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Magnetic FocusingMagnetic FocusingMagnetic FocusingMagnetic Focusing
� Any beam of same-charge particles tend to disperse because of repulsive

Coulomb forces and initial particles’ angular divergence.
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� External transverse focusing maintains the charge density high. For ultra-
relativistic particles, magnetic focusing is more practical and efficient than
electric. ( )BvEeFL

rrrr
×+= is the Lorentz force. To produce the same work of 1 MeV over 1 

m, we need E = 1 MV/m or just B = 0.3 T.

� An FEL beam delivery system is a sequence of RF and magnetic elements.

• Dipole magnets [By=B0] are used in spectrometer lines for beam dump and
diagnostic, in magnetic compressors and transfer lines. They determine the
beam direction.

• Quadrupole magnets [By=(dBy/dx)∆x] are in between RF structures,
diagnostic stations, transfer lines and undulator. They determine the beam
transverse size.

• Sextupole magnets [By=(d2By/d2x)∆x2] are rarely used in dispersive regions
for linearization of the longitudinal phase space.
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Dipole MagnetDipole MagnetDipole MagnetDipole Magnet
� Particles with different longitudinal momentum follow different trajectories

(i.e., bending radius) according to:

Dipole magnet

EXERCISE: demonstrate the aforementioned relationship between pz and By. Hint: use
equation motion for the radial coordinate.

[ ] [ ] [ ]mRTBcGeVp yz ⋅⋅= 2998.0/

� The lateral separation from the reference (i.e., on-energy) trajectory per unit
relative energy deviation is the longitudinal momentum dispersion function:

� Together with the beam energy spread, ηx determines the chromatic beam
size. This can be regulated (or made null) along the beam line by controlling ηx:
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Quadrupole MagnetQuadrupole MagnetQuadrupole MagnetQuadrupole Magnet

� Alternating Strong Focusing (alternating
series of QF and QD) leads to overall
focusing, in both transverse planes.

Normally-
oriented
quadrupole
magnet

Magnetic 
poles

� A quadrupole magnet implies a transverse force that is linear with the
particle’s transverse displacement from the quadrupole magnetic axis.
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EXERCISE: demonstrate the aforementioned relationship for the linear focusing. Hint: start
from Lorentz force. Verify that a quadrupole focusing in one plane is defocusing in the other.

� If we consider the motion of the beam centroid into a displaced quadrupole
magnet, we find that the beam is kicked by:
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Linear gradient: Normalized gradient: Focusing length:



� Higher order magnets (e.g., sextupoles) introduce nonlinear focusing, i.e. the
restoring force goes like xq, with q ≥ 2. When used in dispersive regions, they
couple xββββ and xηηηη.

Sextupole magnet

� Sextupoles used in dispersive regions and
in the presence of correlated energy
spread, can be used to manipulate (e.g.,
linearize) the longitudinal phase space.
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Multipolar field expansion:

Magnetic 
poles

R=pole radius

MultiMultiMultiMulti----Pole Pole Pole Pole FFFField ield ield ield EEEExpansionxpansionxpansionxpansion

1. RF curvature
2. Off-crest acceleration (adds linear E-chirp)
3. Sextupole in dispersive region
4. Off-crest acceleration (removes linear E-chirp)
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Hill’s EquationHill’s EquationHill’s EquationHill’s Equation
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r � x

expand B up to first order in x

d/dt � d/ds

consider an off-momentum pz = γmevz = pz,0(1+δ)
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xββββ, solution of the homogeneous eq. describes 
the betatron oscillations (below, on-energy and 
with no acceleration)

xηηηη, solution of the 
complete eq. describes 
the energy dispersion, ηx.

� β, α, γ are called Parameters of Courant-Snyder
(also Twiss functions).

� Only 2 independent parameters over 3
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SINGLE PARTICLE,  

LINEAR ββββ-MOTION
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Single Single Single Single Particle, Particle, Particle, Particle, Phase Space Ellipse Phase Space Ellipse Phase Space Ellipse Phase Space Ellipse 
� (xββββ, x’ββββ) describe a pseudo-harmonic 

oscillator: motion is bounded, but the 
oscillation amplitude depends on the s-
coordinate (or time).

� Like for an oscillator, the particle’s 
trajectory maps an ellipse in the phase 
space (x,x’). 

� The ellipse’s geometry is set by the 
Twiss functions. Thus, it changes 
sizes and orientation at any s (t). 
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x
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Single Particle, Courant Snyder InvariantSingle Particle, Courant Snyder InvariantSingle Particle, Courant Snyder InvariantSingle Particle, Courant Snyder Invariant

Theorem: the ellipse area is constant
for a linear motion, and equal to :

( ) πβαγε ββββ
22 ''2)( xxxxs xxx ++=

Courant-Snyder Invariant

Verify: immediate for α=0, see diagram.
Verify: substitute x(s),x’(s) in ε(s)

The ellipse can be mapped to a circle, by using 
the so-called normalized Floquet’s coordinates:
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Principal TrajectoriesPrincipal TrajectoriesPrincipal TrajectoriesPrincipal Trajectories

� The general solution of Hill’s equation can equivalently be cast in the form of 
linear superposition of two particulr solutions C(s) and S(s), whose initial 
conditions are C(0)=1, S(0)=0, C’(0)=0, S’(0)=1:
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� Equating those to the aforementioned xβ, x’β
we find:
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� We then introduce matrix formalism to describe the evolution of a particle’s 
coordinates. We introduce a matrix for each beamline element:
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Beamline MatricesBeamline MatricesBeamline MatricesBeamline Matrices
1. C,S,C’,S’ depend only on the magnetic lattice, and NOT on initial beam 

parameters. For a generic magnetic element of length s, linear focusing 
strength k and curvature 1/R:
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3. The matrix of a line is the result of a multiplication of individual matrices:
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2. Exercise: determine the transport matrix for a quadrupole magnet in thin 

lens approximation, that is lq � 0 but f=klq = const.
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Exercise: Transport MatricesExercise: Transport MatricesExercise: Transport MatricesExercise: Transport Matrices
Transport Matrix for Particle’s Coordinates (in terms of Twiss Functions)

i) Impose equality of the the C-S invariant for x(s1)=x1 and x(s2)=x2.

ii) Use x2=M(x1) in terms of Principal Trajectories and substitute into point 1.

iii) From the equality in ii), extract MTW in terms of the Twiss functions:

Transport Matrix for Twiss Functions (in terms of Principal Trajectories)

i) Express x2 as fuction of x1 through Principal Trajectories, and write down the 
C-S invariant.

ii) Sort coefficients in i) for x2, xx’ and x’2, and impose equality to a new C-S 
invariant. 

iii) Extract MPT for the Twiss functions:
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Beam Transport, ExamplesBeam Transport, ExamplesBeam Transport, ExamplesBeam Transport, Examples

Quadrupole Triplet

FODO
(Cell=Focusing-Drift-
Defocusing-Drift



One  FODO  period

L
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StabilityStabilityStabilityStability

1. Consider M in terms of Twiss functions, and impose a periodic motion, 
i.e., same initial and final coordinates).

2. We find that |Tr(M)|=2|cos∆µ|.
3. Stability condition thus implies |Tr(M)|<2.
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Beam EmittanceBeam EmittanceBeam EmittanceBeam Emittance

� We now consider the ensemble of 
particles at an arbitrary point of the line. 
For a linear motion, particles lye on 
ellipses.

� We may also define a particles’ 
distribution function ψ, so that: 

),z,p,y,p,x(x yx δ=1xd)s,x( 6 =ψ∫

� The 2nd order momenta of the distribution define the 
so-called ΣΣΣΣ-matrix (or “beam matrix”):

∫=>< xd)s,x(x)s(x 6
jj ψ average coordinates, usually zero

∫ ><−><−=>><−><−=< xd)s,x()xx)(xx()xx()xx()s(R 6
jjiijiij ψ

� The beam is said to be matched to some 
design optics, if all particles’ ellipses are 
described by the same Twiss functions, 
i.e. they are omothetic ellipses.



Statistical or RMS EmittanceStatistical or RMS EmittanceStatistical or RMS EmittanceStatistical or RMS Emittance
� Statistical emittance, εx(P), is a measure of the spread in x and x’ of a

given fraction P of beam particles.
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� ΣΣΣΣ-matrix states the 
equivalence of Twiss functions 
and RMS emittance:
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� This is as if ψ were a Gaussian. Then, the beam evolution can be
mapped through the Twiss functions, only.
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Transformation of Transformation of Transformation of Transformation of ΣΣΣΣ----MatrixMatrixMatrixMatrix

1. The rms ellipse is representative of the beam’s particle distribution 
in the phase space.

2. The Σ-matrix characterizes the particle distribution, and its 
determinant is associated to the beam RMS emittance.

3. The transformation of Σ-matrix through a beamline represents the 
evolution of the beam ellipse, and in particular of its emittance.

� From the definition of the C-S invariant for a vector (x,x’), at location 0 and 1:
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This sets the rule for the evolution 
of the Σ-matrix through a beamline.



Preserving the Phase Space Area: Preserving the Phase Space Area: Preserving the Phase Space Area: Preserving the Phase Space Area: Det(M) = 1Det(M) = 1Det(M) = 1Det(M) = 1
I. Principal Trajectories (PTs) are defined with initial conditions so that

det(M(0)) ≡≡≡≡ W(0) = 1.

II. Each PT satisies Hill’s eq. Now add a frictional term ∝ C’,S’ and manipulate:
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III. Now consider the cross product A = dx × dx’.

It evolves according to the linear transformation:

IV. We find A = W⋅⋅⋅⋅ A0, that is a transport matrix with unitary
determinant preserves the phase space area (A=A0) in the absence
of frictional forces.
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Beam 

size

Beam 

angular 

divergence

� Liouville’s theorem (area preservation) is still valid for a nonlinear motion!

� Any area is preserved, not only of ellipses!

BEAM PHASE 

SPACE AREA

Preserving the Phase Space Area: Preserving the Phase Space Area: Preserving the Phase Space Area: Preserving the Phase Space Area: Liouville’s TheoremLiouville’s TheoremLiouville’s TheoremLiouville’s Theorem

� Liouville’s theorem states that in the absence of “frictional” forces
(dissipative or diffusion terms, ∝ x’ in Hill’s eq.), the area of the beam
ellipse is a constant of the motion.



Which Emittance ?Which Emittance ?Which Emittance ?Which Emittance ?
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222 '' xxxxx −=ε Geometric RMS emittance,
invariant under linear focusing

xxn βγεε =,
Normalized RMS emittance,
invariant under linear focusing and
acceleration pz,1

px

x’1

p1

∫∫= xx

L

xn dpdq,ε Normalized “Liouville’s” emittance,
invariant under linear, nonlinear focusing and acceleration

� When we refer to the whole particle 
distribution, ε is also said “projected”. 
When we select a longitudinal portion of 
the beam, ε is named “slice” emittance.

x

x’x

z

� All “emittances” are degraded by 
frictional/dissipative/collision forces 
(Liouville’s theorem falls short).

� The RMS emittance is NOT
preserved under NONLINEAR 
focusing.

pz,2

p2

x’2

Hint: the phase space area 
of a line is always zero, 
while it is not for the 
spread of points along it.

Linear

motion
Nonlinear 

motion
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Addendum on Hamiltonian FormalismAddendum on Hamiltonian FormalismAddendum on Hamiltonian FormalismAddendum on Hamiltonian Formalism

� It can be shown that canonical transformations of coordinates in a quadratic
Hamiltonian system (like in an accelerator free of frictional forces) are
represented by a group of symplectic matrices. These have det = 1, hence
they ensure preservation of the phase space area in the Liouville’s sense.

� The RMS emittance can alternatively be thought as the RMS area of
triangles connecting the particles’ representative points in phase space to the
origin of coordinates (or barycenter):
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for a generic particle

for the barycenter (O)

In general, nonlinear motion implies                     that is O moves with a different 
law than the representative points. In other words, triangles MiOMj are NOT 

mapped into triangles, thus their area is not preserved. We then expect the RMS 
emittance be degraded by nonlinear effects, such as “optical aberrations”.
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Is the Projected Emittance Relevant to FELs?Is the Projected Emittance Relevant to FELs?Is the Projected Emittance Relevant to FELs?Is the Projected Emittance Relevant to FELs?
� 1-D & 3-D SASE FEL theory (baseline for any FEL scheme...) only deals with

the slice emittance, whereas 3-D means non-zero slice emittance. However....

� Both theoretical and experimental evidences point out the importance of the
projected emittance for the overall FEL performance.

� A correlated energy spread may affect the FEL intensity, bandwidth and central
wavelength (depending on the FEL scheme).

� Correlations in the transverse phase space may reduce the FEL intensity and
enlarge the FEL bandwidth.

Tilted 
phase 
space

Corrected 
phase 
space

slice=projected=0.5µµµµm

slice=projected
=2.3µµµµm slice=0.5µµµµm

projected=2.3µµµµm
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PRSTAB 17, 110702 (2014)
PRSTAB 18, 030701 (2015)



USPAS June 2015 S. Di Mitri - Lecture_Tu6 22

Optics MismatchOptics MismatchOptics MismatchOptics Mismatch
� A beam is said to be matched, when its Twiss parameters (determined on the

basis of its emittance, size and divergence) are equal to the user’s defined
design values. Since the Twiss parameters vary along a line, matching is a
local condition.

� The actual beam may have the same emittance of the ideal (design) beam, but
different Twiss parameters. To quantify the amount of «optics mismatch» of
the actual vs. the design beam, we define:

� S1 (matched) and S2 (mismatched) have same area S, but
different shape and orientation (β1≠β2, α1≠α2). Common area is:

C ,1arctan
4 2 −−= ξξ
π

SC ( ) 12
2

1
122121 ≥+−= γβααγβξ

MISMATCH PARAMETER

� C � S when ξ � 1 (matching), i.e. when the two ellipses overlap.
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12
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2

1 −ΣΣ= Tr
ε
ε

ξ

� Equivalently, we may define ξ (in literature, also named Bmag) as function of
measurable quantities, i.e. emittance and beam sizes of the design and the
perturbed beam:
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CoherentCoherentCoherentCoherent Error Kick: Quad Error Kick: Quad Error Kick: Quad Error Kick: Quad GradientGradientGradientGradient ErrorErrorErrorError










−
=

1

01~

kl
Q

( )
( )

( )
( )

( )

2

1

2

11

1111

111

11111

12

2

2
2det

~~
detdet ε

βε

αεγε
βαε

βαεβε
ε =

















+

+−
−−

−−

=Σ=Σ=

kl

kl
kl

kl

QQ
T

� Optics mismatch can be caused by a focusing error. Here, we consider a
quadrupole gradient error k = k0+∆∆∆∆k = k0(1+ττττ).

� The following treatment applies to all errors that imply the same kick for
all the beam’s particles.

� Because of linearity of the focusing force, we do not expect RMS
emittance growth.
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Emittance,

Mismatch,
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Filamentation of Phase SpaceFilamentation of Phase SpaceFilamentation of Phase SpaceFilamentation of Phase Space
� We know that the RMS emittance can grow up because of nonlinear focusing.

The latter implies that the particle’s motion depends on higher orders of the
particle’s coordinates.

� Optics mismatch may bring particles to large oscillation amplitudes, thus
sampling nonlinear magnetic field components.

� After many «rotations» in the phase space (i.e., large phase advance),
particles tend to occupy a larger phase space area, namely the emittance has
grown up.

� S1 (matched) and S2 (mismatched) have same
area (S). After full filamentation, beam
occupies S3, whose area is:

( ) DSSS ≡−−= 1
2

3 ξξ

� It can be shown that, after full filamentation:
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D

,1,3

%100,1%100,3

ξεε
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mismatched

nonlinearity

filamented

matched

(matched) (mismatched)

(filamented)

EXE: show that a quadrupole gradient error
imply a fully filamented RMS emittance equal to:
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IncoherentIncoherentIncoherentIncoherent Error Kick: Quad Error Kick: Quad Error Kick: Quad Error Kick: Quad ChromaticChromaticChromaticChromatic ErrorErrorErrorError
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� Optics mismatch can be caused by a focusing error. Here, we consider a
quadrupole chromatic error k=k0(1+δδδδ), and δ = single particle energy deviation.

� The following treatment applies to all errors that imply a different kick
error for differemt particles.

� Because of nonlinearity of the focusing force, F ∼∼∼∼ xδδδδ, we expect RMS
emittance growth.
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Optics SOptics SOptics SOptics Sensitivity to Focusing Errorsensitivity to Focusing Errorsensitivity to Focusing Errorsensitivity to Focusing Errors

1. Assume nonlinear motion up to the 2nd order in the particle coordinates (6-D).

2. Consider small, independent gradient-like and chromatic-like focusing error
kicks, of the form Q2 = <∆∆∆∆x’2>.

( )
iii kork δστ 0∆=

� χ can be thought as the optics sensitivity to focusing errors. If T=5% is the
tolerance on the final emittance growth induced by N=100 error kicks, then
on average χ (at each quad location) should be smaller than T/√N = 0.5%.

� The same sensitivity applies identically to the local mismatch in the case
of a coherent error kick.
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where: and it turns out:
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� Corollary 2: the largest value that the RMS emittance may assume, after full
filamentation, because of the uncorrealted sum of error kicks is:

� Corollary 1: the largest value that the RMS
emittance may assume, after full filamentation,
because of each individual kick is:
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Optics DesignOptics DesignOptics DesignOptics Design
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� Larger sensitivity to focusing errors is typically:
• in compressors area, where σδ∼1%;
• in “matching stations”, where strong k may be needed 

to adapt the beam to the design optics.

� Matching stations (series of 4–6 
quads) are typically located:

• at the injector exit, because space-
chage forces make the beam optics 
less predictable;

• in front of diagnostic stations, to 
improve the measurement resolution;

• in front of magnetic compressors to 
counteract CSR effects;

• in front of the undulator, for 
optimum e-beam/photons overlap.

� Use codes for optimizing the quad
strengths in order to minimize the
sensitivty to focusing errors.

� In general, we like few quads only,
weak stengths, and small βs, low σδ

beams. These guidelines are in open
contradiction.



Magnetic Magnetic Magnetic Magnetic Field Field Field Field TTTTolerancesolerancesolerancesolerances
� Every real magnet includes systematic and random field errors, both due to

the finite magnet dimension and mechanical tolerances. The formers are
constrained by symmetries of the nominal field pattern. The latters may cover
all orders of the field expansion.

� The magnets should be manufactured in a way that field components higher
than the nominal should be small enough to avoid beam emittance dilution. We
assume perfectly aligned magnets.

Quadrupole component (n=1) in a Dipole magnet (n=0):
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Sextupole component (n=2) in a Quadrupole magnet (n=1):
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RF FocusingRF FocusingRF FocusingRF Focusing
Assume a TW-CG structure, transit time factor = 1. Ez has now explicit 
radial dependence. Maxwell’s equations for t-dependent e.m. field:
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In conclusion:

1. Neglect ∼γ-2 and keep Ez=Ez,0 through a gap lg:
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3. In a cell-to-cell focusing model:
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RF Transport RF Transport RF Transport RF Transport MMMMatrixatrixatrixatrix
� Cell-to-cell (also «ponderomotive» or «body-focus») and edge focusing

describe the fringe field effect inside and at the edge of the structure,
respectively.

� In the following, we will consider TW structures, at energies > 100 MeV.

� Transport matrix for acceleration with pseudo-canonical coordinates (x, x’) is
not simplectic ⇒ automatically includes adiabatic damping of geometric
emittance.
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In the limit L � 0, 0ln
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over defocusing at the exit The overall focusing 

is damped by 
acceleration.

RF RF RF RF vs.vs.vs.vs. MMMMagnetic Focusingagnetic Focusingagnetic Focusingagnetic Focusing
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Coupler Coupler Coupler Coupler CCCCell RF ell RF ell RF ell RF KKKKick ick ick ick 
� Geometric asymmetries of the input/output coupler cells may contribute with

transverse electric field kicks that affect the beam trajectory and size, with
dipole, quadrupole and higher order Ez dependence on the particle offset.
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centroid kick head-tail kick

ON-crest, phase error
“kicks” the beam centroid.

ON-crest, amplitude error
induces emittance growth.
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Impact on the Beam Impact on the Beam Impact on the Beam Impact on the Beam MMMMotionotionotionotion
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� The input coupler effect typically dominates because:
� beam is at a lower energy,
� The accelerating field at the entrance is not attenuated yet.

� Trajectory (mi)steering can be compensated with steering magnets
in proximity of the accelerating structure.
� However, a beam passing off-axis in the structure can excite

transverse wakefields (see next lectures). Use feed-forward
steering scheme or put steerers on the structure.

� For on-crest acceleration (typical in injector), the head-tail induced
emittance growth is (from eq. in the previous slide + Σ-matrix) :
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Spurious RF Spurious RF Spurious RF Spurious RF FFFFocusingocusingocusingocusing
Data sets courtesy 

of T. Hara

� Special coupler designs (“racetrack” cell shaping,
symmetric RF waveguide, cell tuning) are usually
adopted to get rid of dipolar and/or quadrupolar
field component.

� Residual effects have to be taken into account as
a “correction factor” in the modeling (matrix) of
RF focusing.

Traj. Resp. Matrix,

meas. vs. model:

BEFORE model “correction”

Traj. Resp. Matrix,

meas. vs. model,

AFTER model “correction”

in the horizontal plane only!
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RF RF RF RF FFFFocusing in ELEGANTocusing in ELEGANTocusing in ELEGANTocusing in ELEGANT

� TWLA: 2π/3 CG, edge focusing (optional), numerical integration.

� RFCA: π SW, edge focusing (optional), body-focus (optional), matrix
(single-kick approx. by default), N_KICKS, PHASE_REFERENCE.

� Also good for TW-CG, with body-focus turned off.

� “N_KICKS = XX” is equivalent to a split structure. Used for numerical
integration of wakes (e.g., geometric, LSC, etc.) in a long structure.

� For the one-structure model, just use: N_KICKS=0, PHASE_REFERENCE = 0.

� RFCA split in units (e.g., for dynamics inside a long structure).
� Each unit length has to be integer multiple of λRF.

� Proper focusing for a TW-like structure is given by setting: N_KICKS = 1,
END1_FOCUS = 1 and END2_FOCUS = 1 in each unit (inner focusing is
cancelled out and only that at the edges remains).

� Set PHASE_REFERENCE=n, with n integer and unique for each unit
(otherwise the units will be individually phased, which could cause unphysical
result).

!! Warning!! In old Elegant versions, Twiss functions are
computed correctly only for N_KICKS = 0 !!


