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Caveat emptor 

This is a zero-order pedagogical look 

based on basic accelerator physics 

My numbers are not CERN’s numbers,  

but they are quite close (~5%) 
 

For a more precise analysis  

based on a real lattice design look at  

arXiv: 1112.2518.pdf  

by F. Zimmermann and A. Blondel 
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Scenario: LHC has discovered the Higgs 

 Your HEP friends want to study its properties 

 “Monte Carlo studies show that you need ~ 25 K Higgs for a paper 

that can get the cover of Nature” 

  They & their students don’t want to be on shift for  a lifetime  
 

 They comes to you, his favorite machine builder 

 “We need to build a factory to produce 6000 Higgs per year.  
Projected costs (€ 15 B) all but killed the ILC. Now we know that we 
don’t need 500 GeV. What about something half that energy?” 

 

  You reply,  

 “You don’t understand about linacs. Half the energy costs you 75% of the 

original price.” 
 

 “Let’s try something different - a storage at CERN .  

After all LEP 2 got up to 209 GeV.” 
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What LEP2 might have seen 
How can we produce a Higgs with e+e-? 

e+ 

e- 

H 

   

b 
   

b

They respond, “Exactly, but they did not see anything!  
 

The cross-section ~ 2 fb. They would have had to run for decades. 
 

A muon collider would be ideal.  The  is 40,000 times larger.” 
 

“True,” you reply, “be we don’t even know if it is possible.  
 

Let’s go back to storage rings. How much energy do you need?” 
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Dominant reaction channel with sufficient  

 e+ + e- ==> Z* ==> H + Z 
 

 MH + MZ = 125 + 91.2  = 216.2 GeV/c2 
  

 

 

 

 

 

==> set our CM energy at the peak : ~240 GeV 

e+ 

e- 

Z* 

Z 

H 
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Physics “facts of life” of a Higgs factory 
 Will this fit in the LHC tunnel? 

 Higgs production cross section ~ 220 fb  (2.2 x 10-37 cm2) 
 

 Peak L = 1034 cm-1 s-1  ==>   < L> ~ 1033 cm-1 s-1  
 

 ~30 fb-1 / year ==> 6600 Higgs / year 
 

 Total e+e- cross-section is ~ 100 pb • (100GeV/E)2 

 Will set the luminosity lifetime 

 

 

 

Oh, and don’t use more than 200 MW of electricity 

We don’t have any choice about these numbers  
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Road map for the analysis 

 How do “facts of life” affect the peak luminosity 

 First some physics about beam-beam interactions 

==> Luminosity as function of Ibeam and Ebeam 

 What ß* is needed? 

 What is the bunch length, z, of the beam? 

 How does rf system give us z 

 What are relevant machine parameters, c, frev, frf, synch, etc. 

 But first, what is E/E 

 How synchrotron radiation comes in 

 What is the rf system 

 What sets the beam size at the IP 

 What are life time limitations 

 Conclusions 
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Storage ring physics: Beam-beam tune shifts 

Space charge fields at the Interaction Point 

electrons positrons 

At the IP space charge  cancels; but the currents add  ==>  the IP is  a “lens”  

i.e,  it adds a gradient error to the lattice, (kspace charges) 

where (kspace charges) is the kick (“spring constant’) of the space charge force 

Therefore the tune shift is  

 

For a Gaussian beam,  the space charge kick gives 

 

  

s 
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Effect of tune shift on luminosity 

 The luminosity is 

 

 Write the area in terms of emittance &  at the IR (*) 
 

 

 For simplicity assume that 

 
 

 In that case   

 

 And 
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To maximize luminosity, 

Increase N to the tune shift limit 

 We saw that 

 
 

Or, writing N in terms of the tune shift, 

 

 

Therefore the tune shift limited luminosity is  
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Tune shift limited luminosity of the collider  
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We can only choose I(A) and ß*(cm) 

 For the LHC tunnel with fdipole ~ 2/3,  curvature ~ 2700 m 
 

  Remember that 

 

 

 Therefore,  Bmax = 0.15 T 
 

 Per turn, each beam particle loses to synchrotron radiation 

 

 

 or 6.54 GeV per turn 
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Uo(keV ) = 88.46
E 4 (GeV )

r(m)

Ibeam = 7.5 mA ==>  ~100 MW of radiation (2 beams) 
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CERN management “chose” I;  

That leaves * as the only free variable 

 Then 

 

 Therefore to meet the luminosity goal 
 

<ß*
xß

*
y>

1/2
 ~ 0.2 cm   (10 x smaller than LEP 2) 

 

 Is this possible? Recall that is the depth of focus at the IP 
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For maximum luminosity 

==> z ~ * ~ 0.2 cm 
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Bunch length, z, is determined by rf & Vrf 

 The analysis of longitudinal dynamics gives 

 
 

 

  

where c = (L/L) / (p/p)  
 

 If the beam size is ~100 µm in most of the ring 

 

  

for electrons to stay within x of the design orbit 
 

 To know bunch length & c we need to know p/p ~ E/E 
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Bunch length, z, is determined by E/E 

 For electrons to a good approximation 

 
 and 

 

 
 So                              ==>   E/E  ≈  .0035 
   

 Therefore for electrons to remain near the design orbit   

 

 

  (was 1.8 x 10-4  for  LEP2) 
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ecrit »1.5 MeV

c = (L/L) / (p/p) ~ 8 x 10-5 
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The rf-bucket contains E/E in the beam 

 As Uo ~ 6.5 GeV,  

Vrf,max > 6.5 GeV + “safety margin” to contain E/E 
 

 Some addition analysis 

 

 

where h is the harmonic number (~ CLEP3 / rf ~ 9x104) 
 

 The greater the over-voltage, the shorter the bunch 
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For the Higgs factory… 

 The maximum accelerating voltage must exceed 9 GeV 

 Also yields z = 3 mm which is okay for ß* = 1 mm 
 

 A more comfortable choice is 11 GeV (it’s only money) 

 ==> CW superconducting linac for LEP 3 ==> synch 
 

 Therefore, we need a SCRF linac in 4 pieces  

 Remember that the beam loses ~ 6% of its energy in one turn 

LEP2 lost 3.4 GeV ~ 3% per turn 

 We need a higher gradient than LEP2; 6 MeV/m is not enough 

 22 MeV/m ==> 500 m of linac (the same as LEP 2) 
 

 High gradient ==> frf > 1GHz ;  
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For the Higgs factory… 

 The maximum accelerating voltage must exceed 9 GeV 

 Also yields z = 3 mm which is okay for ß* = 1 mm 
 

 A more comfortable choice is 11 GeV (it’s only money) 

 ==> CW superconducting linac for LEP 3 

 This sets the synchronous phase 
 

 For the next step we need to know the beam size 

 

 

 Therefore, we must estimate the natural emittance which is 

determined by the synchrotron radiation E/E 
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The minimum horizontal emittance   
for an achromatic transport 
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Because c is so small,  
we cannot achieve the minimum emittance 

 

 For estimation purposes we will choose 20 min as the 

mean of the x & y emittances 
 

 For the LHC tunnel a maximum practical  dipole length is 

15 m 

 A triple bend achromat ~ 80 meters long ==>  = 2.67x10-2 

 

 ~ 7.6 nm-rad ==> transverse = 2.8 µm 

 

 
How many particles are in the bunch? 

Or how many bunches are in the ring? 
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We already assumed that  

the luminosity is at the tune-shift limit 

 We have 

 

 

 

 
 

 Or  

 

 So,        Ne ~ 1.3 x 1011 per bunch 
 

 Ibeam = 7.5 mA ==> there are only 3 bunches in the ring 
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Let’s return to  
Space charge fields at the collision point 

electrons positrons 

At the IP space charge cancels; currents add  

==>  strong beam-beam focus 

 => Luminosity enhancement 

 => Very strong synchrotron radiation (beamstrahlung) 

Beamstrahlung is important in linear colliders 

What about the beams in LEP-3? 
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At the collision point…with L =1034 

 

Ipeak = Ne /2 z   ==> Ipeak ~ 1.6 kA 
 

 Therefore, at the beam edge () 
 

B = I(A)/5r(cm) = 1.6 MG ! 
 

 When the beams collide they emit synchrotron radiation 

(beamstrahlung) 

 
 

  But this accumulates over a damping time 

   

ec,Beams[keV ] = 2.218
E [GeV ]3

r[m]
= 0.665 × E[GeV ]2 × B[T] =1.1 GeV

The rf-bucket must be very large to contain such a big E/E 

Beamstrahlung limits beam lifetime & energy resolution of events 

EBeams ≈ (2/JE)*Sqrt (number of turns in damping time)  c,Beams ≈ 10 GeV 
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At L =2x1033 

 * ~ 1.5 cm ==> 9 GeV of linac is okay 

 

 Ipeak
 can be reduced 3 x  and … 

 

 The beam size can increase 3 x  

 

 ==> Bsc is reduced ~10 x ==> EBeams ~ 1 GeV 

 This is < 1% of the nominal energy 

 Many fewer electrons will be lost 

 

A much easier machine to build and operate 
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Yokoya has done a more careful analysis 

 

 Beamstrahlung limited luminosity 

 

 

 

 

 This implies very large rings, high beam power, and small 

vertical emittance 
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Mechanisms limiting beam lifetime  

 Luminosity lifetime  

Total e+e- cross-section is ~ 100 pb • (100GeV/E)2 

  Beamstrahlung lifetime 

 

 Beam-gas scattering & bremsstrahlung 

 

 Tousheck lifetime 

 

 And…  
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And there are other problems 

 Remember the Compton scattering of photons up shifts the 

energy by 4 2 

 

 

 

 Where are the photons? 

 The beam tube is filled with thermal photons (25 meV) 

 

 In LEP-3 these photons can be up-shifted  as much as  2.4 GeV  

 2% of beam energy cannot be contained easily  

 We need to put in the Compton cross-section and photon density to find 

out how rapidly beam is lost 

E=mc2 out 

in 
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The bottom line: 

The beam lifetime is 10 minutes 

 We need a powerful injector 
 

 Implies rapid decay of luminosity as operation shrinks 

away from tune shift limit 
 

==> we need top-off operation 

From Zimmermann & Blondel 
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Conclusions (for L =2x1034)   

 LEP3 is a machine at the edge of physics feasibility 

 Beamstrahlung issues require more, detailed study  

 Momentum aperture must be very large 

 240 GeV is the limit in the LHC tunnel 
 

 The cost appears to be << a comparable linear collider 
 

 A very big perturbation of LHC operations 
 

 Cannot run at the same time as the LHC 

 

The LEP3 idea might be a viable alternative  

as a future HEP project 
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Collider Physics: 

The Farthest Energy Frontier 
Lecture 2 

William Barletta 

United States Particle Accelerator School 

Dept. of Physics, MIT 
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VLHC/ELN: Offers decades of 
forefront particle physics 

 A large advance beyond LHC 

 The last big tunnel 

 Multi-step scenarios are the most realistic 

 Eventually 50 to >100 TeV per beam 
 

 

 Discovery potential of VLHC far surpasses that of lepton 

colliders 

 Much higher energy plus high luminosity 

 The only sure way to the next energy scale 
 

Could this really be done? 

Let’s work backward from the collision point 
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Collision frequency is (∆tcoll)
-1

 = c/SBunch 

Assume that z < *   

Neglect corrections for 

Set N1 = N2 = N 

ex  =  ey    and     bx  =  by 

Luminosity formula exposes  

basic challenge of the energy frontier 

Other parameters remaining equal 
  

Lnat    Energy  but      Lrequired  nergy)2 

“Pain” associated with going to higher energy grows non-linearly 

Most “pain” is associated with increasing beam currents. 
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Potential strategies to increase luminosity 

 1) Increase the charge per bunch, N 

 2) Increase the number of bunches, to raise I 

 3) Increase the crossing angle to allow more rapid bunch 

separation, 

 4) Tilt  bunches with respect to the direction of motion at IP 

(“crab crossing”)  (will not present this) 

 5) Shorten bunches to minimize 

 

These approaches are used in the B-factories 
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What sets parameter choices? 

 How do we choose N, SB, *, and n as a function of energy?  

 Detector considerations 

• Near zero crossing angle 

• Electronics cycling ≥ 20 ns between crossings  

• Event resolution ≤ 1 event/crossing 

• Distinguish routine vs. peak luminosity running 

 Accelerator physics 

• Tune shifts 

• Luminosity lifetimes 

• Emittance control 

 Accelerator technologies 

• Synchrotron radiation handling 

• Impedance control 

• Radiation damage 

• Magnet technologies 
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Bunch spacing: Crucial detector issue 

Most probable # events per crossing 

Fractional luminosity for 

k events per crossing 

inel ~ ln Ecm 20 TeV per beam 

20 ns 

20 ns 

20 ns 
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If you could reset electronics every 5 ns… 

 Minimum bunch spacing is set by filling every rf-bucket 

 High radio frequencies are preferred, but 

• 1) must control impedances ==> superconducting rf 

• Go to high Vrf per cavity 

• requires powerful wideband feedback system 

• 2) avoid excessive long rang tune shift, ∆LR  

• ==>  larger crossing angle 
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What is the allowable tune shift ? 

 From experience at          and the Tevatron 

tot ≤ 0.024 

  Luminosity is maximized for a fixed tune spread when  

3/4 of ∆tot is allocated to ∆HO and 1/4 to ∆LR 

  Suggests that ultimate luminosity can be reached for 

NHi,IP = 1  and   NHi,Med = 0 

 However, validity of extrapolation is unknown  

• may depend on radial distribution of particles in bunch.  

  Assume maximum ∆HO per IP is ~0.01 

  In e+ e- colliders  ∆tot = 0.07 achieved at LEP 

  

Sp pS



US Particle Accelerator School 

Supercollider components that affect  
energy & luminosity limits  

 Injector chain  

 Linac  

 Lower energy booster  synchrotrons 

 Main ring 

 Dipoles - bend beam in “circle” 

 Quadrupoles - focus beam 

 RF cavities - accelerate beam, provide longitudinal focusing 

 Feedback - stabilizes beam against instabilities 

 Vacuum chamber - keeps atmosphere out 

 Cooling - removes waste heat 

 Beam dumps & aborts - protects machine and detectors 

 Interaction Regions and detectors 

 Quadrupoles to focus beam 

 Septa to decouple beams electromagnetically 

 Detector to do particle physics 
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SSC experience indicates cost drivers 

Lowering dipole cost is  

the key to cost control Main dipoles 

82% 

Magnet cost distribution 

Main  

collider 

57% 

Accelerator cost distribution 

SSC total  

   cost 

Other 
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Dipole magnet type distinguishes 
strategies for VLHC design 

 Low field, superferric magnets 

 Large tunnel & very large stored beam energy 

 Minimal influence of synchrotron radiation 
 

 “Medium” field design  

 Uses ductile superconductor at 4 - 8 T (RHIC-like) 

 Some luminosity enhancement from radiation damping  
 

 High field magnets with brittle superconductor  (>10 T) 

 Maximizes effects of synchrotron radiation 

 Highest possible energy in given size tunnel 

Does synchrotron radiation raise or lower the collider $/TeV? 
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Dominant beam physics @ 50 TeV/beam:  
synchrotron radiation 

 Radiation alters beam distribution & allowed  at acceptable backgrounds 

 Radiation damping of emittance increases luminosity 

 Limited by  

• Quantum fluctuations 

• Beam-beam effects 

• Gas scattering 

• Intra-beam scattering 

 Maybe eases injection 

 Maybe loosen tolerances 

 ==> Saves money ? 
 

  Energy losses limit Ibeam 

 1 - Heating walls ==> cryogenic heat load ==> wall resistivity ==> instability 

 2 - Indirect heating via two stream effects 

 3 - Photo-desorption => beam-gas scattering => quench of SC magnets 

 ==> Costs money 

Uo  = 
4π rp

  m p c2 
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g  

 4

r 
   =  6.03 ´ 10 -18 

g  
 4

r (m) 
 
  GeV

 

E  = 88 TeV 

Bd = 9.8 T 

To = 2.5 h 

  

Ng ~ 4pa per turn
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Beam distribution may change max 
consistent with acceptable backgrounds 

Beam dynamics of marginally damped collider needs experimental study 

Damping decrement fractional damping per turn 

Beam•beam limit versus damping decrement (10/13/00) 

x=.006+.024d/10-4)0.33

Damping decrement d 
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Comparison of SR characteristics 
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 Direct thermal effects of synchrotron radiation:  

 

 

 

 

 

 
 

 

 2-stream effects can multiply thermal loads - requires study 

Thermal loads  constrain current in  
high field designs 

0 2 4 6 8 

0 . 0 0 1 

0 . 0 1 

0 . 1 

1 

B e a m   e n e r g y   ( T e V ) 

P
o

w
e

r 
(W

/m
/b

e
a

m
) 

T o t a l 

p h o t o e l e c t r o n s S . R . 

n u c l e a r   s c a t t e r i n g 

r e s i s t i v e 

Radiation effects in LHC 

Scales with  

photon number 

~ IE  

Scaling with Ib & E 



US Particle Accelerator School 

Physics & technology  of vacuum chamber 
in arcs seriously limits collider performance 

• Considerations that can limit luminosity: residual gas, instabilities 

• Holes for heat removal & pumping must be consistent with  low Z() 

• As plenum gets larger & more complex cost rises rapidly 

Major determinant 

of operating costs 
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Vacuum/cryo systems:  
Scaling LHC is not an option 

 Beam screen (requires aperture) 
1. Physical absorption 

a) shield & absorber are required 

b) regeneration @ 20 K tri-monthly 

2. Chemical absorption 

a) finite life 

b) regeneration at 450 - 600 K annually  

3. “Let my photons go” 

  a) Not-so-cold fingers 

  b) Warm bore / ante-chambers 
  

 Cryogenics 
 sensible heat v. latent heat systems 

 LHC tunnel cryogenics have more than 1 valve per magnet average 

 Superfuild systems are impractical at this scale 
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Synchrotron 

Radiation mask 

WAB-’91 

Synchrotron masks and novel materials 
may enhance performance 

BUT, masks work best in sparse lattices & with ante-chambers 
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2-in-1 transmission line magnet lets photons 
escape in a warm vacuum system 

 

* Width 20 cm.   
 

* 2-in-1 Warm-Iron "Double-C” Magnet 

has small cold mass.   
 

* B @ conductor ~ 1 T;  NbTi has high Jc  

==>  low superconductor usage.   
 

* Extruded Al warm-bore beam pipes with 

antechambers.   

 

* 75 kA SC transmission line excites 

magnet; low heat-leak structure.   
 

Simple cryogenic system. 
 

Current return is in He supply line.  

Radiation power is low,  

but number of  photons is large 
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Technical challenges for RF System 

 Provide large power for synchrotron radiation losses  

 (5.5 MW in B factory HER @ Ldes;  ≈ 2 MW in  VLHC )  

 Provide large voltage for short bunches (easier with SC rf) 

 Minimize Higher Order Mode (HOM) impedance    

 Options: 

 1) Fundamental mode frequency  (200 - 600 MHz) 

 2) Room temperature v. SC rf-cavities (Need fewer cavities) 

 3) Time domain or frequency domain feedback 

 Design approach (B factories): 

 Minimize number of cavities with high gradient 

 500 kW/window ==>  >120 kWtherm/cavity  => difficult engineering 

 Shape cavity to reduce HOMs 

 High power, bunch by bunch feedback system  (Tmulti-bunch ≈ 1 - 5 ms) 
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Short luminosity lifetime at maximum L 
requires powerful injection chain 

 Beam loss by collisions at Lmax limits minimum Ibeam at 

injection 

 

 

 

 

 

Tinj < 0.1 1/2,lum 
 

 For large Ibeam & Nbunch : resistive wall instability sets  

minimum injection energy for main ring 

  Space charge tune spread sets energy of linac &  boosters 
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Example: 
Loading 500,000 bunches for high L 

High Energy Booster:  5 TeV,  28 km

Main Ring:  100 TeV,  300 - 400 km  

MHEB:  500 GeV
MLEB: 70 GeV

LEB: 12 GeV
 LINAC:  1.7  GeV

 

Circum Max E Min E 

(km)

Main Ring 270 100 TeV 5 TeV

HEB 28 5 TeV 0.5 TeV

MHEB 2.9 500 GeV 70 GeV

MLEB 0.35 70 GeV 12 GeV

LEB 0.1 12 GeV 1.7 GeV

LINAC 0.1 1.7 GeV —

Bunches Cycle T 

(s)

Main Ring 500000 1000

HEB 50000 300

MHEB 5000 30

MLEB 200 1.2

LEB 10 0.06

LINAC 5 0.03

1.60E-04

1.60E-03

7.97E-03

9.61E-03

1.23E-02

—

∆ n
SC

 

200 - 300 km 

 Total loading time 3000 sec / main ring (1.5 nC/bunch) 

 Total acceleration time 1000 sec / main ring ==> Total fill at 100 TeV = 8000 sec 

Tlum,1/2 = 105 sec  @  L = 1035 cm-2s-1 
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 From hadronic shower 

 

 or 

 

 where 

 

 

 with   = psuedo-rapidity = - ln (tan /2) 

   H = height of psuedo-rapidity plateau 

 Detailed studies show that dose is insensitive to form of f(p); 

use f(p) = d( p- p)

 Approximately half as many πo 's are produced 

Radiation  from IP at high L  

Dose  µ  Ncollision ´ sinel ´ Charged multiplicity/event ´ 
d E 

 

dx 
 

 

Dose  µ  Ncollision  

d 2 Ncharged

dh dp
 ^
   

d E 
 

dx 
 

 

d 2 Ncharged

dh dp
 ^
   ≈  H f (p^)
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Scaling of radiation from hadronic shower  

 Power in charged particle debris (per side) 

 

 

  Radiation dose from hadron shower  

 

 

where 

   r = distance from IP in meters 

    = psuedo-rapidity = - ln (tan /2) 

   H = height of rapidity plateau = 0.78 s0.105 

   ≈ constant for < 6 ( > 5 mr) 

   for  > 6, H(E) —> 0 linearly @ kinematic limit 

   <p=  0.12 log10 2E + 0.06 

   s = 4 E2    
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Radiation damage of IR components 
severely limits maximum luminosity 

 Distance to first quad, Q1: l*  (/G ) 1/2 

 

 

  Let Q1 aperture = 1.5 cm ==> 

At 100 TeV &  L = 1035 cm-2s-1  

Pdebris = 180 kW/side  

With no shielding 

  D (Q1) ≈ 4 x 108 Gy/year 

==> ≈ 45 W/kg in Q1  

  Superconducting Q1 requires ≈ 20 kW/kg of compressor power 

l*  =  20 m E
20 TeV

 1/2

 

At L = 1035 cm-2s-1  Q1requires extensive protection with collimators 
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Radiation & Beam Abort:  
Worst- Case Accident 

 2. 8 GJ ~ 8 x LHC Energy (can liquify 400 liters of SS) 

If sweeper fails, the beam  

travels straight ahead into  

a sacrificial graphite rod  

which takes the damage &  

must be replaced.  

Beam window also fails. 

Normally extracted beam beam is swept  

in a spiral to spread the energy across 

graphite dump 
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FNAL-BNL-LBNL Study: 
Staged approach to VLHC 

 Each stage promises new & exciting particle physics 

 Build a BIG tunnel, the biggest reasonable for the site 

 E = 40 TeV ==> C = 233 km for superferric design 

 First stage assists in realizing the next stage 

 Choose large diameter tunnel 

 Each stage is a reasonable-cost step across energy frontier 

 Use FNAL as injector & infrastructure base 

S 1 

S2 

FNAL 
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Parameter list for VLHC study 

                Stage 1                 Stage 2 
 

Total Circumference (km)    233   233 

Center-of-Mass Energy (TeV)   40   175 

Number of interaction regions   2   2 

Peak luminosity (10 34 cm -2 s -1 )   1  2  

Luminosity lifetime (hrs)    24   8 

Injection energy (TeV)    0.9   10.0 

Dipole field at collision energy (T)   2   9.8 

Average arc bend radius (km)   35.0   35.0 

Initial Protons per Bunch (10 10)  2.6   0.8 

Bunch Spacing (ns)    18.8   18.8 

* at collision (m)    0.3  0.71 

Free space in the interaction region (m)  ± 20   ± 30 

Inelastic cross section (mb)    100   133 

Interactions per bunch crossing at Lpeak   21   58 

Psynch (W/m/beam)     0.03   4.7 

Average power (MW) for collider   20   100 

Total installed power (MW) for collider  30   250 
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Can VLHC be a linear proton collider ? 

 Say Lcoll < 250 km ==> Eacc  ~ 1 GeV/m  ==> frf ≈ 100 GHz 
 

   

  HD is the luminosity degradation due to the pinch effect    

  D is the disruption parameter that measures the anti-pinch 

 

 

For D < 2, the value of HD ≈ 1. 
 

 At 100 TeV/beam,  * ~ 1 m  & n ~10-6 m-rad 

 For f rf = 100 GHz,  z ~ 10-6 m  ==> z/
*n≈1 m-1 

 Assume we can  

 1) generate bunches of 100 nC   &   2) preserve emittance in the linac 

    rpNB ~10- 6 m 

 Hence 1033 cm-2 s-1 ==> P ≈ 30 GW per beam 

 ==> the ultimate supercollider should be a synchrotron 

D  = 
rp 
 NB sz

g 
 sx,y

2
  = rp 

 NB   
sz

 

b 
* 

en
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Conclusions 

 No insurmountable technical difficulties preclude VLHC at 

~1035 cm-2 s-1 with present technologies 

 Radiation damage to detectors & IR components is a serious issue 

 

 At the energy scale >10 TeV the collider must recirculate 

all the beam power (must be a synchrotron) 

 

 Proton synchrotrons could reach  up to 1 PeV c.m. energy 

 One must find a way to remove the synchrotron radiation from the  

cryo-environment 

 Even given the money, big question is whether the management 

and sociology of such a project (~1000 km ring) is feasible 

 


