
Homework 1

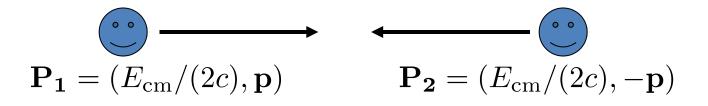
1. Show explicitly that the expression for collider luminosity

Luminosity =
$$\frac{N_1 \land N_2 \land frequency}{Overlap Area} = \frac{N_1 \land N_2 \land f}{4\rho S_x S_y} \land Correction factors$$

is equivalent to the expression for fixed target luminosity.

Tutorial exercise:

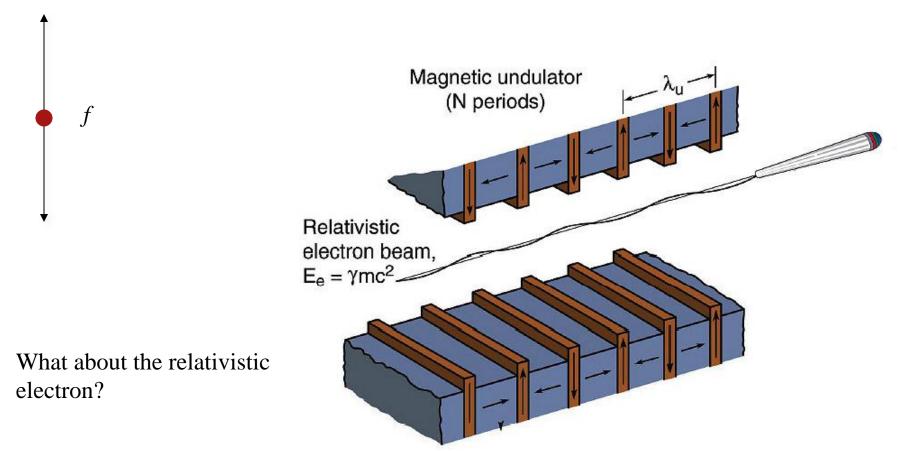
- The Fermilab Alvarez Linac accelerates protons to a kinetic energy of 400 MeV
 - a) Calculate the total energy of the protons in units of MeV
 - b) Calculate the momentum of the protons in units of MeV/c
 - c) Calculate the relativistic gamma factor
 - d) Calculate the proton velocity in units of the velocity of light.


Particle collisions

• Two particles have equal rest mass m₀.

Laboratory Frame (LF): one particle at rest, total energy is E.

$$\mathbf{P_1} = (E_1/c, \mathbf{p_1})$$
 $\mathbf{P_2} = (m_0 c, \mathbf{0})$


Centre of Momentum Frame (CMF): Velocities are equal & opposite, total energy is E_{cm} .

Exercise: Relate E to E_{cm}

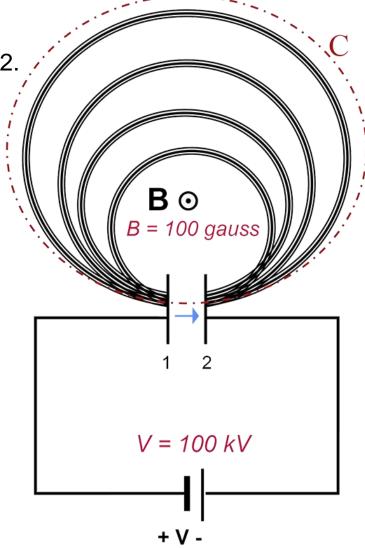
Undulator radiation: What is λ_{rad} in terms of $\lambda_{undulator}$

An electron in the lab oscillating at frequency, f, emits dipole radiation of frequency f

Exercise from Whittum

- Exercise: A charged particle has a kinetic energy of 50 keV. You wish to apply as large a force as possible. You may choose either an electric field of 500 kV/m or a magnetic induction of 0.1 T. Which should you choose
 - (a) for an electron,
 - (b) for a proton?

Possible high energy DC accelerator?


At t = 0 the ion source at 1 injects a proton of energy E_o in the gap pointed at a hole in plate 2 The entire device is imbedded in a constant magnetic (dipole) field, B, pointing out of the surface.

Exiting the plate 2, the proton enters the innermost virtual beam pipe.

If B = 100 Gauss and $E_o = 100 \text{ keV}$,

what is the radius of the first orbit?

After 10,000 revolutions, what is the energy of the proton as it leaves plate 2.

Traversing the SLAC linac

- Electrons are injected into the 3 km SLAC linac at 5 MeV. The linac operates at constant gradient to bring the electrons to 50 GeV at the end of the linac.
- If you were riding on the electron, how long would it take on your clock for the electron to get to the end of the linac?