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Storage-ring-based 3rd Generation Light Sources are the tools of discovery for 

• Life Science (e.g., structures of protein microcrystals) 

• Chemistry (e.g., detecting chemical species at surfaces) 

• Materials Science (e.g., phase contrast imaging) 

• Condensed Matter Physics (e.g., studying materials under pressure) 

See XDL-2011 “Workshop on Science at the Hard X-ray Diffraction Limit” 

3rd Generation Light Sources are electron storage-ring facilities producing 
synchrotron radiation. Synchrotron radiation can be generated in undulators 
(alternating dipoles with K < 1), wigglers (K>>1) or single dipole magnets. 

The brightness of 3GLS is 1023 – 1025 x-ray photons/(s-mm2 -mrad2-0.1%BW).   
Emittance in x is set by the balance between radiation damping and quantum 
excitation due to the random nature of photon emission. The y emittance is 1-2% 
the x emittance due to residual coupling between the x and y motions. 

4 
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Linac-based 4th generation light sources (4GLS) enable new experiments in 

• Life Science (e.g., structures of protein nanocrystals) 

• Chemistry (e.g., probing ultrafast dynamics of surface chemical reactions) 

• Materials Science (e.g., 3D nanomorphology) 

• Condensed Matter Physics (e.g., studying materials under extreme conditions) 

For more applications, see “A Next Generation Light Source” LBNL CD0. 

4GLS are RF linac-based X-ray FEL producing coherent, ultrafast x-ray pulses. 4GLS 
offer full transverse coherence, partial temporal coherence, 1010 - 1012 photons in 
fs pulses, and timing synchronization with an external laser. 

The brightness of 4GLS is 1031 – 1033 x-ray photons/(s-mm2 -mrad2-0.1%BW).   
Emittance in x and y is less than l/4p  so the x-ray beams have full transverse 
coherence. On the downside, each beamline of the 4GLS provides x-ray beams to 
only one or two users each time. 

 6 
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Courtesy of John Galayda (SLAC) 



LA-UR 14-23718 LA-UR 14-23718 8 

FEL brightness is enhanced over SR brightness by the small emittance in x, the 
ultrashort pulse and by the FEL microbunching resulting in bunched beam 
emission that scales with Ne

2 (Ne = number of electrons/coherence length). 

Peak brightness 

Np = number of photons 

ex,y = emittance in x, y 

Dt = pulse length 

Dw/w = relative bandwidth (selected to be 0.1%) 
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Peak brilliance of linac-based 4th generation light sources (XFEL) is ten orders 
of magnitude above that of the 3rd generation light sources and more than 
20 orders of magnitude above Bremsstrahlung sources. 

3GLS 

4GLS 
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Lorentz relativistic factor is equal to the ratio of the electron beam’s total 
energy to electron rest mass energy (0.511 MeV). 

 

 

 

 

b is the beam velocity relative to the speed of light,               . 

Expressing b  as a function of g 
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XFEL produce beams of coherent x-rays that are tunable by adjusting the 
electron beam energy, the undulator period (not common) or magnetic field.  
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Self-Amplified Spontaneous 
Emission (SASE)  starts up from noise 
and grows exponentially along the 
undulator length until the FEL power 
saturates at L ~ 20 gain lengths. 

 

 

e

EI
P

bpk

S 

LG = power gain length, 

 undulator length over 
 which power grows by e (2.7) 

PS = FEL power at saturation 

0006.

Linac Coherent Light Source first lasing 

GWPS 30

cmu 3l

mL D

G 3.33 
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Courtesy of John Galayda (SLAC) 
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FEL macropulse (expanded) 
Tmacro 

FEL micropulses (bunches) 

Micropulse separation = n (1 / RF) 
n is the number of RF buckets between bunches 

14 

FEL macropulses 

Macropulse separation = 1 / rep. rate 
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FLASH 

European XFEL 

LCLS-I SACLA 

Wavelength 

X-ray energy 

450 –1 Å 

0.3 –12 keV 

25 –1.2 Å 

0.5 – 10 keV 

2.3 – 0.8 Å 

5 – 15 keV 

Beam energy 0.23 –17.5 GeV 3.3 –14 GeV 8 GeV 

Linac type 

Frequency 

Linac length 

SRF 

1.3 GHz 

2.1 km 

NCRF 

2.856 GHz 

1 km 

NCRF 

5.712 GHz 

0.4 km 

Gun type, frequency 

Cathode 

NCRF, 1.3 GHz 

Cs2Te photocathode 

NCRF, 2.856 GHz 

Cu photocathode 

Pulsed DC gun 

CeB6 thermionic 

Bunch charge 130 – 1,000 pC 20 – 250 pC 200 pC 

Bunch length 70 – 200 fs 5 - 500 fs 100 fs 

rms emittance 0.4 – 1 mm 0.13 – 0.5 mm 0.6 mm 

Bunches/macropulse 

Bunch spacing 

2,700 

222 ns 

1 

 

1 

Tmacro 

Repetition rate 

600 ms 

10 

 

120 

 

<60 
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An RF-linac driven XFEL has the following major components: 

• PHOTOINJECTOR to generate high-brightness electron beams 

• RF LINAC to accelerate the beams to GeV energies 

• BEAM OPTICS to transport the high-brightness electron beams 

• BUNCH COMPRESSORS to produce the kA peak current 

• Long undulators with electron beam focusing optics 

• X-ray optics to transport the x-ray beams to experimental stations 

 

We shall limit the scope of this course to the reviews of the first four topics. 
Even so, we can only cover the very basic since each of these four topics can 
easily require a one-week course at USPAS. 

 

Our focus is the BRIGHT ELECTRON BEAMS to drive an x-ray FEL. 

16 
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Electron Injector 

Linear Accelerator 

Bunch Compressor 

Undulator 

X-rays Beam 

Electron Beam 

Transport 

Thermal emittance 
Space charge & RF 
       emittance growth 
Emittance compensation 

Bunch compression 
Coherent synchrotron radiation (CSR) 
Microbunching instabilities (mBI) 

Incoherent synchrotron radiation (ISR) 
Resistive wake-fields 
XFEL longitudinal coherence 

Energy chirp 
RF curvature 
Wake-fields 

Brightness (emittance) preservation 
Energy spread mitigation 
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Typical operating conditions 

• Water-cooled copper at room temperature 

• Low duty factor (pulsed operation at low pulse repetition rate) 

• Accelerating gradients limited by the available RF power 

• Low RF efficiency (RF to beam power) due to surface ohmic losses 

• Efficiency improves at higher frequency, limited by BBU and available klystrons 

• Requiring high-power (MW) pulsed klystrons or RF compression. 

 18 

C-band klystron 

SACLA C-band linac 
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SXU 

HXU 

proposed FACET-II LCLS-I LCLS-II SC Linac 

cross-over bypass line 
m-wall 

A-line 

B-line 
Sector-10 Sector-20 Sector-30 Sector-0 

extension line L3 L2 L1 

s (m) 

Layout of LCLS-I Linac (normal-conducting S-band) 

Gun produces 
low-emittance, 
ps-long bunches 

On-crest 
acceleration 
reduces SC 

Off-crest acceleration 
produces energy chirp 
before bunch compression 

      

     Bunch 
compressor 1        

      Bunch 
compressor 2 

On-crest acceleration 
with short-range wake 
field reduces chirp Laser heater 

reduces LSC 

Courtesy of John Galayda (SLAC) 

GeV 
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Typical operating conditions 

• Niobium cooled with liquid helium at 2K (>500 MHz) or 4K (<500 MHz) 

• High duty factor or continuous-wave (RF on all the time) 

• Accelerating gradients set by RF dissipation which affects the cryoplant size 

• Use little RF power (most of RF power goes into electron beams) 

• RF loss due to surface resistance scales with f 2 

• Requiring complex cryomodules, helium cryoplant and distribution system 

 
20 

L-band klystrons 

1.3-GHz SRF cavity 
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SXU 

HXU 

proposed FACET-II LCLS-I LCLS-II SC Linac 

cross-over bypass line 
m-wall 

A-line 

B-line 
Sector-10 Sector-20 Sector-30 Sector-0 

extension line L3 L2 L1 

s (m) 

Layout of LCLS-II Linac (mostly superconducting L-band) 

Gun produces 
low-emittance, 
ps-long bunches 

On-crest 
acceleration to 
reduces SC 

L1: Off-crest 
acceleration 
introduces chirp 

L2: Off-crest 
acceleration 
introduces chirp 

     BC1       BC2 

L3: On-crest 
acceleration 
followed by 
chirp removal 

Laser 
heater 

3rd Harmonic 
Linearizer 

0.75 MeV 95 MeV 250 MeV 1.6 GeV 4 GeV 

      …       … 

Courtesy of John Galayda (SLAC) 
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The FEL  (Pierce) parameter determines the exponential gain and saturated 
efficiency of a high-gain FEL. The higher the beam energy (higher g ), the 
smaller  becomes.  scales with undulator K and period to the 2/3 power, 
and current density to the 1/3 power. 
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The FEL power gain length is the undulator length over which the FEL power 
grows by one e-folding (e = 2.7). 

 

 

 

A common mistake is to use the 1D  parameter to compute the gain length. 

For XFEL, 3D effects (diffraction, emittance and energy spread) usually 
dominate the gain length calculations. 

 

Typical causes of 3D effects that increase the gain length: 

• Electron gun (e.g., poor choice of guns that lead to large emittance) 

• Accelerators (e.g., advanced concepts that produce large energy spread) 

• Bunch compression (e.g., CSR increases emittance and energy spread) 

• Electron beam focusing (e.g., short beta function increases diffraction) 
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The rms radius of a focused electron beam is determined by its un-normalized 
(geometric) emittance and the average b function of the focusing optics. 

 

 

Optical diffraction is measured by the radiation Rayleigh length, which is given 
by the square of the electron beam’s rms radius in the undulators divided by 
the photon beam’s emittance, l/4p. 

 

 

For diffraction 3D effect to be small, the gain length must be shorter than the 
Rayleigh length 
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pz 
px 

pz 

px 

x and z momenta at low energy 

 

x and z momenta at high energy 

 

Acceleration reduces x’ by boosting pz and reduces the geometric emittance 
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 For emittance 3D effect to be small, the electron beam’s un-normalized 

(geometric) emittance must be smaller than the photon beam emittance. 
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where  Nc      =   # of wavelengths in a coherence length 

           = √3 times # of periods in one gain length 

For 3D effect due to energy spread to be small, the relative rms energy spread 
must be less than  
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Diffraction 

 

 

Emittance 

 

 

Energy spread 

 

 

 
 

Violations of the above will lead to smaller 3D , thus longer gain length. 
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1. Lorentz Force 

2. Beam Optics 

3. Matrix Representations 

4. Twiss (Courant-Snyder) 

5. Beta Function 

6. Emittance 

7. Louisville Theorem 
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x 

y y 

Trajectory of the 

reference particle 

s 

x 

A particle is characterized by 

• its x(s) and y(s) which are deviations from the reference trajectory 

• its slope x’(s) and y’(s) with respect to the reference trajectory 

• its longitudinal position z where z = 0 is the bunch centroid along s 

• its energy or momentum deviation Dp/p0 

 

The (x, y, s) coordinate system follows the reference 

electron, an ideal particle at the beam center. 
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Lorentz force determines the rate of change in the beam’s energy and 
momentum 

 

 

Force caused by an electric field acting along the propagation direction 
changes the beam’s energy 

 

 

Force caused by a magnetic field perpendicular to the propagation 
direction changes the beam’s momentum by Dp and thus change the 
direction by Dp/p0 
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• Dipoles bend the beam and change its direction of propagation 

• Dipoles also disperse the beam that has an energy spread 

• Four dipoles (up, down, down, up) make a chicane bunch compressor. 
Chicanes are used to compress electron bunches (high peak current). 

 

• Quadrupoles focus the beam in one plane and defocus in the other 

• Three quads (triplet) are used to focus electron beams in both x and y. 

• Focusing (F) and defocusing (D) quads are placed periodically to form a 
FODO lattice, where O denotes a drift or a non-focusing element. 

Dipoles 

Quadrupoles 

Sextupoles 

• Sextupoles are used to correct for chromatic aberrations or to 
linearize the longitudinal phase space affected by RF curvature. 
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• Each particle is represented by a 1 x 6 vector. 

• The beam transfer matrix maps the vector at location n into a new 
vector at location n+1 (ignoring what happens in between). 

• The R matrix is usually block diagonal with three 2x2 blocks (red 
borders) that are non-zero; the rest (shaded gray) are mostly zero. 

 

 

 

 

 

 

 

• The matrix approach only deals with linear mapping of the beams. 
Higher order terms can be included to account for nonlinearities. 
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 
bend radius 

incident beam 
dipole magnet 

q 

bent beam 
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A quadrupole is a focusing element in one plane and defocusing in the other plane. By 
convention, an F quad focuses the beam in x and a D quad focuses the beam in y. 

F quad  F quad magnetic 
field (red) and Lorentz 
force (blue) on 
electrons 

Magnetic field 

xGB

yGB

y

x

0

0





Quad focusing strength 

x 

y 

0

00

G
p

e

dx

dB

p

e
K

y

x 

Quad focal length 
lK

f



1 Magnetic field in y increases linearly 

with x, the deviation from center. 

where G0 : field gradient in T/m 

yB

x
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A sextupole is used to correct for chromatic aberrations or to linearize the 
longitudinal phase-space that has a quadratic energy-time correlation. 

Sextupole  Sextupole field  

Magnetic field 

 22

2

1
yxCB

CxyB

y

x





Magnetic field in y at y = 0 increases with 
x2 where x is the distance from center. 

where C: sextupole strength in T/m2 
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Write a more general homogeneous differential equation to describe 
the quasi-harmonic motion of u (u can be either x or y). This is called 
Hill’s equation (applicable for systems that are periodic in s). 
 
 
 
For the initial conditions 
   u(0) = u0  u’(0) = u’0 
 
the solution is 
 

     Focusing quad K > 0    Defocusing quad K < 0   
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Solution to Hill’s Equation 
 
 
 
Take the derivative 
 
 
 
Rewrite both equations in the form of a transfer matrix 
 
 
 
 
 
The transfer matrix is used in transport codes where one can map the 
beam from one location to another through n elements simply by 
concatenating (multiplying) the transfer matrices of these elements. 
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Consider the focusing quad (QF) 
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For an ideal quad and mono-energetic beams, all diagonal matrix 
elements are 1 and except R21 and R43, all off-diagonal elements are 0. 

An inherent assumption is that the focal length does not depend 
on energy. This is obviously incorrect, since quads have energy-
dependent focusing. To include chromatic effects, we must add 
off-axis elements into the matrix of the thick lens. 
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Consider a drift with distance L between points 1 and 2. The thin lens 
model for the drift is the limit of the transfer matrix when K → 0. 
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Effect of a drift on the x-x’ space 



LA-UR 14-23718 LA-UR 14-23718 41 

Combined transfer matrix 

Transfer matrix of a drift length L Transfer matrix of QF 

02 xMMx QuadDrift
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1
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Consider the combined map of a focusing quad with focal length f followed 
by a drift space with length L. 

Note the order of 
matrix multiplication 
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Evolution of electron beam’s y-vs-x profile through a quad triplet 

Focus 

A quad triplet consists of two F quads of equal focusing strength and a 
D quad with focusing strength twice that of the F quads. 

Ry 

Rx 

F 

quad D 

quad 

F 

quad 

Focus 



LA-UR 14-23718 LA-UR 14-23718 43 

Cell length 
Ry 

Rx 

QF QD QF 

A FODO lattice consists of a periodic array of QF and QD of equal 
focusing strength separated by field-free drifts (e.g., accelerator 
sections or undulators) of equal length. 

FODO lattice with 90o phase advance (one oscillation = 4 cells) 

QD QD 
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Each particle is represented by a dot in the x-x’ plot where x and x’ the 
particle position and angle in x with respect to the principal trajectory. The 
above trace space corresponds to a converging beam.  

22 2

,rms x x x xxe   

1
2 2x

1
2 2x
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Beta function (beam size) 
 
 
 
 
 

Gamma function (beam divergence) 
 
 
 
 
 

Alpha function (phase-space angle) 
 

 

2 22x xx xg  b e   

Courant-Snyder invariant 
 
 
 

Only three of the four Twiss parameters (, b, g and e) are independent. 

 

e
b

2x


e
g

2x


e


xx 

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rms x2 
 
 
 

rms x 
 

 
rms x’2 
 
 
 

rms x’ 
 
 
Correlation term 
 
 
The correlation term vanishes at the beam waist (upright x’-x ellipse). 
 

 
 

 

  ''',,',22 dydydxdxyyxxfxx 

  ''',,',22 dydydxdxyyxxfxx  

2xxrms 

2xxrms


  ''',,', dydydxdxyyxxfxxxx  
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Beams are treated as a statistical distribution of particles in x’-x (also in y’-y and g-ct) 
trace space . We can draw an ellipse around the particles such that 50% of the 
particles are found within the ellipse. The area of the ellipse is p times the rms beam 
emittance, which is defined in the equation above. 

22 2

,rms x x x xxe   

1
2 2x

1
2 2x
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Liouville’s theorem : In the absence of nonlinear forces or acceleration, the phase-
space volume is constant. For the x-px phase space, the phase-space area (emittance) 
is conserved. Strictly speaking, this is only true for the slice emittance. The emittance 
of several slices projected on x-px can become smaller if their ellipses are lined up. 

The phase-space ellipse along a FODO lattice changes but the ellipse area remains 
constant. The beam waist (ellipse is upright and b is minimum) occurs at the QD’s. 
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The beta function is used to describe the beam’s size (square root of 
beta) and to identify the maximum amplitude of beam’s envelope; beta 
also tells us where the beam is most sensitive to perturbations. 

rms beam radii in x and y 

xxx eb  yyy eb 
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• 4GLS are x-ray FEL that produce tunable, fs coherent x-rays with peak 
brightness ten orders of magnitude higher than the 3GLS brightness. 
 

• RF linac are used to drive the 4GLS because they produce electron beams 
with the requisite electron beam brightness for x-ray FEL. 
 

• Both normal-conducting (copper) and superconducting (niobium) RF 
accelerators have been used for x-ray FEL. 

 

• The important electron beam parameters are: beam energy, peak current, 
beam emittance, and beam energy spread. 

 

• Transfer matrices are linear transformations (maps) of the 6D trace space 
of each particle in the beam from one location to another. 


