USPAS June '15, Linac Design for FELs, Lecture Th11

Longitudinal space charge and the microbunching instability.

MV last revised 19-June-2015

Outline

1. Longitudinal Space-Charge (LSC)

- 1. Short-scale effects.
- 2. Long-scale effects

2. The microbunching instability

- 1. The physical picture
- 2. Simplified linear theory for the instability gain
- 3. The laser heater as a remedy

On-the-spot exercise: Estimate effect of longitudinal space-charge on ultrarelativistic beam

• Consider a beam of length $2l_b$, with charge Q = -eN and a test electron q = -e close to the beam head. The beam is in relativistic motion with respect to the lab.

• **Exercise**: Write the expression for the Coulomb E'_z field on the test particle in the beam co-moving frame. Lorentz-tranform field to lab frame. Estimate the work done by the space-charge force on the test particle over a distance L = 1m. Assume Q = 1nC, $E_b = 500$ MeV beam energy, and $l_b = 1$ mm.

On-the-spot exercise: Answer.

Space charge vs. rf wakefields

- Only at 10s of MeV energy or lower (i.e. in the injector) space charge effects over bunch-length scale are significant
- Q: Can we then forget about space charge altogether in the Linac($\geq 100 \text{ MeV}$)?
- A: Not quite...

$$U = \frac{Z_0 c}{4\pi l_b^2} \frac{e|Q|}{\gamma^2} L$$

Space charge can become relatively large (and dominant) either for very short bunches or on short **length scales**

A more refined model for longitudinal space-charge LSC (in the presence of metallic boundaries)

- Discussed in A. Chao's "Instabilities" book
- Assumptions:
 - Ultrarelativistic approximation: (the fields from a point charge are a 'pancake' with a small opening angle $\frac{1}{\nu}$)
 - Beam with cylindrical charge density with radius r_b
 - Infinitely conducting cylindrical pipe with radius r_p
 - Bunch density is smooth and length in co-moving frame is long compared to radius of beam pipe $\gamma L_b \gg r_b$

pipe wall

Analysis of LSC effects on micro-scale is most conveniently done in frequency domain (Impedance)

- Suppose we have a high frequency perturbation with wavenumber $k = 2\pi/\lambda$ on a beam with local unperturbed current $I_0 > 0$
 - I_0 is a slow-varying function of z, over a distance $\sim\!\!\lambda$ can be taken as constant

$$I(z) = I_0[1 + A \cos(kz)]$$

• Density wave induces energy modulation $\Delta \gamma = \Delta E/mc^2$ over a distance L_s (rigid bunch; ultra-relativistic approx.) / Impedance per unit length

 $\Delta \gamma(z) = -4\pi \frac{I_0}{I_A} L_s \frac{A}{2} \left[\frac{Z(k)}{Z_0} e^{ikz} + c.c \right]$

Alfven current	Vacuum impedance
$I_A = ec/r_c \simeq 17kA$	$Z_0 = 120\pi \text{ ohms}$

• For LSC, the impedance turns out to be purely imaginary:

$$\Delta \gamma(z) = 4\pi \frac{I_0}{I_A} L_s A \frac{|Z(k)|}{Z_0} sin(kz)$$

Comparison of main Linac Impedances (per m): LSC, CSR, & rf structures wakefields

• CSR impedance is the largest at high frequencies but overall CSR effect is smaller than LSC (dipoles are short compared to rest of machine)

The microbunching instability: The physical picture

The instability as observed in simulations

Characterize the instability in terms of gain

 $\boldsymbol{G} = \frac{\text{relative amplitude of final density perturbation}}{\text{relative amplitude of initial density perturbation}} = \frac{\Delta \hat{\rho}_f / \rho_f}{\Delta \hat{\rho}_i / \rho_i}$

Analytical model for linear gain through chicane (1) (no compression, linear and cold-beam approx., ultrarelativistic approx.)

Note: the same ΔN particles are still in same interval $\Delta z_1 = \Delta z_i$

Analytical model for linear gain through chicane (2)

$$\rho_{f} = \frac{dN}{dz_{i}} = \frac{dN}{dz_{i}} \frac{dz_{i}}{dz_{f}} \simeq \frac{\rho_{0}}{1 + kR_{56}} \frac{\Delta \widehat{\gamma}}{\gamma_{BC}} \sin kz_{i}} \simeq \rho_{0} \left[1 - kR_{56} \frac{\Delta \widehat{\gamma}}{\gamma_{0}} \sin kz_{f} \right]$$

$$Linear expansion in \Delta \widehat{\gamma}$$

$$Use \ \frac{dN}{dz_{i}} \simeq \rho_{0}, \text{ and } \frac{dz_{i}}{dz_{f}} \text{ from last slide}$$

$$\frac{k|R_{56}|\Delta \widehat{\gamma}}$$

Gain is ratio of initial and final amplitudes of density modulation

Generalizations

 $G = \left|\frac{\Delta \hat{I}_{f}}{\Delta \hat{I}_{i}}\right| = \left|\frac{\Delta \hat{\rho}_{f}}{\Delta \hat{\rho}_{i}}\right| = \frac{\overline{\gamma_{BC}}}{A} = 4\pi \frac{I_{0}}{I_{4}} L_{s} \frac{|Z(k)|}{Z_{0}} k |R_{56}|$

• In the presence of compression C

$$G \simeq 4\pi \frac{I_0}{I_A} L_s \frac{|Z(k)|}{Z_0 \gamma_{BC}} |R_{56}|Ck$$

• In the presence of <u>finite slice energy spread</u> σ_{δ} (*e.g.* gaussian energy spread distribution model) gain is reduced

$$G \simeq 4\pi \frac{I_0}{I_A} L_s \frac{|Z(k)|}{Z_0 \gamma_{BC}} |R_{56}| Ck e^{-(CkR_{56}\sigma_{\delta})^2/2}$$

Note: here k is the wavenumber before compression

Gain function: theory vs. macroparticle simulations

$$G \simeq 4\pi \frac{I_0}{I_A} L_s \frac{|Z(k)|}{Z_0 \gamma_{BC}} (R_{56} Ck) e^{-(CkR_{56}\sigma_{\delta})^2/2}$$

Theory vs. macroparticle simulations

Microbunching instability induces an energy modulation downstream of compressor

- At the very least, the electron bunch carries shot noise (uniform power spectrum)
- Additional noise may be present due e.g. to noisy laser in photo-gun injector.
- Because of the microbunching instability Spectral component of noise at $k \simeq k_{pk}$ will dominate after compression.
- These, in turn, will seed energy modulation in the linac section downstream of the compressor

A=relative density perturb.

$$\Delta \gamma(z) \simeq -4\pi \frac{I_0}{I_A} L_s A \frac{|Z(Ck_{pk})|}{Z_0} \cos(Ck_{pk}z)$$

Multiple-stage bunch compression enhances instability

• Effect compounded by repeated compression through bunch compressors. In first approx.:

$$G_{tot} \simeq G_{BC1} \times G_{BC2} \times \cdots$$

• If instability is large effects beyond the linear approximation used here can become important.

Study of µB-instability for FERMI: Longitudinal phase space, current profile at selected points

Possible cure for the μ B-I: "Heat" the beam or "fight fire with fire"

$$G \simeq 4\pi \frac{I_0}{I_A} L_s \frac{|Z(k)|}{Z_0 \gamma_{BC}} (R_{56}Ck) e^{-(CkR_{56}\sigma_{\delta})^2/2}$$

- Finite uncorrelated (slice) energy spread σ_{δ} helps with reducing the instability gain ("Landau damping").
- Why?
 - Through chicane, particles separated in energy by σ_{δ} move away from each other:

$$\Delta z = R_{56}\sigma_{\delta}$$

- This washes away clumps of charge (bunching) on the scale λ if $\Delta z > \frac{\lambda}{2}$
- Leads to condition $CkR_{56}\sigma_{\delta} \gtrsim 1$ (exponential suppression in above Eq.).
- Generally, beam out of injector is longitudinally cold (colder than needed for FEL).
 - We can afford to increase slice energy spread if this helps to reduce damage later on.
- How can we "heat" the beam?

An ingenious solution: the "Laser Heater"

- Exploit the principle of the Inverse Free Electron laser
 - conventional-laser & e-beam interact in short undulator placed in the middle of small magnetic chicane

• Energy exchange is possible between laser pulse and electrons interacting in a wiggler/undulator when the laser wavelength meets our familiar FEL resonance condition:

$$\lambda(K, \lambda_u, \gamma) \equiv \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2}\right) = \lambda_L$$

Recall: undulator parameter: $K = 0.934 \times B[T] \times \lambda_u[cm]$

The Laser Heater in action

 $[JJ] = J_0(\xi) - J_1(\xi) \simeq 1 - \frac{K^2}{8} + \frac{3K^4}{64} + \cdots$ (for K ≤1)

with $\xi = K^2/(4 + 2K^2)$.

$$z' = z + R_{51}x + R_{52}x' + R_{56}\delta$$

Entries of transfer matrix from undulator to exit of chicane

 $R_{51} = 0$, $|R_{52}| = \eta_u$ =dispersion in middle of chicane

> If angular spread is large the phase-space randomizes and energy spread becomes truly uncorrelated

$$|R_{52}|\sigma_{x'}\gg\lambda_L/2\pi$$

20

Generally, the $R_{56}\delta$ term is negligible

Designing a laser heater

- Step 1: Choose no. of undulator periods N_u
 - $N_u \sim 10$ is a reasonable choice (should not be too large to keep width $\sim 1/2N_u$ of uresonance condition wide enough)
- Step 2: Choose e-beam energy.
 - Can't be too large or else the resonance condition will demand too-short laser wavelength. Typically LH is placed right after injector. Say $E_b = 100 MeV$
- Step 4: Choose laser wavelength λ_L
 - Based on commercially available high-power lasers, e.g. $\lambda_L = 1064nm$
- Step 5: Choose undulator period λ_u (see next slide)

On choice of undulator period

At this point laser wavelength and beam energy have been set

A. Select desired undulator min. gap

There is an optimum initial slice rms energy spread

Stronger instability

Effectiveness of the laser heater: LCLS experiments

First Laser Heater installed in LCLS and tested during commissioning

Very recent measurements of microbunching instability at LCLS

- Pictures of longitudinal phase space are from screen measurements downstream of X-band transverse RF deflector (positioned after the FEL)
- First direct measurement of effect of LH on instability

The fine print

- Make sure transverse beam emittance does not suffer:
 - Dispersion should not be too large (usually not an issue)

$$\frac{\Delta \varepsilon_{nx}}{\varepsilon_{nx}} \simeq \frac{1}{2} \left(\frac{\eta_u \sigma_E}{\sigma_x E} \right)^2 \ll 1$$

- Formula for laser power is valid when the Rayleigh range $Z_R = \pi w_0^2 / \lambda_L$, long compared to undulator length $L_u = N_u \lambda_u$ (i.e. laser cross section doesn't vary significantly)
 - $w_0 = 2\sigma_r$ with σ_r being the laser *intensity* rms transverse size

Summary highlights

• Model of LSC impendance
$$I(z) = I_0[1 + A\cos(kz)]$$

 $Z(k) \simeq \frac{iZ_0k}{4\pi\gamma^2}(1 - 2\log\frac{r_bk}{\gamma})$ valid for $\frac{r_bk}{\gamma} \ll 1$

Energy modulation seeded current modulation

$$\Delta \gamma(z) = 4\pi \frac{I_0}{I_A} L_s A \frac{|Z(k)|}{Z_0} sin(kz)$$

• Bunching resulting from μB -I, seeded by shot-noise, through system with G_0 peak-gain.

$$\boldsymbol{b} = \frac{\left\langle (\Delta I_{exit})^2 \right\rangle^{1/2}}{I_{exit}} \simeq \boldsymbol{G_0} \sqrt{\frac{2}{N_{\lambda min}}}$$

• Laser pulse peak power requirement for Laser Heater

$$P_{L} = 2P_{0} \left(\frac{\sigma_{E}}{mc^{2}}\right)^{2} \left(\sigma_{\chi}^{2} + \sigma_{r}^{2}\right) \left(\frac{\gamma}{K[JJ]N_{u}\lambda_{u}}\right)^{2}$$

Elegant uses this input $\longrightarrow w_0 = 2\sigma_r$

Supplemental material

Final comments:

- Simple model of linear theory discussed neglects collective effects (CSR, LSC) within chicane
- A more general theory of linear gain is available
 - Yielding instability gain as a solution of a certain integral equation
- For proper numerical simulation no. of macroparticles should ideally equal no. of physical electrons to avoid overestimating shot noise
- In addition to shot noise instability can be seeded by disturbances at the photocathode (e.g. temporal non-uniformity of photo-laser)
 - Analytical modeling is trickier. High-resolution macroparticle-modeling is the way to go, but these too require good care.

Fresh from the presses: Evolution of amplitude of Small current perturbation at cathode (3.4ps period). Ref. plasma oscillations.

29

Impedance model for LSC (in free-space)

 E_z field (lab-frame) at $\vec{x} = (x, y, z)$ due to a single electron at \vec{x}' , with charge q = -e

$$E_z(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{q}{4\pi\varepsilon_0} \frac{(\mathbf{z} - \mathbf{z}')\gamma}{[(\mathbf{x} - \mathbf{x}')^2 + (\mathbf{y} - \mathbf{y}')^2 + (\mathbf{z} - \mathbf{z}')^2\gamma^2]^{3/2}}$$

- Beam with cylindrical charge density with radius r_b ; transverse uniform density
- Look for field E_z on axis x = y = 0 generated by a thin disk of charge at z' of radius r_b
 - Normalized transverse density: $\int \lambda_r(x', y'; s) dx' dy' = 1$

$$\frac{E_z(0,0,z-z';s)}{q_{disk}} = \frac{1}{4\pi\varepsilon_0} \int \frac{(z-z')\gamma\lambda_r(x',y';s) \, dx'dy'dz'}{[(x-x')^2 + (y-y')^2 + (z-z')^2\gamma^2]^{3/2}}$$

Note: from now on for simplicity we drop the hat: "^"

Estimating amplification of shot-noise: the difficulty with macroparticle-simulations

Estimate of bunching (at exit of last bunch compressor)

$$\boldsymbol{b} = \frac{\langle (\Delta I_{exit})^2 \rangle^{1/2}}{I_{exit}} \simeq \boldsymbol{G}_0 \sqrt{\frac{2}{N_{\lambda min}}} \qquad \text{Assuming } L_b \gg \lambda_{min}$$

- Macroparticle simulation that uses N_{mp} macroparticles/bunch overestimates bunching by: $\sqrt{N_b/N_{mp}}$

E.g. $N_{mp} = 10^6$, $N = 6.25 \times 10^9 (1nC) \rightarrow \sqrt{N_b/N_{mp}} \sim 80$