the distribution
functions of electrons and ions are of the Maxwell - Boltzmann form

2 .
flx,v) = n,_,cxp(— {:l T+ ;‘12;) (1.8.1)

and the densities are n(r) = n(,exp(cld)(rl k,T). Here ¢(r) is the potential
generated by the test charge, which is as yet unknown. Since this potential must
satisfy Poisson’s equation

v2¢ - ‘,‘r) “.8.2)
Ly

with the charge density p(r) = 3 ¢/n (r), it follows that, assuming spherical
symmetry, ¢ satisfies the equation

M. el
LAY W L (1.8.3)
rrdr’ dr eokyl
here we have assumed that the potential is small enough that e/ k7 <« 1.

Taking the solution of Eq. (1.8.3) which vanishes as r — oc, we obtain

A
¢ = ;cxp(—r,").o). (1.84)

where iy = (6kT/2nge?)"'? is known as the Debye length, and A is not yet
determined. To evaluate the constant A, we must match the potential to the “bare’
Coulomb potential of the test charge, ¢ = Ze/dnz,r, at a distance r from the
charge which is small compared to the av cragc m(crpartlcle distance ng '*. The
result is that A = Ze/4ne,, provided that ng ''* « 4. Eq. (1.8.4) then shows that,

atdistances greater than a Debye length, the potential of a test charge ina plasmaiis
exponentially attenuated below the value it would have ina vacuum. This cutoff of
the potential has important implications for the collisional events in a plasma,
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Kapchinsky Model for Self-Consistent Bunched Beam

<< 1. Restricting ourselves in the expansion of a modified

Bessel function to the first two terms

I( wr
¢ Vs /

we can write potential function (4.7) in the form

V(x: ¥, §)=ﬂi§(‘:’£ [Siﬂ(({?_g— T‘j §)+%—COS q)s:l

—0F i ((p, — % C)] r.

L™y g
P [9,+2M,vs

By ignoring the dependence of the defocusing force pro-
duced by the accelerating wave on the variable component of
the particle phase, we can represent the potential function

as a sum of two terms V(x, y, L) = V(1) + Vi (x, y). The

With this simplifying assumption,

324 I. M. KAPCHINSKIY

first term

V. (== g [sin (rp,— %C)%—Lccoscp,] "

o 0, (4.13)

which depends only on the longitudinal coordinate of the

particle, coincides (to within a constant factor) with po-

tential function (1.41). The second term

V, (%, y) = (mq v/2) 19} —ewE [sin @,/2m, ¥ v r?,  (4.14)

which depends only on the transverse coordinates, is the po-
tential function for the equilibrium particle in a "smoothed
external field.

out" In Section 3.1 we showed by using a

the Coulomb potential

of the bunch can be represented as a sum of two independent

functions U.(x, y, z)

= U,(z) + Up(x, y). Because of the

axial symmetry of the fields, the potential U,is a function

of only the radius r.

The two independent integrals of mo-

tion can be separated by using the simplifying assumptions

discussed above;

.2
H::;.{i_.:Lz(gyL(awg U, (&) (4.15)
2myy? 54
H, =[(p:-+ps)2my ) 4V, (r)+ (e v?) U, (r). (4.16)



Representation of the Bunch as a Uniformly-Charged Cylinder
with Variable Density Along z

ey

Transverse distribution

326 I. M. KAPCHINSKIY

The microcanonical phase-density distribution fq(Hy)

= &(Hy - Hp) can be used in four-dimensional transverse-os-
cillation phase space. In this case,

o o

pr,0)=eny | f2(H.) dp, [ [ 8(H,—H)dpxdp,.

- —_— -

Longitudinal distribution

side the separatrix. Specifically, we assume that the phase

density on the vy, p plane inside the separatrix is con-

[

stant. Since H, < Hg for the phase trajectories inside the

separatrix and H, > H. for the phase trajectories outside

it, we can write

1 for H, <" H_.;
fo(r) =] 2= e
H.>H..

{0 for (4.26)

Although the space-charge density in each beam Cross

section is constant, it nonetheless depends on the longitu-

dinal coordinate. A bunch

lar cylinder of finite length.

can be represented as a circu-

Since the charge density in-

side the cylinder depends only on the longitudinal coordi-

nate, the cylindrical bunch

has flat end-faces.

The cyl-

The law governing the charge-density distribution along

the longitudinal axis of the bunch duplicates the behavior

of the separatrix.

95

The maximum charge density of a cylin-



Separatrix as a Function of Beam Current

Analysis based on Kapchinsky’s model for beam distribution indicates that synchronous phase
1s shifted in space charge dominated beam and phase width of the bunch decreases with
current but much slower than the vertical size of the separatrix.

06 0.

The potential function and separatrix The separatrix shape for different values of

of the beam with high space-charge space charge parameter (from Kapchinsky,

density (from Kapchinsky, 1985). 1985). .



Stationary Bunch Profile

I Stationary bunch profile
Ny 10110'3_ i \\ k-R . . 2
e \ L(CZ>)sin(@s-k:C)+sinQs-(2 s~k )cosps+C(k:R) "= 0
‘:’N 0.0-100 \ y
P 5 o N
03 0z o1 o0 o1 o2 Space charge density of stationary
b bunch is close to constant in space
BERERET»RRE charge limit
] .
g al 2
= 2 ‘J‘ ] p(r,C)zZ Y Gr Eo.
5 : - (’ 1+ 06
h C(pr)
‘E 1.010°3
E 0.0~1o°_ \—// -
E E - é/(ﬁl) | | |
Stationary self-consistent particle distribution in RF field, 57

@s = -60°, C=3.8: (a) RF field, (b) particle distribution, (c) space
charge field of the beam.



Bunch Profile as a Function of Accelerator Parameters

Parameter C can be expressed as a function of ratio of effective transverse gradient:

Gi, o= Gi(1 - G2 )

2 ,}/2Gt
and longitudinal gradient
E |sin @y
GZ = 275 7’ q)S‘

5 6
" 3 4

e / b a / S / / // 4
E // / ‘ ; c/ /b a

3r 4 :

° / / / o3t 1

2 4 7 b / //
7 LA

1 e
— g

' K N I T

G,/G GYa>

Coefficient C 1in bunch Coefficient C in bunch
shape for ¢, = -30° as a shape for ¢, = -60° as a
function of ratio of function of ratio of
transverse and longitudinal transverse and longitudinal
gradients of space charge gradients of space charge
field of the beam: a) y= 1, field of the beam: a) y=1,

b) y=3,¢) y=6. b) y=3,¢) y=6.



Transverse and Longitudinal Bunch Sizes

For a long bunch, BA>>R,,.., the Bessel function can be
approximated as [,(y) = 1 + y*/4, and bunch boundary is given

by:

R() = BA Qs - k) coss - sin@s - sin(@s-k- ) . (5.96)
2 Cc+ -1 sin(Qs-k; )
4 y?

X/ (B

Transverse bunch size, R, is determined from the equatior

dR($)/0C=0:

— ,BA 2 ((Dv CoSQs - Sil’lgos)
2 c+-1_ Sin Qs
4 y?

(5.97

The ratio of transverse to longitudinal bunch sizes for a giver

value of synchronous phase, @, is:

Rmax — 1 2 (s cos@s - sings) - (5.98)
L 3oy c+ 1 Sin Qs
4 y?

0.05

0.00

-0.05

Rmax
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Bunch Evolution in RF field

0.0551

0.0539
0.0529
0.08519
0.08509
0.04599
0.0489
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0.8469
0.046
0.045
0.044
0.043
0.042
0.041

0.04
0.6393

X \ z
Plottype Beta

Sample { 6/232)
Time 1.251e+000 ns
Particles @

Dynamics of elliptical beam injected into RF linac (courtesy of Sergey Kurennoy).
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Initial and final bunch in RF field
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(Left) initial and (right) final beam distribution in RF field. (Courtesy of Sergey Kurennoy.)
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Maximum Beam Current

- =205

R*(y) dy.

* Zmax

The volume of the bunch is defined by V=r R 2(4’) df = %

J Qs

Zmin

For a long bunch, fA>> R,,,., the bunch volume:

3
V= @ (35 sin; - 9 (ps2 coSQs + cosQs - cos2Qy)
8n2C Vo P 2

The total charge of the bunch is Q = p-V and the beam current, / = Q @, 1s
2

3,,2 2

Ggh : 9 2

Inax=I( By Y—E)[B@ssings- Z- Q5 cosPs+ cosQs- cos2@s)
1673C me2 Ty B0

2 /
1 /
0 1 1 1 1 1 1 1
00 02 04 06 08 10 12 14 16
lp |

S

Fig. 5.7. Function /(@s) =3 sing,- % 07 COSQ.+ COSPs - cOS2Ps in

maximum beam current, Eq. (5.118).



Comparison with Ellipsoidal Model
Potential of a stationary bunch in the vicinity of the synchronous particle:

2
Up=-—P (GZQ+—G“ﬁ ) (5.121)
280 G[ 2 2

Potential of a uniformly populated ellipsoid: Up = - P [My 2C 241 '2M r?] (5.124)

2¢€,

Where M is the function of semi-axes of an ellipsoid:

o

2
MR, y)=R7! 2 s (5.123)
(R™+5) (%" + )

o
Comparison gives

G
M (R,yl)= Y= :
ro (5.125)

Volume of an ellipsoid 1s V= (4/3)x R,

Maximum bunched beam current, [,,,, = pVw/(27), which can
be carried by an ellipsoid with space charge density p=2y°G,e,

2 . Rl Gagl’
S e e Yds

me e A7 me

(5.126)

Let us show that this expression give both transverse and longitudinal current limits.
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Transverse Beam Current Limit

Zero-current phase advance, o,, of betatron oscillations per period S = NSA of a pure focusing

structure (without RF field):
o, =/96 S (5.127)
my BC

zero-current phase advance per period, o, ;, including both the focusing and RF defocusing term

0er =02 (1 -M) (5.128)
The phase width of the bunch is approximately taken as 2¢, and, therefore, half of the bunch length

[ = BAos/(2m) (5.129)

G[Q/lz

mC2

) gives for the current limit

2
Substitution into Ze = I 2 y2RL) (
3 3

2
_4me’ g P Ou (R (5.130)

max —

3Z0q (1-MyN* A

where 7, = (cg(,)'l = 376.73 Q 1is the impedance of free space. This is the well-known transverse
current limit.
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Longitudinal Beam Current Limit

. 2 2
Substitution of M(R, yl)= %= G, = sp Elsined Inar = 1. 2 p2R°Ly Gra A7

2 }/ZG,, ' BA 3 23 m c?
gives for current limit:
max = 871-2 E Sil’l(Ps Rzla (5131)
32, BM A?

which is the well-known expression for longitudinal current limit in a RF field.

Usually the parameter M can be approximated as M = R/(3yl). With that approximation the
longitudinal current limit is:
Inae = 2PY E 02 [sing] R. (5.132)

o

For small absolute values of synchronous phase one can assume |sing, =~ |@J, and the current
limit, Eq. (5.132), is proportional to the cube of synchronous phase which is consistent with
previous derivations.

Approximation of the bunched beam by an uniformly populated ellipsoid is valid for small
bunches, R << 3,4, [ << BsA, while more general analysis results in a bunch shape, described
above.
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Phase Scans to Set the Phase and Amplitude of RF Linac
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for 5 different average axial field beam phase
amplitudes.
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Phase Scans to Set the Phase and Amplitude of RF Linac (cont.)

Beam Module N-1 Module N Absorber Collector
- R 1 ) ,H
. L )
o

Phase adjuster

Schematic of the phase scan measurement setup

b Set amplitude

A
.4

Set phase

-80.0 -60.0 -40.0 -20.0 0.0 20.0 400 600 800
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Delta-T Procedure to Set the Phase and Amplitude of RF Linac

pickup loops -
A B N <C °
0 Module N Module N + 1 e s *'
from oy
201.25 f 3
MHz Amp '
source -
rf
Amp
ghigse phase
ridge bridge Delta-t tranduser
1 7 2
power alog
. nalo
divider electronic electrgnic
phase shifter phase shifter

Module N (being adjusted): ON and OFF
Module N+1: OFF

Let top and t5c be the time of flight of
the beam "bunch" from locations A to B and
A to C. The measurement of interest is the
change in t5p and tyc when module N is
brought in time. That is, -

tg = tAB OFF -~ 'AB ON

" tc=tAcOFF - tACON

Differences with nominal values:

AVA

(0,-D,) [ aw, AWy ]
Ao = Aty - F¢ 3 3
T nA n



Longitudinal Beam Emittance Measurement (P.Strehl, 2010)

7.1 Emittance Measurements in the Longitudinal Phase Plane

[

Siit

rf sine waves el

o

Fig. 7.1. Simplified scheme to measure longitudinal emittance
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High-dispersive part of 800 MeV beamling »m:u
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Measurement of Beam Energy Spread
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Bunch Shape Monitors (A.Feschenko, PAC 2001)
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Figure 1: General configuration of Bunch Shape Monitor
(1 —wrre target, 2-mput collimator, 3-deflector, 4-output
collimator, 5-electron collector).
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