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Magnetic Focusing

“» Any beam of same-charge particles tend to disperse because of repulsive
Coulomb forces and initial particles’ angular divergence.

a9 o/
GQGS\G-»G_'(D\ /O ﬁczcj_f

<+ External transverse focusing maintains the charge density high. For ultra-
relativistic particles, magnetic focusing is more practical and efficient than
electric. . ~ 5\ isthelorentz force. To produce the same work of 1 MeV over 1
F :e(E+v><B) m, we need E = 1 MV/mor just B=0.3 T.
» An FEL beam delivery system is a sequence of RF and magnetic elements.

» Dipole magnets [B,=B,] are used in spectrometer lines for beam dump and
diagnostic, in magne‘rlc compressors and transfer lines. They determine the
beam direction.

* Quadrupole magnets [B,=(dB,/dx)Ax] are in between RF structures,
diagnostic stations, ’rr'ansfer' lines and undulator. They determine the beam
transverse size.

- Sextupole magnets [B,=(d*B,/d*x)Ax?] are rarely used in dispersive regions
for linearization of the longl‘rudmal phase space.



Dipole Magnet

O Particles with different longitudinal momentum follow different trajectories
(i.e., bending radius) according to:

p,[GeV/c]=0.2998- B [T]- Rm]

O The lateral separation from the reference (i.e., on-energy) trajectory per unit
relative energy deviation is the longitudinal momentum dispersion function:

- X dipole magnet

incident beam
z

bend radius !

0 Together with the beam energy spread, n, determines the chromatic beam
size. This can be regulated (or made null) along the beam line by controlling n,:

2 2 AE 2 1/2
(% (s)) =[m<s><E> J =7.(s)0;=0,,(s)

N

EXERCISE: demonstrate the aforementioned relationship between p, and B,. Hint: use
equation motion for the radial coordinate.
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Quadrupole Magnet

O A quadrupole magnet implies a transverse force that is linear with the
particle’s transverse displacement from the quadrupole magnetic axis.

Linear gradient: Normalized gradient: Focusing length:
_ T/ m] 1
- klm]|=0.2998—2 | -
(shels)=e | [kb]=02998 522 plml =

Normally- b, B, =G,y
oriented B =G,x
quadrupole y
magnet X
Magneth /‘
poles

Q Alternating Strong Focusing (alternating —A~— [} A
series of QF and QD) leads to overall U A U -
focusing, in both transverse planes.

O If we consider the motion of the beam centroid into a displaced quadrupole
magnet, we find that the beam is kicked by: | ._,

EXERCISE: demonstrate the aforementioned relationship for the linear focusing. Hint: start

from Lorentz force. Verify that a quadrupole focusing in one plane is defocusing in the other.
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Multi-Pole Field Expansion

d Higher order magnets (e.g., sextupoles) introduce nonlinear focusing, i.e. the
restoring force goes like x9, with ¢ > 2. When used in dispersive regions, they

couple x; and x,. Multipolar field expansion:

\\\ / n X " _ 1 anBy "
\\\ N /’ ‘\60" By(.X) = an(ij bn — ;( axn R
s )¢ (s 0 y=0 y=0

!N\ -
Maanetic N / )t\_ R=pole radius Zi v B =(Cxy
botes 1/ * N\ Lo o))
poles 17/ = \\ B =Lofe o,
2
» X

o . £ [MeV]
[ Sextupoles used in dispersive regions and

in the presence of correlated energy
spread, can be used fto manipulate (e.g.,
linearize) the longitudinal phase space.

RF curvature

Off-crest acceleration (adds linear E-chirp)
Sextupole in dispersive region

Off-crest acceleration (removes linear E-chirp)

Hwrh =
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Hill’s Equation
T r > x
14 expand B up to first order in x

We(f—92r+—f"j=—€(‘7><é), <€ 1 4/dt> d/ds

y consider an off-momentum p, = ym.v, _ p, ;(1+9)

NN ACON a1 _ 0
x"(s)+ 7/(S)x(s)J{k(s)(l %) R(s)z}x(s)_R(s)

\ Y I l X,, Solution of the

complete eq. describes
X3, solution of the homogeneous eq. describes the energy dispersion, 1,.
the betatron oscillations (below, on-energy and
with no acceleration)

B-PHASE ADVANCE:

SINGLE PARTICLE,
X5(8) =+2J f.(s)COSAU, | yNEAR B-MOTION At (s) _j Lo
d e '
xﬁ'(s):%:— —,82)1;) [ax(s)cosA,ux+sinA,ux] 0 B.(s)
where: ¢ = _1dp. d B, a, yare called Parameters of Courant-Snyder
2 ds (also Twiss functions).
_l+a” d Only 2 independent parameters over 3

X
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Single Particle, Phase Space Ellipse

= (g, x'5) describe a pseudo-harmonic

{G)Wﬂ
AV

oscillator: motion is bounded, but the
oscillation amplitude depends on the s- (b) . |
coordinate (or time).

5+ — 8
= Like for an oscillator, the particle's K | | ,

trajectory maps an ellipse in the phase °o
space (x,x).

= The ellipse’'s geometry is set by the
Twiss functions. Thus, it changes
sizes and orientation at any s (t).

A X

AN
N

center of F quad

B=f

\
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XA —Q el /tan?:p:ﬂ

center of D quad

B=p



Single Particle, Courant Snyder Invariant

200

Theorem: the ellipse area is constant
for a linear motion, and equal to :

XA —aVely tan2p =

£(s) = (7xxz 4 Zaxxﬂxﬂ'+,3xxﬂ'2) T

Courant-Snyder Invariant

Verify: immediate for a=0, see diagram.
Verify: substitute x(s),x'(s) in &(s)

The ellipse can be mapped to a circle, by using
the so-called normalized Floquet's coordinates:

v ' ax
\ 5 S IBxWx—L\/FxxﬁJf\/ﬂjxﬁJ
S5 //\\84 ‘/V)%_I_(IBXM/Y')C)2 2852]
> X
o = p ﬂ w'
32\ * 5. A(s) = arctan( £ x]
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Principal Trajectories

0 The general solution of Hill's equation can equivalently be cast in the form of

linear superposition of two particulr solutions C(s) and S(s), whose initial
conditions are C(0)=1, 5(0)=0, C'(0)=0, S'(0)=1:

15 J<;
x(s) = x,C(s)+ x'y S(s), E m
x'(s)=x,C'(s)+x', S'(s) o 2o 30 a0 50
O Equating those to the aforementioned x;, x';
we find:

C(s) = /[28) (cos #(3) + a sin §(s))
0

S(s) =/ B(5) By sin 6(s)

O We then intfroduce matrix formalism to describe the evolution of a particle's
coordinates. We introduce a matrix for each beamline element:

toc quad

combined
fct magnet

dnift
drift

drift
deloc quad

(x-llj X, C S D x
x!() — C' S' D' x|1
0, 0 0 1 \9,

drift

-
o OX
N—




Beamline Matrices
1. C€,5,C,S depend only on the magnetic lattice, and NOT on initial beam

parameters. For a generic magnetic element of length s, linear focusing
strength k and curvature 1/R:

c(s)=cos[s\/gJ 5(s) llsin[s\/@]

k+R2

QUAD cos(lq«/E) ﬁsin(lq«/z) 0 SBEND cos @ Rsin @ R(l—cos 9)
1 . _
M, =|—-+k sin(lq«/;) «/;cos(lq«/;) 0 MD,X = —ESIHH cosd sin @
0 0 1 0 0 1

2. Exercise: determine the transport matrix for a quadrupole magnet in thin
lens approximation, that is |, > O but f=kl, = const.

3. The matrix of a line is the result of a multiplication of individual matrices:
L

L

I+— Lj1+—

Lo T oy B} 2f[4f)
i 2;10% L L L’




Exercise: Transport Matrices

Transport Matrix for Particle’s Coordinates (in terms of Twiss Functions)
i) Impose equality of the the C-S invariant for x(s;)=x; and x(s,)=x.
ii) Use x,=M(x;) in terms of Principal Trajectories and substitute into point 1.
iii) From the equality in ii), extract M+, in terms of the Twiss functions:

Y B(s)fy sin Ag

p

B(s) :
(cos A+ & sin A@)
v CONNONE Bo OSAOF iAo
W =Cs) S')) | (@(s)— ) cos Ag+ 1+ a(s)y ) sin Ag
VB () by

p

0_[cos Ag—ax(s)sin Ag]
(s)

Transport Matrix for Twiss Functions (in terms of Principal Trajectories)

i) Express x, as fuction of x; through Principal Trajectories, and write down the

C-S invariant.

ii) Sort coefficients ini) for x2, xx' and x2, and impose equality to a new C-S

Invariant.
iii) Extract Mpr for the Twiss functions: (8 C?
o|=|-CC
y) | C”

-2CS
CS'+SC
-2C'S'

S2
_SS'
S'?

Bo

o)
Yo



Beam Transport, Examples

R

y <\._

-—-—)_
o Ry < 7 Focus
Quadrupole Triplet - -
quad D quad
quad
y y y
1 Focus
— X X B X
PR Cell length "
';)v( —— A ———%——f—
| ] | ]
QD QF QD QF QD

FODO lattice with 90° phase advance (one oscillation = 4 cells)
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FODO

(Cell=Focusing-Drift-

Defocusing-Drift
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Stability

1. Consider M in terms of Twiss functions, and impose a periodic motion,
i.e., same initial and final coordinates).

2. We find that | Tr(M)|=2]|cosApu].

3. Stability condition thus implies | Tr(M)|<2.

1 r )
‘—TrM =|cos Apty,| < 1= ——= (kI L} <2
2 2 K
q
_ 109 Shand  C-band ::-band Undlu aaaaa 1.4 . A
‘E‘EO‘@M _ .:w.a 3 1+ S1n ﬂlz
% 00injector  BC1 Bcz Chicane - % IB max __
2 80+ f 08 2
é 60 P\“ J 0.6 g ﬁmin 1 _ SlIl A/lllz
5 | , BOO00000000000 - % 2
o I VN o
o < One FODO period >
_|._._ ......... _|_| ____________ _‘|_ __________ _}_|_ ............. |©-
L L
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Beam Emittance T

O We now consider the ensemble of
particles at an arbitrary point of the line.
For a linear motion, particles lye on
ellipses.

[ The beam is said to be matched to some
design optics, if all particles' ellipses are
described by the same Twiss functions,
i.e. they are omothetic ellipses.

[ We may also define a particles’
distribution function vy, so that:

[wEsdT=1  X=(xpy.¥.py2.0)
<X > (8)= I X jw(i,s)d6i average coordinates, usually zero

0 The 2" order momenta of the distribution define the
so-called X-matrix (or "beam matrix"):
Rji(s) =< (R—< X >);(R—=<X >); >= j(xi— <X >)(x;= <X >)P(X,5)d°x
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Statistical or RMS Emittance

O Statistical emittance, ¢,(P), is a measure of the spread in x and x' of a
given fraction P of beam particles.

O Y -matrix states the

equivalence of Twiss functions

and RMS emittance:

£, = \/det ex(_ﬂ;x _ij - \/ det[gj) éi’iij

Q This is as if y were a Gaussian. Then, the beam evolution can be
mapped through the Twiss functions, only.

X

linear focusing

beam envelope

Statistical
emittance X

) ) = ()

= In the presence
of dispersion:

USPAS June 2015

x=xz,+x,=42J.0, +10
X'=x'p+x', =20y, +7'. 0

S. Di Mitri - Lecture_Tu6

STD {

Beam size and
divergence

0. =\e,B,+(0,0,)

O-'x = \/Sxyx + (n'x 0-5 )2

15



Transformation of X-Matrix

1. The rms ellipse is representative of the beam's particle distribution
in the phase space.

2. The X-matrix characterizes the particle distribution, and its
determinant is associated to the beam RMS emittance.

3. The transformation of X-matrix through a beamline represents the
evolution of the beam ellipse, and in particular of its emittance.

A From the definition of the C-S invariant for a vector (x,x'), at location O and 1:
;COT (;1%0 =1= yﬁTZq_lyﬁ Since: x; = M, X,
I |
Xy =Myx M,

(M(i )_12_1 (MOI )_1 = Zl_l ’

0

B T This sets the rule for the evolution
L =Mo2My of the XZ-matrix through a beamline.

And finally:




Preserving the Phase Space Area: Det(M) =

I. Principal Trajectories (PTs) are defined with initial conditions so that
det(M(0)) = W(0) = 1.

IT. Each PT satisies Hill's eq. Now add a frictional term « C',S' and manipulate:
-S. {C"+gC'+KC =0
C

W'+sW =0
) S+ HKS =0 f G| i o s
S)= S & =V,
(CS'"-SC")+¢(CS'-SC')+ K(Si\g%)zo;

ITI. Now consider the cross product A = dx x dx’. A
It evolves according to the linear transformation:
gi=| P gy W don = (Cdx,, Sdx',) /4 |a><i/
dx, dx',
-, [ dx dx' _
dx'= d—xodx dxo ——dx' 0j=(C dxo S'dx' ) A dxxdﬂv_dx()dx CS' SC

IV. We find A = W- A,, that is a transport matrix with unitary

determinant preserves the phase space area (A=A;) in the absence
of frictional forces.



Preserving the Phase Space Area: Liouville’s Theorem

QA Liouville's theorem states that in the absence of “frictional” forces
(dissipative or diffusion terms, «< x' in Hill's eq.), the area of the beam
ellipse is a constant of the motion.

dv(t) > > - P T i
df . vector of surface element at = [ wedf = [(Vew)dv = “aq q + ap p) dv = 0
w(t) ... phase space velocity of surface element t * 1
surface _ volume 32H aZH ) =0
integral integral agap ~ apaq’
(Gauss Theorem) (Hamilton)
Beam
angular —
divergence
BEAM PHASE
SPACE AREA Beam
size

> Liouville’s theorem (area preservation) is still valid for a nonlinear motion!
> Any area is preserved, not only of ellipses!
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Which Emittance ?

. : :
e = \/<x2><x'2> _ <xx'> Geometric RMS emittance,
x invariant under linear focusing

Px P1 P2

Normalized RMS emittance,
invariant under linear focusing and
acceleration

8n,x — IB7€x

L —lda d Normalized “Liouville's” emittance,
Ex q.4ap, . ) ) ) . :
’ invariant under linear, nonlinear focusing and acceleration
X ’
O When we refer to the whole particle N X
distribution, € is also said "projected".
When we select a longitudinal portion of
the beam, € is named "slice” emittance.

d All "emittances” are degraded by
frictional/dissipative/collision forces

. a1 Line_ar
(Liouville's theorem falls short). . A motion Noniinear
O The RMS emittance is NOT }monon Hint: the phase space area
preserved under NONLINEAR —» of aline is always zero,
focusing. (7 while it is not for the
spread of points along it.
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Addendum on Hamiltonian Formalism

d The RMS emittance can alternatively be thought as the RMS area of

triangles connecting the particles’ representative points in phase space to the
origin of coordinates (or barycenter):

x &
Mj (xj.x)
1 N N \/E N N X' +
Sx:\/ AN Y == XX —x,x' 2 \ . di
B O 5 A P
x_",‘ =18 -
! R \\x X X
d= _ 98 for a generic particle PP N
o2 ds Oz X |
H(m’x’)=?+f(a:)< B L . \
d' __OH fop the barycenter (O) ‘

ds Oz

0H BH _
In general, nonlinear motion implies >~ (¥) that is O moves with a different

law than the representative points. In o’rher words, triangles M\,OM; are NOT
mapped into triangles, thus their area is not preserved. We then expect the RMS
emittance be degraded by nonlinear effects, such as “optical aberrations”.

0 It can be shown that canonical transformations of coordinates in a quadratic
Hamiltonian system (like in an accelerator free of frictional forces) are
represented by a group of symplectic matrices. These have det = 1, hence
they ensure preservation of the phase space area in the Liouville's sense.



PRSTAB 17, 110702 (2014)

Is the Projected Emittance Relevant to FELs? rrstas1s, 030701 2015)

0 1-D & 3-D SASE FEL theory (baseline for any FEL scheme...) only deals with
the slice emittance, whereas 3-D means non-zero slice emittance. However....

0 Both theoretical and experimental evidences point out the importance of the
projected emittance for the overall FEL performance.

g

FEL Power Gain Length, L [m]

= A correlated energy spread may affect the FEL intensity, bandwidth and central
wavelength (depending on the FEL scheme).

= Correlations in the transverse phase space may reduce the FEL intensity and
enlarge the FEL bandwidth.

i L. _ Energy Along the Undulator
6r g,proj 2 i N
- a<‘9 >/ Ore . _4| Corrected
5 2 Genesis(0.5um) | ’: I_[;l
0 Genesis{2.3um) s
O Genesis(coll.)
i e
20 -6
3 gz 10
slice=projected =
i =2.3um slice=0.5um E2
B e e e §. pl‘OJE( ted=2.3um 1078
1 i _i_ ____________________________
IF SR, fs—=
sllce ro ected 0.5um :
0 21 é 8 10p \112 14 16 l'IJLS 20 U 2{_) 4':_] b[_]

Average Betatron Function, B, [m]

s (m)
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Optics Mismatch

O A beam is said to be matched, when its Twiss parameters (determined on the
basis of its emittance, size and divergence) are equal to the user's defined
design values. Since the Twiss parameters vary along a line, matching is a
local condition.

A The actual beam may have the same emittance of the ideal (design) beam, but

different Twiss parameters. To quantify the amount of «optics mismatch» of
the actual vs. the design beam, we define:

= S1 (matched) and S2 (mismatched) have same area S, but
different shape and orientation (B;#B,, ay#c,). Common area is:

4 / 1
C:S;amtan\/é:_ §2_1, 525(18172_2“1“2"':6271)21

MISMATCH PARAMETER
= C > Swheng > 1(matching), i.e. when the two ellipses overlap.

O Equivalently, we may define & (in literature, also named B, ) as function of
measurable quantities, i.e. emittance and beam sizes of ’rhe design and the
perturbed beam:

_le
£ = Zngr(ZZ ')
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Coherent Error Kick: Quad Gradient Error

[ Optics mismatch can be caused by a focusing error. Here, we consider a
quadrupole gradient error k = ky+Ak = ky(1+1).

= The following treatment applies to all errors that imply the same kick for
all the beam'’s particles.

= Because of linearity of the focusing force, we do not expect RMS
emittance growth.

beam-2, k=ko(1+1)

5 1 0 beam-1_,.,__ bed
Q:(—kl 1) g N >,
\J k=ko

L 51:31 — & (a1_161kl)
Emittance, ¢2=dety, = det(0% 07 )= det eyi2e,a,(kl)+ | = ¢
_81(a1_161kl) 2
+e,8,(kl)
1 _ 1
MismeCh, 5 = E?Tr(zzzll) =1+ 5 (ﬁlkolf)2
2



Filamentation of Phase Space

d We know that the RMS emittance can grow up because of nonlinear focusing.
The latter implies that the particle's motion depends on higher orders of the
particle's coordinates.

0 Optics mismatch may bring particles to large oscillation amplitudes, thus
sampling nonlinear magnetic field components.

O After many «rotations» in the phase space (i.e., large phase advance),
particles tend to occupy a larger phase space area, namely the emittance has

grown up. » S1 (matched) and S2 (mismatched) have same

. area (S). After full filamentation, beam

-7 ! ~ occupies S3, whose area is:
/‘, F——95;
!

p v y (filamented) S, = S(f—\/ﬁ)z DS

S."" S

. s 2
matched s (mismatched ) )
( /)/ i ( ) . It can be shown that, after full filamentation:
/ |/
/ nd E3100% = DE 1009
/ e B
| _ -7 : E3rms = fgl,RMS
L

EXE: show that a quadrupole gradient error . 1+l(,6’klz')2
imply a fully filamented RMS emittance equal to: 3 g VIR0



Incoherent Error Kick: Quad Chromatic Error

A Optics mismatch can be caused by a focusing error. Here, we consider a
quadrupole chromatic error k=ky(1+3), and § = single particle energy deviation.

= The following treatment applies to all errors that imply a different kick
error for differemt particles.

= Because of nonlinearity of the focusing force, F ~ xJ, we expect RMS
emittance growth.

F 0 D 0

F=k(5)x——gx_ °8 ){1+Ap

= k,x + k,0x
pz pz,O pz,O

Emittance, £,b, — e a-p (k))

e =detx, = det (0,07 )= det €72, (<k>l =i+ (Brio, )]

| —¢ (@, (k)l) +81,31<(kl) > )

£, =& [1+%(,31k0105)2_, when z—lzzl €
Mismatch, shen (8)=0
&= liTr(zzzgl) = 1+%L31k01<5>)2 + 0(<5>4, g;) > L=1+— (,Blk lo,)

2
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Optics Sensitivity to Focusing Errors

1. Assume nonlinear motion up to the 2nd order in the particle coordinates (6-D).

2. Consider small, independent gradient-like and chromatic-like focusing error
kicks, of the form Q? = <Ax'2>.

/7

% Corollary 1. the largest value that the RMS . 18
emittance may assume, after full filamentation, (—j =—=LQ
because of each individual kick is: £ ) 2¢

/7

“ Corollary 2: the largest value that the RMS emittance may assume, after full
filamentation, because of the uncorrealted sum of error kicks is:

N N where: and it turns out:
Z \/Z (ki Bz,) < . =Ak or (ko) SAk)=1+%
- — é:i(o-d,i) =~ ]

O x can be thought as the optics sensitivity to focusing errors. If T=5% is the
tolerance on the final emittance growth induced by N=100 error kicks, then
on average y (at each quad location) should be smaller than T/vN = 0.5%.

= The same sensitivity applies identically to the local mismatch in the case
of a coherent error kick.
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OpthS Desngn [ Larger sensitivity to focusing errors is typically:
 in compressors area, where 65~1%;

0.020
2222  in "matching stations”, where strong k may be needed
§'8 °'°‘5§ 2000l to adapt the beam to the design optics.
O comg
9 g o O Matching stations (series of 4-6
e | quads) are typically located:
ooml ol « at the injector exit, because space-
| 1so0f : chage forces make the beam optics
o BC1 less predictable;
W o 200 |+ infront of diagnostic stations, to
v << Nx improve the measurement resolution;
8‘ S A - B By « in front of magnetic compressors to
ool v ' counteract CSR effects;
« in front of the undulator, for
o3l O ] optimum e-beam/photons overlap.
0.020} -
o = o el | @ Use codes.for optimizing .Th.e quad
£ 5 strengths in order to minimize the
£ = 0.010¢ Xx 1 sensitivty to focusing errors.
= % 0.005| 1 = In general, we like few quads only,
OV wn ' weak stengths, and small Bs, low o;
0-000r ' ] beams. These guidelines are in open

t;) 5I0 lC.IO 1'50 2C;O 250 COhTPGd'CT'on.

s (m)
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Magnetic Field Tolerances

<+ Every real magnet includes systematic and random field errors, both due to
the finite magnet dimension and mechanical tolerances. The formers are

constrained by symmetries of the nominal field pattern. The latters may cover
all orders of the field expansion.

<+ The magnhets should be manufactured in a way that field components higher
than the nominal should be small enough to avoid beam emittance dilution. We
assume perfectly aligned magnets.

Quadrupole component (n: 1)in a Dipole magnet (n=0):

2 b 1 R [|Ae2e
€80 _ 0 |h ‘ Ag| IB o b 1< =
1.0 p., RI|b ‘ bo €l, 2¢ b, by @nos\ € p
Quadrupole-like Quadrupole-like RMS emittance growth Magnetic field tolerance
strength in a dipole chromatic Kick error (tolerance) (chromatic aberration)

Sextupole component (n=2) in a Quadrupole magnet (n=1):

em21_2k b‘E>Q 2k, 2 |:>Ag ~ 2k, 2b2 <1%|:> ‘ I R |Agle

T po  Rlby o € | 23 b ‘ kief\ e p

Sextupole-like Sextupole-like kick RMS emittance growth Magnetic field tolerance
strength in a dipole error (tolerance) (geometric aberration)
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RF Focusing

Assume a TW-CG structure, transit time factor = 1. E, has now explicit
radial dependence. Maxwell's equations for t-dependent e.m. field:

- r OF d use: dE(z.r)=-L -+ EED gp
r T — T3 ﬁEK — E =———2% an use J e ot
V-E=15GE )+ =0 :r\V T2 s
~ ) r OF
V-B) =14 (B y=1%= B =—— OE, dE, OE_ dt
( s ('D) o @ T2 Jdz dz dt dz
In conclusion: E =E_ cos(g) ¢=k.ct
: oE (z,t oE (z,t d k d
F,=q(E,—zB¢)=_§r[ B(Z )_B. 9.z )}_ﬁr — = |E.(z.9)
z ¢ ot 2" dz 28y 3¢

2
1. Neglect ~y? and keep E,=E, o through a gap I|F, =— 9E-o" —(qE—Z’O)zr
: 21, 2 Bym,.c

Ap Ap, _ F(@)dt 2
p. p. 20,7, ;m.c

2. For E,=E, ocos¢ at the structure's edges:

E : zO,TW
3. Inacell-to-cell focusing model: |F, . = 7(9) (q Z,O) 7, 7(9)
’ 4 2Bymc n(p)=1,SW

k.r .
— 261,3;2 E sm(¢)
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4. Term ~y?2 provides RF phase focusing : |F (@)=




RF Transport Matrix

Q Cell-to-cell (also «ponderomotive» or «body-focus») and edge focusing
describe the fringe field effect inside and at the edge of the structure,
respectively.

Q In the following, we will consider TW structures, at energies > 100 MeV.

O Transport matrix for acceleration with pseudo-canonical coordinates (x, X)) is
not simplectic = automatically includes adiabatic damping of geometric

emittance.
Yo1. 2
(36'1)_ qEzocos¢ ( I/) Y% ( I/) qEzocos¢) | [x'oj
A 27fm 0 % 2y.m.c’ %o
i

' 71 70 ~

V= I

e gk, , cos(¢)

I m 02

L/2 L/2
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RF vs. Magnetic Focusing

.
1 1 1 A
Inthe limitL>0, —=M, =- 7‘fln(%]—7\<0
f RF f edge f edge Y 7/0 7/1 J
Focusing at the entrance dominates _j f .
over defocusing at the exit The overall focusing
is damped by
10° . acceleration.
+ QUAD |7
© RF edge

o
o)
O
{
%
-
&
%

0.3g[T /m]L,
olo =
\l E[GeV]

E, —E, =50 MeV / structure

T

Integrated Normalized Focusing Strength [1/m]
=

I‘str =3m
e i g=1.7T/m
Ko Lr = —— l,=0.1m
f RF |
10° ' . . .
0 200 400 600 800 1000

Final Energy [MeV]
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Coupler Cell RF Kick

[ Geometric asymmetries of the input/output coupler cells may contribute with
transverse electric field kicks that affect the beam trajectory and size, with
dipole, quadrupole and higher order E, dependence on the particle offsef.

1.Coupler acc. field with
ampl. & phase y-gradient, F_(y,r)= (EZ,O +AE zlj cos(@ +AQ. 21+ a),fAtj
a a

dipole approximation
[

cell
p leEzdz =..
P, i PC 0 expand for wAt<<1

Ap .e

el [Ez oA@.cos@ —AE_sing@, ]+ krfAZ[Ez,OA¢c sin@, +AE_ cos ¢s]

2ak,; p.c iﬁ centroid kick head-tail kick f

ON-crest, phase error ON-crest, amplitude error
:Ej

“kicks" the beam centroid. P induces emittance growth.
BB
o 1 l l

‘»&-. wm-. SO

~
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Impact on the Beam Motion

[ The input coupler effect typically dominates because:
= beam is at a lower energy,
= The accelerating field at the entrance is not attenuated yef.

d Trajectory (mi)steering can be compensated with steering magnets
in proximity of the accelerating structure.
= However, a beam passing off-axis in the structure can excite
transverse wakefields (see next lectures). Use feed-forward
steering scheme or put steerers on the structure.

[ For on-crest acceleration (typical in injector), the head-tail induced
emittance growth is (from eq. in the previous slide + £-matrix) :

2
e, = (7)) =(w7 zJas,o<as,o+<Ay'2>)”"§”’ino+ ) o

p.c
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Data sets courtesy

Spurious RF Focusing of T. Hara

Q Special coupler designs ("racetrack” cell shaping,
symmetric RF wavequide, cell tuning) are usually ~
adopted to get rid of dipolar and/or quadrupolar 14
field component.

O Residual effects have to be taken into account as _
a “correction factor” in the modeling (matrix) of """
RF focusing.

s 113j. RESp. Matrix,

File

Traj. Resp. Matrix,
meas. vs. model:

G meas. vs. model,

______________

-100. 00

-100. 00

120 IPlot ‘
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RF Focusing in ELEGANT

“+» TWLA: 2r/3 CG, edge focusing (optional), numerical integration.

“+ RFCA: ©m SW, edge focusing (optional), body-focus (optional), matrix
(single-kick approx. by default), N_KICKS, PHASE_REFERENCE.
= Also good for TW-CG, with body-focus turned off.

= "N_KICKS = XX" is equivalent to a split structure. Used for numerical
integration of wakes (e.g., geometric, LSC, etc.) in a long structure.

= For the one-structure model, just use: N_KICKS=0, PHASE_REFERENCE = 0.

<+ RFCA split in units (e.g., for dynamics inside a long structure).
= Each unit length has to be integer multiple of Age.

= Proper focusing for a TW-like structure is given by setting: N_KICKS = 1,
END1_FOCUS = 1 and END2_FOCUS = 1 in each unit (inner focusing is
cancelled out and only that at the edges remains).

= Set PHASE_REFERENCE=n, with n integer and unique for each unit
(otherwise the units will be individually phased, which could cause unphysical
result).

Il Warning!! In old Elegant versions, Twiss functions are
computed correctly only for N_KICKS =0 !l



