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You should be reading the example scripts as
templates for your projects.

You should run the demos/scripts yourselves.

We are available to answer questions by e-mail or
during the homework sessions.

Homework and “project”.

— You should be thinking about your project.

— Pick a topic that interets you.
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® General topics of the interaction of particles
(charged) with electric and magnetic fields.

® Hadron specialists ~ ignore radiation (but
LHC ...)

® Electron specialists worry about SR
radiation (but muon collider ...)

® Final topic will be simple beam design (GUI)
of a quadrupole doublet.

06/15/14 UIC — MATLAB Physics 2



orh

® Set up for general second order ODE with a
driving harmonic force. Symbolic math.

A general second order inhomogeneous differential equation appearsin Eq.5.14. It can
be simplified by expressing time in units of the undriven and undamped circular
frequency wo_or 1. When the natural frequency is defined to be one, there remain three
parameters defining the equation, a damping factor b, a driving amplitude C and the ratio

of the driving frequency to the natural frequency k.
md "y d"t+mady/ dt+by= Asin(e7)
d'yldt+bdy/dr+y=Csin(kt) 514
r=oto,=bimk=0lo,
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® The second order ODE has a symbolic
solution.

® In general try for a symbolic solution first
using ’solve” or “dsolve”, “int”, “diftt”

® If that does not work, use numerical “ode45”
or “quad” or “gradient”

® The free SHO frequency is shifted by
damping.
mb.fmtj:q/l—{b.fl}lﬁb.fl 515
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¢ Symbolic solutions. Run
“Damped Forced SHO”

Si=mple Harmonic, Ha Damping. Ho Driving

C2 coas{t) + C3 sin(c)
Sisple Harmonic, Damped, Ho Driving

5 N - 1 0% A s A -] [ B
expl — = 1 — — — 1 1 b + #1) expl -t | — +# —— 1 | b — #1}
Y Y 2 2 Ff b} Y 2 2 Fr
2 #1 2 #1
where
1.2

#1 == [[(b - 2) (b + 2))
Enter Damping b = 1
Sizple Harmonic, Ho Damping, Dziving

F) c Kk o k \ S o com(t (kK = 1)) e cop(t [k + Lk} N
o3 (t) + FAR(L) | ======= = ======= | = JIR(E]} | ==—mccccsssssm—s b EEsssssssEm————— ] =
W2 k= 2 2 k+ 2/ % i k=23 2 k + I £
F/ e sin(t (k = L}) c sindt {(k + 1)} %
e A T e 1
b Zd k = 2 2 k = 2 ’

Encer amplitude ¢ and fregquency kK as [ . ., 1): [5.1.1]
Simple Harmonic, Damped and Driven
Encer damping b, asplitads & and driving frequensy k as [ , . 1): [1 5 1.1)
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¢ Command line script is the default — a few
GUI wrappers are available.

Frea Oscillations, No Damiping Frea Oscillations, With Dampéng
1 1
0.5
il 0.5
= —
-+ | ¥
0
0.5 1
| 0.5
] b 10 0 o 10
LS t
Forced Oscillations, Mo Damping Forced Qscillations, With Damping
40 &
20 1
= =X
|:| 4
=20 <h
0 & 10 0 5 10
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— Damped, Driven Oscillator

Cramping, (0,2}

{1

Crriving Amp (0,3)

!

Driving Freg,
1.01,3)

|

0.5}

Forced Oscillations, With Damping

Use the sliders
to change the
damping, and
the driving
amplitude and
frequency

06/15/14
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® Drift — velocity separator, v = E/B. Use in
momentum selected beam to physically
select masses; pions, kaons, protons — low

momentum beams.

&3/ d*t =g/ mE+(dF d)xB] | =)
7 gy, \\\_hd_f_____\‘
Run “ExB_ODE_NR” o

Fignra 3 .26: Tha thres position componants as a function of time. Tha basic eircular
motion of the x and v positions is avidant.
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® Uniform K is solvable simply. In B, frequency
depends on energy (SR).

dP/dt =gFE
P=gFEt

B=Ple=at/.far)? +1

a=gk /' m

z —alf(ay =1-1] _ .
dP/dt = q(E+ vxB)

B=Ple=P/NP+ M
dP/dt= q(E+ PxB/¢)
di/dt= cP/¢

06/15/14 UIC — MATLAB Physics 9



!ll = L

® For a particle passing through a medium, there is a
Doppler shift. If v > ¢ in the medium, Cerenkov
radiation. Velocity selection-> particle ID. Run
“Doppler Cerenkov”

@/@, =1—-vcos&/v,

T ; -
5 Light Emisaacn a = w Sampls . Light Emission at 11 Time Samples
o q‘"“'x\ & —
\ \
5 —_— 4
Ty ™, §

~ \

, Hhi% ]
Iih |

o : . :: : =: :: __'.____ IIII | |I 1 I|

£ -4 2 -] F 4 ] o L E : __I__L_
x 2 ] 2 4
x

& 4

Fignra 4.15: Outgoing wavas in the case whara viv, =0.5. The ragions of wavelansth
comprassion and expansionars ssen in the forsardand backrard positions. The
amission points are praan®.

Figurs 4 .16: Outgoing waves in the case whara v/, = 1.5, The ragions of wavelsnsth
comprassionand sxpansionars seen in the formard and backwrard positions. Tha
amissionpoints ars graen ¥
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IH‘}S Biot-Savert for f
SLrE ) -

® Integral is elliptics. Either expand or do the intergal
over dI numerically. Simpler numerically ?

R:R(cosy i+ sin f)

dl = R(- siny i + cosll f)

7= ((x- Reosl )i+ (y- Rsiny j)+ zk

dB = (dixi)/r

source at R, field atr = (x,y,z)

dB= i(zcosy )t j(zsing )4 lg(ysind/ - xcosl) + R?)
dB= dB/[(r*+ R*)- 2*R*(xcosy - ysinj )"
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I!.’fs Current Loo
<) f | P

® Do the integration for Biot-Savert numerically.

® Check on axis limit. Run “Current_Loop”

B : 2R /(z*+ R)” e

z/a
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® Check limit — at x =y = 0, Bx=By=0.

06/15/14

“quiver”

D5}

-1 5k

25

B field vector

148F

0.5+

....................

....................

....................
....................
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® Helmbholtz coil T =7

5 k‘n ; -.:\\,\ J}J'
. o A
~ uniform B field MRS .

® Prototype for Vs

a dipole

Figura 3.8: Contourplet for Bz dus to two currant loops sepamted by a distancs aqual te
thair radins.

magnet
® Run

“Helmholtz_Coil”

o888 8E

06/15/14 UIC — MATLAB Physics 14



1

, 2d=

iform B

® Add fields due to 2 loops - ~un

its?

1m

Contour for Bz

® Check d
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® Limiting contour

Contour for Bz
2 .

15F
|
0.5
g o

N5+

At

A5

_2 | | 1 | | |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Only 1
parameter -
distance

between loops

— Helmholtz Caoil
d Between Coils 1tk
Radius 1, (0.01,3)
e e i
1 » 05¢ = =
Contour '-':
= 0
05} = <
— ol S
At
2 -1 0 1
*/a
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® Use B to contain the beam and E to
accelerate when crossing the “dees”. Run

‘GCYCIOtron,’ Cyclotron Orbits « Non-Relatisitic
° j ,_f-"*f_. e ;
e Frequency is not L7 g |
energy dependent N /7 N Y YT
(NR). $ — ramp B
@=g5/m I =
r=v, ! @ % 4 3 2 4 ntg‘.] 1 .2 % 4 &

Figura 1 28:End ofthe movia for a chargad particla in a evelotronweith 10 half
revolutions and withan energy kickof (1.3 at each crossing of the “dess™.
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® NR particle radiates as a dipole in angles.
Radiative fields go as 1/r.

® There are static like fields near the source

® Near and far zones depend on Kr.

Er =d(2z/r)1-ilr)e”
Er =d(x/rl-ir -(kr) ™
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® Dipole (NR) radiation. Run “Dipole Power”

06/15/14

Dipole electromagnetic radiation is explored in the regime where the radius and inverse
wave vector,r and 1/k, are much larger than the size of the dipole in the script

“Dipole Power”. The velocity ¢ is taken to be one. The expression for the dipole power
angular distribution is shown in Eq. 3.12. The dipole angular distribution is the sin

squared of the polar angle of kwith respect to the dipole direction. Thereisa wave
outgoing at the speed of light which falls as a radiated energy asinverse of radius, so that

the power crossing a sphere of radius r is independent of the size of r. This is the basic
characteristic of a radiation field.

dP | d01 = ksin’ 5'\/1 +(1/ o) [cos(lt — r))+ tan~ ()] / 7 312
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® Movie of system behavior — exact for
distance from dlpole itself large.

Mwe of Di p-u1e Ftad iation

1 1 1 I. - 1 — 1 Il i 1
-0 60 40 -20 0 20 40 60 a0 100
x
Figure 3.46: Radiated angular pattern for a dipole when r and 1/k aregreaterthan the size of the dipole

itself,
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1k in (mj}, (1,10)

1 k |

Mesh ull

— Dipole: Radiation, Near and Far Zones

06/15/14

Movie of Dipale Radiation

10 ~.

100
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Drop
Menu for
mesh and
contour
display.
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e Stray E and B fields often need to be shielded
against

® K shielding uses conductors

® B shielding uses materials with high
magnetic permiability

® L.imits? To be checked

® Variables to choose are the shielding
thickness and conductivity/mu value.
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® Normal D is continuous, not E. Static field.

® Run “Dielectric”

06/15/14

¥y

Electric Fields

UIC — MATLAB Physics
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® Like the B shield with high u material. Note BC at
inner and outer cylinder surfaces. Vary k.

® Run “Dielectric_Sphere”

Electric Fields

P m m m m — e e
e e gy e e e, e Tm m b S T T e e
o T T T e T e -
e L S S S N el e

¥y

AT — e —
A e
ey o e — e
B i e e e e
T e e TR A e e e e

o -
I il
[ et i T T T F e o e mem e e —a e —a
D e e e e = m e e e e e e

L

ZZ
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¢ K =1, vacuum. Check limits for physical

reasonableness
e K-> Inf, conductor
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® As in QM, photon can “tunnel” into a
conductor by a small amount. Frequency
dependent - > r.1. “plumbing”.

The conductivity o relates the current density, J, and the electric field, E, in the
microscopic form of Ohm’s law. The wave in the conductor has a complex wave vector, k,
which means that there is an exponential penetration of the wave into the conductor by a
characteristic distance d which is proportional to the inverse of the imaginary component
of the wave vector k. The form for k in Eq. 3.17 is closely related to the previous
discussion of dispersion, with ¢ playing the role of the parameter 6 in Eq. 3.14.

J:=0E
K= (0 /c)’[1+i(4no /o))

d~c/\2Twa
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It
® Perfect conductor shields static fields (e.g. image). In
VB=CB e are free to move to respond to E fields.

e Oscillating fields penetrate a conductor by a “Skin
depth” ~ 100 um for 1 MHz. Run “Skin_Depth”

B Copper Skin Depth vs. Frequency
10 T T

10° b

10° b

m)

Depthifu

10" |

10° |

-1[]" 1 | 1 |
107 107 10° 10° 10 10°
f (MHz)
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® A la Jackson — b.c at outer radius and inner radius. Induced fields
~rcosO and ~ 1/r"2.

® (oefficients from b.c.
® Limits?

® Variables to choose are the shielding thickness and mu value.

for i = 1l:lengthi{zz):
for j = l:length({vvy)
r = sgrtizz(i) .72 + vvi(i) ."2):

ct = zz(i) ./ r:
if r > b

phib(i,j) = -r .*ct + (2lf .*ct) .Sz ."2);
end

if r«< 1

phib(i,j)} = (del .*r .*ct):
end
ifr<b&r>1

phikbi{i,j) = (bet .*r .%ct) + (gam .*ct) e T2
end

end
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® Recall K — Inf for a conductor. For B fields, u — Inf ( “mu
metal”) - saturation? There are no free magnetic charges — just
magnetic dipoles that can align. Once all aligned?

® Ratio 1.1, pick u. Run “Magnetic_Shield”

Magnete Equipalestials

= =
$  =-Brcosf+(c/r)cost e 'l.ff \
& =drcosh _1_ '7.“;?%_%_ f_#_»;_jf'
®, =pBroosf+(y/r')cosf (3.4) =—— | ——

Figure .10 Potantial for a metallic sphars immersadin 2 uniform masnetic fizld ofented
alongthe zaxis forb/a=12and g£=10.
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® Dipole (e.g. Helmholtz) has ~ uniform field over a volume.
Quadrupole has a B gradient which increases with distance

from the origin. Lorentz force is toward the origin (F) in one
plane and away (D) in the other plane.

& =(dB/ drixy
B =—(dB/dr)y
B, = —(dB/dr)x

k=a(dB/dr)/ p

p=-kL

X _ | cosg sin g/ i |,

Ltu'a‘z]_ Jksng cosé [[ﬂﬁfﬂj 9)
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® Beamline as a series of matrices acting on a

vector x, dx/ds,y,dy/ds

® Dipole is unit matrix ignoring dp/p captured
by the beam.

® “Drift” has straight line behavior — no forces

® Quadrupole has sin,cos,sinh,cosh matrix
elements; nonlinear-> use fminsearch

® Use thin lens to solve; starting values needed
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® Simplest system which can provide a focus

for both x and y motion (EM is not like
classical lense optics),

® Thin lense provides solutions (quadratic
equations) — 2 equations in 2 unknowns —
the F and D focal lengths.

® Options are point to point (M12=0), point to
parallel (M22=0) and parallel to point
(M11=0). Run “Quad_Doublet”
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— Doublet
To M

Dirift Spaces ——

Entrance {m},

(5.20%
|

From Q1 Exit to Q2
Entrance. (5.20%

|

From (12 Exit to

Focus. (5.20%

|

point to point -

06/15/14

Thick Lense Quad Doublet, x=blue, y=green

60
Y
40
=
£
20 /
0 . -
0 10 20
z(m)
Thick Lense Quad Doublet, Angles, x=blue, y=green
6
W
Z 4
=
=
=
= 2
2=
U '\.”.l . B
0 10 20 30 40
z(m)
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