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We begin our journey by recapitulating the two basic equations most important for particle accelerators: 
The Lorentz equation that govern the forces acting upon charged particles and Maxwell's equations that 
describe the fields the particles encounter, but also generate. Along the way we will learn how these can be
expressed in Maple, using the Physics[Vectors] package which not only allows printing of output in a 
standard way but also defines operators such as Nabla, which are important in doing the actual derivations.

Lorentz equation
 F_ q * E_ beta_ &x B_

F q E B
The momentum is defined relativistically (Units: c*p_ is momentum in eV, m0 is rest energy in 
eV, q is charge in elementary charges)

p_ m0 * *
beta_

c

p
m0  

c
and we define velocity and B-field in Cartesian coordinates

beta_ beta1 t * _i beta2 t * _j beta3 t * _k

1 t  i 2 t  j 3 t  k
B_ B1 * _i B2 * _j B3 * _k

B B1 i B2 j B3 k
E_ E1 * _i E2 * _j E3 * _k

E E1 i E2 j E3 k
So we get the force to be
F_
q E1 i E2 j E3 k 2 t  B3 3 t  B2  i 3 t  B1 1 t  B3  j

1 t  B2 2 t  B1  k

and by choice of units t is already in m and v/c is ß. So we replace t by s and v/c by β and get
p_ subs t = s, p_

p
m0  1 s  i 2 s  j 3 s  k

c
F_ subs t = s, F_
F q E1 i E2 j E3 k 2 s  B3 3 s  B2  i 3 s  B1 1 s  B3  j

1 s  B2 2 s  B1  k
and get a first equation of motion
Lorentz F_ = diff p_, s
Lorentz q E1 i E2 j E3 k 2 s  B3 3 s  B2  i 3 s  B1
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1 s  B3  j 1 s  B2 2 s  B1  k

=
m0  

d
ds

1 s  i
d
ds

2 s  j
d
ds

3 s  k

c
This is the Lorentz equation in its general form in Cartesian coordinates. We will often use simplified 
forms where a number of the components are 0, and leave the unit vectors out where appropriate.

Maxwell's equations and the wave equation
Let's now recap Maxwell's equations and introduce the wave equation which will be important in 
describing wave guides and accelerating structures. 

if MapleVersion 17  then Setup geometricdifferentiation = true  end if:
In Maple, we write Maxwell's equations as follows:
M1 Nabla.E1_ x, y, z, t  = rho x, y, z, t

M1 E1 x, y, z, t = x, y, z, t
M2 Nabla &x E1_ x, y, z, t  = diff B1_ x, y, z, t , t

M2 E1 x, y, z, t =
t

B1 x, y, z, t

M3 Nabla.B1_ x, y, z, t  = 0

M3 B1 x, y, z, t = 0
M4 Nabla &x B1_ x, y, z, t  = mu * epsilon * diff E1_ x, y, z, t , t J_ x, y, z, t

M4 B1 x, y, z, t =   
t

E1 x, y, z, t J x, y, z, t

Since we will be dealing with electromagnetic waves, we need the wave equation, which we derive as
follows:
Nabla &x M2

E1 x, y, z, t =
t

B1 x, y, z, t

expand subs diff subs J_ x, y, z, t = 0, M4 , t , (2.5)
d
dx

E1 x, y, z, t  i
d
dy

E1 x, y, z, t  j
d
dz

E1 x, y, z, t  k
2

x2 E1 x,

y, z, t
2

y2 E1 x, y, z, t
2

z2 E1 x, y, z, t =   
2

t2
E1 x, y, z, t

expand subs subs rho x, y, z, t = 0, M1 , (2.6)
2

x2 E1 x, y, z, t
2

y2 E1 x, y, z, t
2

z2 E1 x, y, z, t =   
2

t2
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E1 x, y, z, t

This is the (electrical) wave equation in Cartesian coordinates. There is a very similar wave equation 
for the B field as well. Note that this is the same as applying the d'Alembertian operator to the E field
E1(x,y,z,t). 
The simplest solution is a plane wave (where ω is the angular frequency and k, the wave number):

E1_ x, y, z, t = E0  exp I * omega * t I * k * y

E1 x, y, z, t = E0 eI  t I k y

subs (2.8), (2.7) ;
2

x2 E0 eI  t I k y 2

y2 E0 eI  t I k y 2

z2 E0 eI  t I k y =

  
2

t2
E0 eI  t I k y

simplify (2.9)

E0 k2 e I k y  t =   E0 
2
 e I k y  t

solve (2.10), k ;

k =   , k =   
Assuming a vacuum environment, we replace µε by 1/c:

subs~ sqrt mu epsilon =
1
c

, (2.11)

k =
c

, k =
c

i.e. the wave propagates at the speed of light.

Another property connected to M3 is that the B field can be expressed as the rotation (curl) of a 
vector potential, A(x,y,z,t):

B x, y, z, t = &x A x, y, z, t
B1 x, y, z, t  i x, y, z, t B2 x, y, z, t  j x, y, z, t B3 x, y, z, t  k x, y, z, t = A x,

y, z, t
which we will need later when we discuss the magnetic fields generated by the accelerator 
components.

DC accelerators

if MapleVersion 17  then Setup geometricdifferentiation = false  end if
geometricdifferentiation = false

The Lorentz equation also tells us how acceleration can be achieved. Setting the B field to zero and 
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keeping the E field we get
lhs subs B1 = 0, B2 = 0, B3 = 0, Lorentz

q E1 i E2 j E3 k
and (avoiding the definition of p for a moment and keeping only the longitudinal field E2) trivially

diff p t , t = subs E1 = 0, E3 = 0, (3.2)
p
.

t = q E2 j
subs t = s, dsolve (3.3), p t

p s = E2 j  q s _C1
This just states the obvious: We accumulate momentum with increasing s in a constant field. At the 
same time, the voltage needed gets higher and higher and we run out of technological steam at some 
point. this point depends on the technology used: Rectifier cascades may go up to O(1) MV; van de 
Graaff generators can reach O(10) MV. "Tandem" van de Graaffs routinely reach 15…20 MV and 
the energy gain is doubled by acceleratinug from 0 to the HV terminal, changing the charge sign by 
stripping the electrons off the ions in the HV terminal, and accelerating again on the way back to 
ground potential. Machines like that have been the workhorses of nuclear physics experiments, and 
van de Graaffs are still in use today. Derivative accelerators like Pelletrons are used to produce high-
current electron beams e.g. for electron cooling at Fermilab.
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Cockroft-Walton Rectifier Cascade (from [3])

Cockroft-Walton Schematic (from [1])
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Van de Graaff Accelerator (from [3])
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Tandem van de Graaf (from [3])

For higher energies we need to switch to ac fields. 
diff p t , t = subs E1 = 0, E3 = 0, E2 = E0 exp I omega t k y , rhs (3.3)

p
.

t = q E0 eI k y  t  j

which is again integrated trivially:
dsolve (3.5), p t

p t =
I q E0 e I k y  t  j

_C1

The exponential term will average to 0 unless t = ky, which means that the particle is travelling with 
the same velocity as the phase velocity of the electric field wave. In free space this of course is just c. 
At the same time, for y=const (i.e. at the fixed location of our accelerator!) the field just oscillates and 
we only need to provide a limited peak field and voltage.

In the following we will further describe the ac accelerator.

AC accelerators
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There are a number of technologies applicable to the realisation of linear accelerators. Each technology 
in turn has spawned a number of modifications in the design leaving a bewildering array of different 
types. Here is a list of the major technologies used

The conceptually simplest one is the Wideröe drift-tube accelerator, where particles pass through a
series of tubes connected to ac voltage of alternating phases. the accelerating field builds up across
the gap and the tubes shield the particles from the fields while the fields change. The length of the 
tubes increases to maintain synchronicity as the (non-relativistic) particles gain speed. This 
structure, suitable for operating at low MHz frequency, is only of historical interest.

Wideröe linac schematic (from [1])

The Alvarez structure places the tubes in a large common enclosure which acts as an rf resonator 
(cavity) with just the right frequency to setup the accelerating field pattern. This structure is in use 
nowadays for many proton accelerators at energy up to maybe 100 MeV. They typically operate at
frequencies of 200 MHz or higher.

Alvarez linac schematic (from [1])
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Disc-loaded waveguides are most commonly used for electron linacs as they operate at constand 
speed (c) and thus constant spacing of the cells. The largest example of this kind is the two-mile 
SLAC linac, but many smaller linacs of this kind operate around the world e.g. as pre-accelerators.
These operate at frequencies of 2.8 GHz (S-band) and 11.3 GHz (X-band).

Cross section of a disc-loaded waveguide accelerating structure (from [1])

Cut-away view of the SLAC s-band accelerating structure

Superconducting multi-cell cavities are used in high-duty-factor and cw linacs for protons (e.g. 
SNS) and electrons (CEBAF, XFEL) due to their low power dissipation allowing cw operation. 
They typically operate at 650 MHz, 900 or 1300 MHz (L-band).

Finally, heavy ions tend to have very low speeds (beta<<1) and ion accelerators are often build 
from individual structures optimized for acceleration at low-beta using moderate frequencies (O
(50)MHz), e.g. TRIUMF ISAC, FRIB.

Analysing each of these technologies is beyond the scope of this course. As a representative for the 
ac linacs we will treat the disc-loaded waveguide structure.
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Waveguides

A circular waveguide

Our next step is to analyze wave propagation in a circular waveguide. To do this, we transform 
the wave equation into a cylindrical coordinate system with the axis parallel to the y (longitudinal-)
axis. We get away with only changing the arguments since in a moment we will limit ourselves to 
fields along the longitudinal ( j or y) direction, which does not change under this transformation.
(2.7)

2

x2 E1 x, y, z, t
2

y2 E1 x, y, z, t
2

z2 E1 x, y, z, t =   
2

t2

E1 x, y, z, t

PDEtools : dchange x = r cos , z = r sin , (5.1.1), simplify
1
r2

2

r2 E1 r, , y, t  r2 2

y2 E1 r, , y, t  r2
r

E1 r, , y, t  r

2

2 E1 r, , y, t =   
2

t2
E1 r, , y, t

Now our ansatz for the solution needs to be a little more general: we will have to take into account
the boundary condition of zero longitudinal field at r=a, the aperture of the waveguide. We do 
however stipulate independence from the azimuthal angle θ.
Eg_ = R r * exp I * omega * t k * y

Eg = R r  eI k y  t

subs E1_ r, theta, y, t = R r * exp I * omega * t k * y , (5.1.2)
1
r2

2

r2 R r  eI k y  t  r2 2

y2 R r  eI k y  t  r2
r

R r  eI k y  t  r
2

2 R r  eI k y  t =   
2

t2

R r  eI k y  t

This is a diff. equation for R(r), the radial field dependence, and we are now limiting ourselves to 
the y (longitudinal-) component of the field. Maple can solve this right away:
dsolve (5.1.4), R r

R r = _C1 J0   
2

k2  r _C2 Y0   
2

k2  r

Here J0 is the Bessel function of 1st kind and Y0 the Bessel function of the 2nd kind. We find the
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_C2 from the condition for finite field on the axis (r=0):
R0 = limit  rhs (5.1.5) , r = 0 # note the limit to avoid div by 0 in Y0

R0 = signum _C2  

which demands that _C2 be 0 as we cannot have infinite fields on the axis. The second condition 
is that R(r) be zero at the aperture a, which we express in Maple as

epsilon  
2

k2  a = evalf BesselJZeros 0, 1

  
2

k2  a = 2.40482555769577

solve subs mu epsilon =
1
c

, (5.1.7) , omega

=
1
  a

1.00000000000000 10 14 

  1.00000000000000 1028 k2 a2 5.78318596294677 1028 , =

1
  a

1.00000000000000 10 14 

  1.00000000000000 1028 k2 a2 5.78318596294677 1028

We can now plot the so-called Brillouin diagram, or dispersion diagram, or ω-k diagram:
subs mu = PhysicsConstants:-mu_0, epsilon = PhysicsConstants:-eps_0, a = 0.04, rhs

(5.1.8) 1

25.1875744125602 1.41667005081926 1014 k2 5.12054147001565 1017

plot subs mu = PhysicsConstants:-mu_0, epsilon = PhysicsConstants:-eps_0, a = 0.04, rhs
(5.1.8) 1 , abs k * PhysicsConstants:-c , k = 100 ..100, labels = typeset 'k ' ,
typeset 'omega' , color = "Red", "Green"
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k
50 0 50 100

0

1. 1010

2. 1010

3. 1010

The green line gives ω vs k for a phase velocity ω/k of c. The red line shows that the wave in our 
waveguide always has a phase velocity > c. This means that it cannot be used for acceleration as 
any particle will be outrun by the phase velocity. Note that this does not violate special relativity 
as the phase velocity does not involve a massive particle. The group velocity, which does involve 
energy transfer, is always < c.

Alvarez Linac

Consider the circular wave guide at its cut-off frequency. The phase velocity becomes unbound, 
which is another way of saying that the longitudinal E field has the same value independent of the 
distance along the axis of the wave guide. Given that the field (of the TM01 mode) is purely 
longitudinal, we can truncate the waveguide and put a cap at each end without distorting the field 
of this mode. We now have "pillbox" cavity and the TM010 (the third digit denotes the 
longitudinal number of nodes) mode is its lowest, fundamental, resonating mode. The length of 
the cavity does not affect the resonant frequency of this mode at all. (With the shorts at the end, 
there is now a number of resonant higher order modes that do not show up in the open 
waveguide, but we can ignore these for this discussion).
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Fig: Electric (left) and magnetic (right) fields of the TM010 mode in a pillbox cavity [33].

We can therefore conceptually elongate the pillbox to many meters, put beam holes at he end, and 
put a beam in there. No acceleration would be observed as the field still oscillates in time, and the 
beam takes time to proceed through the cavity. However, if we now put drift tubes of the right 
length and strategically placed into the cavity, the tubes will shield the beam from  the field while 
the field is decelerating, with the result of net acceleration.
The device we have just conceived is the Alvarez linac, of which there are numerous instances in 
operation around the world. It is an example of a standing-wave accelerator. It gets around the 
problem of radiating off e-m energy like the Wideröe structure while at the same time operating at 
much higher frequency, thereby shortening the structure.
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Fig: Alvarez linac and field directions (red) [33]

The field in the tank of an Alvarez becomes, with k=0:
subs _C1 = E 0 , _C2 = 0, k = 0, subs (5.1.5), rhs (5.1.3)

E0 J0   
2

 r  eI  t

The acceleration will be directly given by how far the particles travel under the influence of the 
field:

E = int subs t =
s

beta c
, (5.2.1) , s =

1
2

 g ..
1
2

 g

E =
I E0 J0   

2
 r   c e

I
2

  g

 c e

I
2

  g

 c

evalc E = simplify Re
I E0 J0   

2

1
2

 r   c e

1
2

 I  g

 c e

1
2

 I  g

 c

assuming positive
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E =
2 E0  c sin

 g
2  c

 J0    r

The factor 

sin
omega
beta c

g
2

omega
beta c

sin
 g

2  c
  c

is called the "transit time factor", it is the reduction of acceleration due to the finite time the 
particles take to cross the gap and the consequent reduction in average electric field.
A word to the design of Alvarez linacs: In the above, no mention has been made how to choose 
the length of the gap. While a longer gap seems to result in higher acceleration this is not 
necessarily so: the drift tubes actually shunt the field into the gap such that the local gradient goes 
up, for the same overall "effective" gradient. This can result in very high local gradients leading to
breakdown. The practical way of designing such linacs is, then, to calculate the fields using an e-
m code and make sure they do not exceed an accepted value. This value is often obtained from the
so-called "Kilpatrick criterion", which reflects the fact that, at higher frequencies, higher peak 
fields are possible:

fr = 1.64E6 E k 2exp
8.5

E k

fr = 1.64 106 Ek
2 e

8.5
E

k

(Ek in MV/m, fr in Hz). The formula was derived from empirical data, but in practise, this 
criterion is now routinely exceeded by a factor of up to 2 due to the much improved UHV 
technology. 

Coupled cavities and disk loaded waveguides
rf acceleration in general involves rf resonators (cavities) as the voltage available goes up with the
Q factor. This also holds true for linacs with travelling or standing waves. We will therefore now 
analyse a simple cavity and following from that describe an accelerating structure as a series of 
coupled such cavities. The cavity we will analyze is called a "pillbox" cavity due to its appearance: a 
very short piece of circular waveguide with lids on both ends. The pillbox can have two distinct 
field orientations: an E (or TM) mode with the E-field along the axis (essentially the same 
orientation as in the waveguide above) with the boundary condition being zero field at the cavity 
radius, and a TE (or H) mode with a transverse electric field and the boundary condition being zero 
field at the flats on either end. Since we are interested in accelerator applications we are interested in 
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the longitudinal field and therefore the E (TM) modes.

It turns out that we have done most of the work already: The boundary condition of vanishing 
field at the aperture still holds and the dispersion relation remains the same. The flat pieces at the 
ends add another boundary condition that demand any radial field to be zero at the flats. Rather 
than going through the tedium of proving this we state the result for the resonant frequency of a 
pillbox cavity, which is the same as the cut-off frequency of a waveguide with the same radius:

omega 0, 1, 0 =
2.405 c

a

0, 1, 0 =
2.405 c

a
where the (0,1,0) index denotes the TM010 mode. Note that the frequency of the lowest mode 
does not depend on the length of the resonator but only on the radius. For an example radius of 4 
cm we get

omega r
2.405 3E8

0.04

r 1.80375000000000 1010

or

f r = evalf
omega r

2 Pi
fr = 2.87075728602006 109

The cavity resonates in the S-band. TM010 has to be the lowest mode as it is right at cut-off for 
the structure; any lower frequency could not propagate and therefore never fill the cavity (even if 
it was a very long one). the quality factor Q of the cavity does depend on the length:

Q 0
Z 0

2  R s
2.405 L
a L

Q0

1.20250000000000 Z0 L

Rs a L

The surface resistance is a material property but depends on the frequency:

R s
1
2

sqrt
omega mu0
2 sigma c

Rs

2  
 0

c

4
 
In our case it is 

evalf subs sigma c =
1

1.7E-8
, mu0 = PhysicsConstants:-mu_0, omega = omega r , R s

0.00694020935316491
For a length of 3 cm, we get

Q 3 cm evalf subs Z 0 = 377, L = 0.03, a = 0.04, sigma c =
1

1.7E-8
, mu0
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(5.3.10)(5.3.10)

(5.3.9)(5.3.9)

(5.3.12)(5.3.12)

(5.3.11)(5.3.11)

(5.3.7)(5.3.7)

(5.3.2)(5.3.2)

(5.3.14)(5.3.14)

(5.3.15)(5.3.15)

(5.3.13)(5.3.13)

(5.3.3)(5.3.3)

(5.3.6)(5.3.6)

(5.3.17)(5.3.17)

(5.3.5)(5.3.5)

(5.3.16)(5.3.16)

(5.3.4)(5.3.4)

(5.3.8)(5.3.8)

= PhysicsConstants:-mu_0, omega = omega r , (5.3.4)

Q3 cm 27994.7812768130

These are the parameters one gets for an isolated cavity. To get from here to an accelerating 
structure, we need a hole at either end for the obvious provision of sending a particle beam 
through the cavity. However, that hole also will let some field penetrate; and if we follow one 
cavity by a second one we have two coupled cavities. We can now add more cavities in this way 
and soon we end up with a structure of considerable length that we want to use as an accelerator. 
Specifically, we can contemplate launching an rf wave at one end and let the beam particles ride 
the crest, in the same way as we have shown the circular waveguide to not let us do. In fact, we 
can look at the string of cavities like a waveguide loaded with discs with small(-ish) holes in a 
regular pattern.

There are two complementary ways of analyzing such a structure. Starting from the waveguide 
picture the discs introduce a periodic boundary condition and it can be shown that such a 
condition can slow down the phase velocity to a useable value (c in case of electrons). The other 
way is to analyze the system of coupled cavities and deermine the dispersion relation in that way. 
Needless to say the two have to be equivalent; here we will use the latter approach as it seems 
conceptually simpler. 

In analysing this chain of cavities we will use the equivalent circuit shown in the figure:
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(5.3.9)(5.3.9)

(5.3.12)(5.3.12)

(5.3.11)(5.3.11)

(5.3.7)(5.3.7)

(5.3.2)(5.3.2)

(5.3.14)(5.3.14)

(5.3.15)(5.3.15)

(5.3.13)(5.3.13)

(5.3.3)(5.3.3)

(5.3.6)(5.3.6)

(5.3.17)(5.3.17)

(5.3.5)(5.3.5)

(5.3.16)(5.3.16)

(5.3.4)(5.3.4)

(5.3.8)(5.3.8)

Figure: Disc-loaded waveguide and equivalent circuit

We can make an ansatz for the currents coupling the three circuits:
i j 1 t  a j 1 * exp I * psi jm * exp I * omega j 1 * t

ij 1 t aj 1 e
I 

jm e
I 

j 1
 t

i j 1 t  a j 1 * exp I * psi jp * exp I * omega j 1 * t

ij 1 t aj 1 e
I 

jp e
I 

j 1
 t

i j t  a j * exp I * psi j * exp I * omega j * t

ij t aj e
I 

j e
I 

j
 t

where the aj are the amplitude in each cell.
The equation for the center circuit element is
diff i j t , t, t omega0^2 * 1 2 * kc * i j t  = kc * omega0^2 * i j 1 t i j

1 t

aj e
I 

j j
2
 e

I 
j
 t

0
2
 1 2 kc  aj e

I 
j e

I 
j
 t

= kc 0
2
 aj 1 e

I 
jp e

I 
j 1

 t
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(5.3.1)(5.3.1)

(5.3.10)(5.3.10)

(5.3.9)(5.3.9)

(5.3.12)(5.3.12)

(5.3.11)(5.3.11)

(5.3.7)(5.3.7)

(5.3.2)(5.3.2)

(5.3.14)(5.3.14)

(5.3.15)(5.3.15)

(5.3.13)(5.3.13)

(5.3.3)(5.3.3)

(5.3.6)(5.3.6)

(5.3.17)(5.3.17)

(5.3.5)(5.3.5)

(5.3.16)(5.3.16)

(5.3.4)(5.3.4)

(5.3.8)(5.3.8)

aj 1 e
I 

jm e
I 

j 1
 t

If we postulate identical coupling between all cavities then all the ω and a coefficients will be the 
same and we can simplify this:
subs a j 1 = a j , a j 1 = a j , omega j 1 = omega j , omega j 1

= omega j , (5.3.11)

aj e
I 

j j
2
 e

I 
j
 t

0
2
 1 2 kc  aj e

I 
j e

I 
j
 t

= kc 0
2
 aj e

I 
jp e

I 
j
 t

aj e
I 

jm e
I 

j
 t

We get rid of the exp(I*ω*t) and the a[j] term
simplify (5.3.12) / exp I * omega j * t a j

e
I 

j 2 kc 0
2

0
2

j
2

= kc 0
2
 e

I 
jp e

I 
jm

and we can connect the ψ values by using the phase-advance/cell (i.e. per circuit) b:
subs psi j = j * b, psi jp = j 1 * b, psi jm = j 1 * b, (5.3.13)

eI j b 2 kc 0
2

0
2

j
2

= kc 0
2
 eI j 1  b eI j 1  b

lhs (5.3.14) = expand rhs (5.3.14)

eI j b 2 kc 0
2

0
2

j
2

= kc 0
2
 eI j b eI b kc 0

2
 eI j b

eI b

and get rid of another exponential factor

simplify
(5.3.15)

exp I j b

2 kc 0
2

0
2

j
2

= 2 kc 0
2
 cos b

and we can solve for ωj

solve (5.3.16), j ;

1 2 kc cos b 2 kc  0, 1 2 kc cos b 2 kc  0
So we have a new dispersion relation. Note the two signs, which indicate forward and backward-
travelling waves. We can plot the relation for the forward wave against the phase advance/cell 
using some chosen values for kc:

plot subs 0 = 1, kc = .05, (5.3.17) 1 ,
0.1 b

2 0.03
, b = 0 .. , labels = "b", " / 0"
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(5.3.2)(5.3.2)

(5.3.14)(5.3.14)

(5.3.15)(5.3.15)

(5.3.13)(5.3.13)

(5.3.3)(5.3.3)

(5.3.6)(5.3.6)

(5.3.17)(5.3.17)

(5.3.5)(5.3.5)

(5.3.16)(5.3.16)

(5.3.4)(5.3.4)

(5.3.8)(5.3.8)

b
8 4

3 
8 2

5 
8

7 
8

/ω
0

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

What we see is that the speed of the wave travelling through the system has sufficiently slowed 
down to cross v=c at a reasonable phase advance/cavity cell. We also see that there is only a 
limited range in omega/omega0 in the solution space. This represents the pass-band of such a 
structure. The whole diagram repeats itself at higher values for b and also higher values for ω 
which represent higher-order modes. Outside of the passbands no propagation of waves is 
possible in the waveguide.
The value for kc represents the coupling of the individual cavities, which is facilitated by the holes
that also allow the beam to pass. Clearly if the area of the hole approaches 0, kc is zero. Likewise 
we can postulate that kc becomes O(1) if the area of the hole approaches the cross-sectional area 
of the waveguide since clearly that is the strongest coupling we can have. Then we can conclude 
that kc is, to lowest approximation, equal to the area of the hole divided by the area of the 
waveguide. The above diagram is for a SLAC-like cavity and actually comes fairly close although
e.g. the thickness of the disc affects the coupling (lowers it) and for exact numbers modelling the 
cavities is necessary.
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(1.1)(1.1)

(1.6)(1.6)

(1.2)(1.2)

(1.9)(1.9)

(1.8)(1.8)

(1.4)(1.4)

(1.3)(1.3)

(1.7)(1.7)

Lorentz equation
This is a recap. of what we already saw previously.

F_ q * E_ beta_ &x B_

F q E B
The momentum is defined relativistically (Units: c*p_ is momentum in eV, m0 is rest energy in 
eV, q is charge in elementary charges)

p_ m0 * *
beta_

c

p
m0  

c
and we define velocity and B-field in Cartesian coordinates

beta_ beta1 t * _i beta2 t * _j beta3 t * _k

1 t  i 2 t  j 3 t  k
B_ B1 * _i B2 * _j B3 * _k

B B1 i B2 j B3 k
E_ E1 * _i E2 * _j E3 * _k

E E1 i E2 j E3 k
So we get the force to be
F_
q E1 i E2 j E3 k 2 t  B3 3 t  B2  i 3 t  B1 1 t  B3  j

1 t  B2 2 t  B1  k

and by choice of units t is already in m and v/c is ß. We replace t by s and get
p_ subs t = s, p_

p
m0  1 s  i 2 s  j 3 s  k

c
F_ subs t = s, F_
F q E1 i E2 j E3 k 2 s  B3 3 s  B2  i 3 s  B1 1 s  B3  j

1 s  B2 2 s  B1  k
and get a first equation of motion  (NOTE: This a bit unclean as  γ is assumed fixed.)
Lorentz F_ = diff p_, s
Lorentz q E1 i E2 j E3 k 2 s  B3 3 s  B2  i 3 s  B1

1 s  B3  j 1 s  B2 2 s  B1  k

=
m0  

d
ds

1 s  i
d
ds

2 s  j
d
ds

3 s  k

c
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(1.9)(1.9)

(1.4)(1.4)

(2.2)(2.2)

(2.14)(2.14)

(2.17)(2.17)

(1.7)(1.7)

(2.8)(2.8)

(2.7)(2.7)

(2.16)(2.16)

(2.5)(2.5)

(2.9)(2.9)

(2.6)(2.6)

(1.5)(1.5)

(2.13)(2.13)

(1.6)(1.6)

(1.8)(1.8)

(2.1)(2.1)

(2.3)(2.3)

(2.12)(2.12)

(1.2)(1.2)

(2.10)(2.10)

(2.11)(2.11)

(1.3)(1.3)

(2.4)(2.4)

Note that the unit vectors (i,j,k) will be used as transverse horizontal, longitudinal, and vertical 
unit vectors to keep the coordinate system right handed. Other conventions are possible and used.

Circular Machines: Constant B-field in vertical direction
As the accelerating rf structures are relatively complicated and expensive components, better use of 
them is made by passing the beam through the same structure(s) several times. This requires us to bend
the beam in some form of "circular" shape and bring it back to the rf acceleration system. Hence the 
large circular accelerators. 

Coordinate system: _i: transverse horizontal; _j: longitudinal; _k: vertical

Units: m0 is mc^2 [eV];  c*p [eV]

We will now treat the simple case of a uniform constant vertical B-field (B3)
subs E1 = 0, E2 = 0, E3 = 0, B1 = 0, B2 = 0, Lorentz
q 2 s  B3 i 1 s  B3 j

=
m0  

d
ds

1 s  i
d
ds

2 s  j
d
ds

3 s  k

c
For Maple to solve this we need to convert this into a system of differential equations:
Component lhs (2.1) , 1 = Component rhs (2.1) , 1 , Component lhs (2.1) , 2

= Component rhs (2.1) , 2 , Component lhs (2.1) , 3 = Component rhs (2.1) , 3

B3 2 s  q =
m0  

d
ds

1 s

c
, B3 1 s  q =

m0  
d
ds

2 s

c
, 0

=
m0  

d
ds

3 s

c
and a first integral is
dsolve (2.2)

1 s = _C1 sin
B3 q c s

 m0
_C2 cos

B3 q c s
 m0

, 2 s = sin
B3 q c s

 m0
 _C2

cos
B3 q c s

 m0
 _C1, 3 s = _C3

Usual way to find the initial conditions:
simplify~ subs s = 0, (2.3)

1 0 = _C2, 2 0 = _C1, 3 0 = _C3
Let's launch a particle with only longitudinal motion ß2=ß20.
subs~ _C2 = 0, _C3 = 0, _C1 = 20, (2.3)
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(2.1)(2.1)
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(2.6)(2.6)

(2.4)(2.4)

1 s = 20 sin
B3 q c s

 m0
, 2 s = cos

B3 q c s
 m0

 20, 3 s = 0

and back into the ß vector:
subs (2.5), subs t = s, beta_

20 sin
B3 q c s

 m0
 i cos

B3 q c s
 m0

 20 j

and integrate again (note that Maple omits the integration constants!)
X_ int (2.6), s

X
20 i   m0 cos

B3 q c s
 m0

B3 q c

20 j  sin
B3 q c s

 m0
  m0

B3 q c
To find the integration constant we need to define the initial condition: let's launch our particle at 
(x,y,z)=(-ρ,0,0). Since X at s=0 is
simplify subs s = 0, X_

20 i   m0

B3 q c
it turns out this is just -ρ, so our ref. orbit starts at X_:
RefOrb factor X_

RefOrb
20 m0  sin

B3 q c s
 m0

 j cos
B3 q c s

 m0
 i

B3 q c
where we used factor() to collect the constants.
This describes a circle with the radius ß20 m0 γ/(q*B3).

Let's plot this:
subs testCase, beta2 0 = 1, Component (2.9), 1

34.0901778122784 cos 0.0293339625714662 s

Circle1 plot subs testCase, beta2 0 = 1, Component (2.9), 1 , subs testCase, beta2 0
= 1, Component (2.9), 2 , s = 0 ..213 :

plots:-display Circle1
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0
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This is a circle with the radius

rho  
20 m0 

q B3 c
20 m0 

B3 q c
or

rho subs gamma =
pc

20 m0
, rho ;

pc
B3 q c

The value
B3 rho

pc
q c

is directly proportional to a particle's momentum and called the "Brho" value. For singly charged 
particles it's numeric value is
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Brho = 3.33564 pc  
Brho = 3.33564 pc

with pc in GeV and Brho in Tm. 

This particular circle will be our reference orbit for the next sections dealing with deviations from the
initial conditions given here.
Before we continue, we will use (2.11) to simplify our constants by assuming fully relativistic 
particles and using :
rho 'rho'

rho = 
 m0 gamma

q B3 c

=
 m0

B3 q c

solve (2.16), B3

B3 =
m0 
c q 

This relation will allow an easy replacement of B3 by the bending radius ρ

Radial focusing in the constant B field
We may ask ourselves what happens if we introduce initial horizontal or vertical momentum 
components.
To do this we use the same solution as above (2.3) but change the initial condition:
subs~ (2.17), _C2 = 10, _C3 = 0, _C1 = 20, (2.3)

1 s = 20 sin
s

10 cos
s

, 2 s = sin
s

 10 cos
s

 20, 3 s

= 0

and put this back into the ß vector and integrate:
X2_ subs (2.17), int subs (3.1), subs t = s, beta_ , s

X2 i  20  cos
s

10 sin
s

 j  10  cos
s

20 sin
s

 

Again we find the initial condition analogous to above:
simplify subs s = 0, X2_

i  20 j  10 

Now we have to be careful: we want to launch again on (x,y,z)=(ρ,0,0). So we need to subtract the y 
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component to get the right particular solution
collect factor X2_ op 2, (3.3) , sin, cos

 i  10 20 j  sin
s

 20 i j  10  cos
s

j  10 

At s=0 we get
simplify subs s = 0, (3.4)

i  20 

While this looks right, it actually is not: The particle is launched at an offset ρ*β20, which is not the 
same as our reference orbit. The difference arises because we set β10 to 0 and ignored it. Here, β10 is
not 0; but since we are fully relativistic the bending radius ρ depends on β=sqrt(β12+β22). So the 
factor in (3.5) should be β rather than β2. We evaluate this correction to first order and add it to (3.4):

collect (3.4) _i
rho  beta1 0 2

 2  beta2 0
, _i, _j, rho

sin
s

 10 cos
s

 20

10
2

2 20

  i 20 sin
s

10 cos
s

10   j

Plotting this together with the first result:
 Circle2 plot subs testCase, 10 = 0.2, beta2 0 = sqrt 1 0.22 , subs (2.16), Component

(3.6), 1 , subs testCase, 10 = 0.2, beta2 0 = sqrt 1 0.22 , subs (2.16), Component

(3.6), 2 , s = 0 ..213 , color = blue :
plots:-display Circle1, Circle2



USPAS 2016 at UT Austin Accelerator Physics with Maple Lorentz Equation and Circular Machines

27

(4.11)(4.11)

(4.10)(4.10)

(4.16)(4.16)

(3.7)(3.7)

(4.17)(4.17)

(4.15)(4.15)

(3.2)(3.2)

(4.6)(4.6)

(4.14)(4.14)

(3.6)(3.6)

(4.1)(4.1)

(4.4)(4.4)

(4.8)(4.8)

(4.7)(4.7)

(3.4)(3.4)

(4.12)(4.12)

(3.5)(3.5)

(4.2)(4.2)

(3.1)(3.1)

(3.3)(3.3)

(4.5)(4.5)
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The salient point here is that the two particles do not drift apart but rather keep coming together after 
about 1/2 turn and again after a whole turn. 
This implies a restoring effect which we call focusing. In particular, note that the orbits intersect after 
about 180° (for the reference orbit), so it appears that a 180° bending magnet performs point-to-point
imaging. This focusing is used in a race-track Microtron to keep the beams stable in a natural way.
subs (2.16), Component (3.4), 1

20  m0 cos
B3 q c s

 m0
B3 q c

10 sin
B3 q c s

 m0
  m0

B3 q c

Frenet-Serret Coordinate System
Having established a reference orbit, we can express particle motion relative to this orbit. This will 
turn out a suitable way to describe particle and beam motion in a wide variety of accelerators and 
beam lines. This involves transformation to the Frenet-Serret, or TNB (for Tangent-Normal-
BiNormal) coordinate system. Maple has functions to setup this system and transform into it.
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We setup a basis for the Frenet-Serret system
FSBasis simplify~ convert VectorCalculus:-TNBFrame subs (2.17), Component RefOrb,

1 , subs (2.17), Component RefOrb, 2 , 0 , s , Matrix , symbolic assuming positive

FSBasis

sin
s

cos
s

0

cos
s

sin
s

0

0 0 1

Let's have a look at it:
eval subs 20 = 1, subs testCase, Component RefOrb, 2

34.0901778122784 sin 0.0293339625714662 s

Student:-VectorCalculus:-TNBFrame subs 20 = 1, subs testCase, Component RefOrb, 1 ,

                                    subs 20 = 1, subs testCase, Component RefOrb, 2 , 0 ,

                                    s, output = animation, range = 0 ..214, frames = 50, axes = boxed,

                                   binormaloptions = width = 1, color = red ,

                                   tangentoptions = width = 0.5, color = black ,

                                   normaloptions = width = 0.5, color = green
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(4.13)(4.13)

Animation of the Frenet-Serret vector(s): binormal along the 
curve defined by the given vector, principal normal, tangent.

In what follows we will denote the tangent vector (black) X1, the normal vector (green), X2, and the 
binormal vector (red) X3. It should be noted here that this coordinate system is rotated by 180° about 
the tangent direction relative to the one commonly used in accelerator physics. We will ignore this for
now and make the switch later.
Eq (4.1) establishes the basis of the TNB system, now we setup the actual transformation matrix
MFSTrans simplify~ LinearAlgebra:-MatrixInverse FSBasis , symbolic

MFSTrans

sin
s

cos
s

0

cos
s

sin
s

0

0 0 1

To transform a specific trajectory to the TNB frame we need to subtract the reference orbit from it 
(since a matrix transformation does not translate) and then apply MFSTrans. Let's apply this to the 
off-axis trajectory from above:
(1.3)

1 t  i 2 t  j 3 t  k
dtraj subs (2.17), (3.4) RefOrb
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(4.11)(4.11)

(4.10)(4.10)

(4.16)(4.16)

(4.17)(4.17)

(4.15)(4.15)

(4.6)(4.6)

(4.14)(4.14)

(4.1)(4.1)

(4.4)(4.4)

(4.8)(4.8)

(4.7)(4.7)

(4.12)(4.12)

(4.2)(4.2)

(4.5)(4.5)

(4.3)(4.3)

(4.13)(4.13)

dtraj sin
s

 i   10 j  10  cos
s

10 

simplify~ LinearAlgebra:-MatrixVectorMultiply MFSTrans, Component dtraj, 1 ,
Component dtraj, 2 , 0  assuming beta2 0 0, rho 0

10  1 cos
s

10 sin
s

 

0

and plot the normal (2nd-) component:
plot subs 10 = 0.2, subs testCase, subs (2.16), (4.6) 2 , s = 0 ..1000, labels = typeset 's ',

"  (m)" , typeset 'X2 ', "  (m)"

s  (m)
0 200 400 600 800 1000

X2
  (

m
)

6

4

2

0

2

4

6

We find that the particle executes a harmonic oscillation about the reference orbit, with (in this case) 
exactly one period per turn. In the language of circular accelerators the number of oscillations per turn
is called the tune.
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(4.11)(4.11)

(4.10)(4.10)

(4.16)(4.16)

(4.17)(4.17)

(4.15)(4.15)

(4.6)(4.6)

(4.14)(4.14)

(4.1)(4.1)

(4.4)(4.4)

(4.8)(4.8)

(4.7)(4.7)

(4.12)(4.12)

(4.2)(4.2)

(4.5)(4.5)

(4.3)(4.3)

(4.13)(4.13)

Now we will transform the Lorentz equation (2.1). Since the TNB transformation applies to 
positions, we need to change the components of β to differentials of the transverse coordinates, 
which we do under the assumption that the particle's velocity is c. Note that we use x1..x3 here rather 
than the x,y,z we will use later.
betas beta1 s = diff x1 s , s , beta2 s = diff x2 s , s , beta3 s = diff x3 s , s

betas 1 s =
d
ds

x1 s , 2 s =
d
ds

x2 s , 3 s =
d
ds

x3 s

subs betas, subs (2.17), Component lhs (2.1) , 1 , subs betas, subs (2.17), Component lhs
(2.1) , 2 , subs betas, Component lhs (2.1) , 3  = 

    subs betas, Component rhs (2.1) , 1 , subs betas, Component rhs (2.1) , 2 ,
subs betas, Component rhs (2.1) , 3

m0  
d
ds

x2 s

c 

m0  
d
ds

x1 s

c 

0

=

m0  
d2

ds2 x1 s

c

m0  
d2

ds2 x2 s

c

m0  
d2

ds2 x3 s

c

We now need to express this in terms of the transformed positions and velocities. We can transform a
general coordinate vector <x1,x2,x3> to a vector X=<X1,X2,X3> in the Frenet-Serret system:

simplify LinearAlgebra:-MatrixVectorMultiply MFSTrans, x1 s , x2 s , x3 s -~ subs
(2.17), Component RefOrb, 1 , subs (2.17), Component RefOrb, 2 , 0

sin
s

 x1 s cos
s

 x2 s

20 sin
s

 x2 s cos
s

 x1 s

x3 s

solve (4.9) 1 = X1 s , (4.9) 2 = X2 s , (4.9) 3 = X3 s , x1 s , x2 s , x3 s

x1 s =
20  cos

s
sin

s
 X1 s cos

s
 X2 s

sin
s 2

cos
s 2 , x2 s =
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(4.11)(4.11)

(4.10)(4.10)

(4.16)(4.16)

(4.17)(4.17)

(4.15)(4.15)

(4.6)(4.6)

(4.14)(4.14)

(4.1)(4.1)

(4.4)(4.4)

(4.8)(4.8)

(4.7)(4.7)

(4.12)(4.12)

(4.2)(4.2)

(4.5)(4.5)

(4.3)(4.3)

(4.13)(4.13)

20 sin
s

 X2 s  sin
s

cos
s

 X1 s

sin
s 2

cos
s 2 , x3 s = X3 s

simplify (4.10)

x1 s = 20  cos
s

sin
s

 X1 s cos
s

 X2 s , x2 s

= 20 sin
s

 X2 s  sin
s

cos
s

 X1 s , x3 s = X3 s

Putting it back into the equation
simplify subs (4.11), (4.8)

1

c 
2 m0  

d
ds

X2 s  sin
s

 cos
s

 
d
ds

X1 s  

20  cos
s

sin
s

 X1 s cos
s

 X2 s , 

1

c 
2 m0  sin

s
 

d
ds

X1 s  20 sin
s

 cos
s

 
d
ds

X2 s  X2 s  sin
s

cos
s

 X1 s , 

0 =
1

c 
2 m0  sin

s
 

d2

ds2 X1 s  
2

cos
s

 
d2

ds2

X2 s  
2

2 
d
ds

X2 s  sin
s

 2 cos
s

 
d
ds

X1 s  

20  cos
s

sin
s

 X1 s cos
s

 X2 s , 

1

c 
2 m0  

d2

ds2 X2 s  sin
s

 
2

cos
s

 
d2

ds2 X1 s  
2

2 sin
s

 
d
ds

X1 s  20 sin
s

 2 cos
s

 
d
ds

X2 s  

X2 s  sin
s

cos
s

 X1 s , 
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(4.11)(4.11)

(4.10)(4.10)

(4.16)(4.16)

(4.17)(4.17)

(4.15)(4.15)

(4.6)(4.6)

(4.14)(4.14)

(4.1)(4.1)

(4.4)(4.4)

(4.8)(4.8)

(4.7)(4.7)

(4.12)(4.12)

(4.2)(4.2)

(4.5)(4.5)

(4.3)(4.3)

(4.13)(4.13)

m0  
d2

ds2 X3 s

c

 solve lhs (4.12) 1 = rhs (4.12) 1 , lhs (4.12) 2 = rhs (4.12) 2 , lhs (4.12) 3 = rhs
(4.12) 3 , diff X1 s , s, s , diff X2 s , s, s , diff X3 s , s, s

d2

ds2 X1 s =

d
ds

X2 s
,

d2

ds2 X2 s =

d
ds

X1 s
,

d2

ds2 X3 s = 0

We are really interested primarily in the normal component (X2) so we combine the first two 
equations by integrating the first one and substituting the result into the 2nd one:
subs int lhs op 1, (4.13) , s = int rhs op 1, (4.13) , s , op 2, (4.13)

d2

ds2 X2 s =
X2 s

2

dsolve (4.14)

X2 s = _C1 sin
s

_C2 cos
s

simplify subs s = 0, (4.15)
X2 0 = _C2

This is the initial position relative to the reference orbit

eval diff (4.15), s , s = 0
d
ds

X2 s

s = 0

=
_C1

This is the initial angle against the reference orbit.
plot subs _C1 = 0.0, _C2 = .1, subs testCase, subs (2.16), rhs (4.15) , s = 0 ..1000
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(4.11)(4.11)

(4.16)(4.16)

(4.15)(4.15)

(4.6)(4.6)

(4.14)(4.14)

(5.3)(5.3)

(5.4)(5.4)

(4.4)(4.4)

(4.7)(4.7)

(5.9)(5.9)

(4.13)(4.13)

(4.10)(4.10)

(5.2)(5.2)

(4.17)(4.17)

(5.8)(5.8)

(5.6)(5.6)

(4.1)(4.1)

(4.8)(4.8)

(4.12)(4.12)

(5.1)(5.1)

(4.2)(4.2)

(4.5)(4.5)

(4.3)(4.3)

s
0 200 400 600 800 1000

0.10

0.05

0

0.05

0.10

So we have now shown the horizontal focusing of the dipole to be 1/ρ2 and the tune is always 1 in 
the homogeneous field.

The important point here is that X2 is the radial coordinate relative to the reference orbit. This allows 
us to add focusing and other fields in a localized manner.

Field Gradient
We can now use the equation in the Frenet-Serret reference coordinate system to examine the effect 
of a field gradient. 
Such a gradient will manifest itself as an additional force on the beam particles that depends on their 
deviation from the reference orbit.
Maxwell's equations demand (in the absence of longitudinal fields) that equal but opposite gradients 
exist in the horizontal and vertical planes so the two planes will not be independent of each other.

We use a general parameter k to describe the gradient (k>0 => the B field increases with X2) and 
write
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(5.4)(5.4)

(5.2)(5.2)

(5.1)(5.1)

(5.9)(5.9)

(5.3)(5.3)

(5.8)(5.8)

(5.6)(5.6)

lhs (4.13) 3 = rhs (4.13) 3 k X3 s
d2

ds2 X3 s = k X3 s

and
lhs (4.14) = rhs (4.14) k X2 s

d2

ds2 X2 s =
X2 s

2 k X2 s

First we solve the vertical (3-) component
convert dsolve (5.1) , trig

X3 s = _C1 cosh k  s sinh k  s _C2 cosh k  s sinh k  s
We see immediately that stable vertical motion demands negative k. So a negative gradient produces 
vertical focusing, thus allowing periodic motion in the vertical plane.
Now we solve the horizontal plane
dsolve (5.2)

X2 s = _C1 sin
k 

2
1  s

_C2 cos
k 

2
1  s

The horizontal motion is affected also and its tune is reduced by negative k. Once –k goes below 1/ρ2,
the argument of the sine functions become imaginary 
and periodic motion is no longer possible in the horizontal plane. It appears that k is bounded 
between 0 and –1/ρ2 for stability in both planes. k is directly related to the field index n: k 2=–n.

We get _C1 and _C2 from the initial conditions:
simplify subs s = 0, (5.4)

X2 0 = _C2
eval diff (5.4), s , s = 0 ;

d
ds

X2 s

s = 0

=
_C1 k 

2
1

So we have
_C1 = X2_0

_C1 = X2_0

_C2 =
XP2_0 rho

sqrt 1 k
2

_C2 =
XP2_0 

k 
2

1
and
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(6.1)(6.1)

(5.2)(5.2)

(6.4)(6.4)

(5.3)(5.3)

(5.8)(5.8)

(5.6)(5.6)

(6.6)(6.6)

(6.2)(6.2)

(5.4)(5.4)

(6.7)(6.7)

(6.5)(6.5)

(6.3)(6.3)

(5.1)(5.1)

(5.9)(5.9)

subs (5.7), (5.8), (5.4)

X2 s = X2_0 sin
k 

2
1  s

XP2_0  cos
k 

2
1  s

k 
2

1

This is the basis of the constant-gradient or weak-focusing synchrotron. The following figure shows 
field lines and forces for positive and negative field gradient.

Fig: Schematic of a gradient dipole magnet

Equation (5.9) indicates that the beam size in the ring has a tendency to grow proportional to the 
machine radius ρ, since the initial divergence XP20 will have a lower bound.
E.g., if XP20 is between 0 and 0.1 mrad (not an unusual range), a 27-km ring like the LHC would 
have potentially a 2.7 m wide beam.

Dispersion
So far we have assumed all particles of a beam are at identical momentum (are "on momentum"). In 
practice the particles have slightly different momenta (just as any real beam has some divergence) and
we need to analyze the off-momentum case as well. Trivially, eq.(2.16) tells us that the orbit radius 
changes proportional to the energy deviation. To analyze this in the Frenet-Serret coordinate system 
we parametrize the distance to the reference energy by δ, i.e. γ becomes γ*(1+δ) and redo the 
transformation starting from (4.8).
lhs (4.8) = rhs (4.8) ~ 1 delta ;
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(6.6)(6.6)

(6.2)(6.2)

(6.1)(6.1)

(6.7)(6.7)

(6.5)(6.5)

(6.3)(6.3)

(6.4)(6.4)

m0  
d
ds

x2 s

c 

m0  
d
ds

x1 s

c 

0

=

m0  
d2

ds2 x1 s  1

c

m0  
d2

ds2 x2 s  1

c

m0  
d2

ds2 x3 s  1

c

We take the same general orbit vector as before and put it into this equation and go through exactly 
the same calculation as above.
Old coordinates as f(new coordinates) back into the above:
simplify subs (4.11), (6.1)

1

c 
2 m0  

d
ds

X2 s  sin
s

 cos
s

 
d
ds

X1 s  

20  cos
s

sin
s

 X1 s cos
s

 X2 s , 

1

c 
2 m0  sin

s
 

d
ds

X1 s  20 sin
s

 cos
s

 
d
ds

X2 s  X2 s  sin
s

cos
s

 X1 s , 

0 =
1

c 
2 m0  1  sin

s
 

d2

ds2 X1 s  
2

cos
s

 
d2

ds2 X2 s  
2

2 
d
ds

X2 s  sin
s

 2 cos
s

 
d
ds

X1 s  20  cos
s

sin
s

 X1 s cos
s

 X2 s , 

1

c 
2 m0  1  

d2

ds2 X2 s  sin
s

 
2

cos
s

 
d2

ds2

X1 s  
2

2 sin
s

 
d
ds

X1 s  20 sin
s

 2 cos
s

 
d
ds

X2 s  X2 s  sin
s

cos
s

 X1 s , 
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(6.6)(6.6)

(6.2)(6.2)

(6.1)(6.1)

(6.7)(6.7)

(6.5)(6.5)

(6.3)(6.3)

(6.4)(6.4)

m0  
d2

ds2 X3 s  1

c

and cast into a form recognizable as a system of diff equations:
collect  solve lhs (6.2) 1 = rhs (6.2) 1 , lhs (6.2) 2 = rhs (6.2) 2 , lhs (6.2) 3

= rhs (6.2) 3 , diff X1 s , s, s , diff X2 s , s, s , diff X3 s , s, s , delta

d2

ds2 X1 s =
2 

d
ds

X2 s  X1 s  
d
ds

X2 s  

2
 1

,
d2

ds2 X2 s =

2  
d
ds

X1 s 20 X2 s   
d
ds

X1 s

1  
2 ,

d2

ds2 X3 s = 0

We insert the integral of the first equation of (6.3) into the second one to get a differential equation 
for X2:
subs int lhs op 1, (6.3) , s = int rhs op 1, (6.3) , s , op 2, (6.3)

d2

ds2 X2 s =
1

1  
2 2  

X2 s  s 2  
  s

2 1
 s

2 1
  2 1

X1 s  
 2 1

ds  s

  s
2 1

 s
2 1

_C1 s 2  
  s

2 1
 s

2 1
  2 1

20 

X2 s   
X2 s  s 2  

  s
2 1

 s
2 1

  2 1

X1 s  
 2 1

ds  s

  s
2 1

 s
2 1

_C1 s 2  
  s

2 1
 s

2 1
  2 1

This can be further simplified by taking the first order in δ only:
lhs (6.4) = collect convert series simplify expand rhs (6.4) , delta, 2 , polynom , X2 s ,

_C1
d2

ds2 X2 s =
1
2 2  X2 s

1
2

2 
2  _C1
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(6.6)(6.6)

(6.2)(6.2)

(6.1)(6.1)

(6.7)(6.7)

(6.5)(6.5)

(6.3)(6.3)

(6.4)(6.4)

20 
2

X1 s ds  
3

collect simplify subs X1 s = 0, _C1 = 0, beta2 0 = 1, (6.5) , X2 s
d2

ds2 X2 s =
1  X2 s

2

Compared to eq (5.2) we have acquired an inhomogeneous term δ/ρ which indicates an additional 
force dependent on the particle's energy only. Solution is again straightforward and we expect to get 
an additional, special solution for the inhomogeneous term.

dsolve (6.6)  assuming rho positive

X2 s = sin
1  s

 _C2 cos
1  s

 _C1
 

1
In this first-order treatment we have acquired  term δρ/(1+δ), i.e. δρ. We will call this the dispersion 
as it is dX2/dδ, and it is equal to the bending radius. If δ=0..1E-4, already a fairly small energy 
spread, then the dispersive beam size of an LHC-class constant-gradient machine would be 2.7 m. It 
is no surprise, then, that the vacuum chambers of he largest weak-focusing synchrotrons ever built 
(Bevatron (LBL): 6.3 GeV, Synchrophasotron (JINR Dubna): 10 GeV) could (almost) accommodate
a person; the Bevatron vacuum aperture was 1 by 4 ft.

The keen reader will note that the oscillatory component acquired a √1+δ term. This indicates a 
change in machine tune with particle energy and is referred to as chromaticity. It appears to be 
positive here; indicating a (small) increase of tune with particle energy. For constant-gradient 
machines this term is too small to be of concern; however, we will encounter it again later.
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(1.1.4)(1.1.4)

(1.1.13)(1.1.13)

(1.1.11)(1.1.11)

(1.1.3)(1.1.3)

(1.1.1)(1.1.1)

(1.1.6)(1.1.6)

(1.1.2)(1.1.2)

(1.1.7)(1.1.7)

(1.1.12)(1.1.12)

(1.1.5)(1.1.5)

(1.1.15)(1.1.15)

(1.1.9)(1.1.9)

(1.1.16)(1.1.16)

(1.1.8)(1.1.8)

(1.1.10)(1.1.10)

Hill's Equation

Envelope equation

Constant-gradient machines are limited in their reach due to the restriction in focusing force. The 
way out is to lift this restriction and allow the focusing to vary along the reference orbit. This 
leads to the notion of strong focusing—or alternating-gradient focusing—which is the basis of 
all modern high-energy accelerators. It is interesting to note that the development was in part 
done in analogy to optics, where it was already known that a series of lenses of alternating 
focusing could lead to an overall focusing effect.

To treat alternating-gradient focusing we start from eqs. (4.13 and 4.14) in the previous chapter, 
which we reproduce here, except that we now allow for variation in the gradient and bending 
radius:

subs rho = rho s , k = k s ,
d2

ds2 X2 s =
X2 s

2 k X2 s

d2

ds2 X2 s =
X2 s

s
2 k s  X2 s

subs k = k s ,
d2

ds2 X3 s = k X3 s

d2

ds2 X3 s = k s  X3 s

We postulate the existence of a closed orbit around the ring, which by necessity has to be 
periodic with the period L. With this condition, eqs (1.1.1) and (1.1.2) become Hills equations 
for which both stability criteria and a solution ansatz are known. The solution has the general 
form
xi1 s a w s * cos psi s

1 s a w s  cos s
xi2 s a w s * sin psi s

2 s a w s  sin s
where both functions w(s) as well as ψ(s) a priori are complex, although it will turn out that 
stable periodic solutions are real. w(s) reflects the periodicity of the ring:
w s  = w s L ;

w s = w s L
whereas ψ(s) does not. Clearly, w(s) is an amplitude function whereas ψ(s) is a phase function.
For simplicity we will use (1.1.2) in the following derivation and insert the solution ansatz and 
expand the derivatives:
subs X3 s = xi1 s , (1.1.2) rhs (1.1.2)

2

s2 a w s  cos s k s  a w s  cos s = 0
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(1.1.4)(1.1.4)

(1.1.13)(1.1.13)

(1.1.11)(1.1.11)

(1.1.3)(1.1.3)

(1.1.1)(1.1.1)

(1.1.6)(1.1.6)

(1.1.2)(1.1.2)

(1.1.7)(1.1.7)

(1.1.12)(1.1.12)

(1.1.5)(1.1.5)

(1.1.15)(1.1.15)

(1.1.9)(1.1.9)

(1.1.16)(1.1.16)

(1.1.8)(1.1.8)

(1.1.10)(1.1.10)

We need to find equations for w(s) and for ψ(s).
eval (1.1.6)

a 
d2

ds2 w s  cos s 2 a 
d
ds

w s  
d
ds

s  sin s

a w s  
d2

ds2 s  sin s a w s  
d
ds

s
2
 cos s

k s  a w s  cos s = 0
collect simplify (1.1.7) , sin, cos

a 2 
d
ds

w s  
d
ds

s w s  
d2

ds2 s  sin s a 
d
ds

s
2
 w s w s  k s

d2

ds2 w s  cos s = 0

Since this has to be valid for all values of ψ(s) (and a ≠ 0), the expressions in the parentheses 
have to be 0 individually:

whichop lhs (1.1.8) , 2 
d
ds

w s  
d
ds

s w s  
d2

ds2 s

1, 2
op 1, 2 , lhs (1.1.8) = 0

2 
d
ds

w s  
d
ds

s w s  
d2

ds2 s = 0

op 2, 2 , lhs (1.1.8) = 0
d
ds

s
2
 w s w s  k s

d2

ds2 w s = 0

Maple needs hand-holding to make progress here. We can multiply (1.1.10) by w(s):
expand (1.1.10) w s

2 w s  
d
ds

w s  
d
ds

s w s 2 
d2

ds2 s = 0

and compare it to this relation
Diff w s 2 Diff psi s , s , s = diff w s 2 diff psi s , s , s
d
ds

w s 2 
d
ds

s = 2 w s  
d
ds

w s  
d
ds

s w s 2 
d2

ds2

s

therefore
lhs (1.1.13) = 0

d
ds

w s 2 
d
ds

s = 0
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(1.2.21)(1.2.21)

(1.2.1)(1.2.1)

(1.1.13)(1.1.13)

(1.1.11)(1.1.11)

(1.2.18)(1.2.18)

(1.2.13)(1.2.13)

(1.1.6)(1.1.6)

(1.1.2)(1.1.2)

(1.2.17)(1.2.17)

(1.1.12)(1.1.12)

(1.2.12)(1.2.12)

(1.1.5)(1.1.5)

(1.1.15)(1.1.15)

(1.2.7)(1.2.7)

(1.2.3)(1.2.3)

(1.2.15)(1.2.15)

(1.2.20)(1.2.20)

(1.2.4)(1.2.4)

(1.2.26)(1.2.26)

(1.1.4)(1.1.4)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.8)(1.2.8)

(1.1.3)(1.1.3)

(1.2.14)(1.2.14)

(1.1.1)(1.1.1)

(1.2.27)(1.2.27)

(1.2.5)(1.2.5)

(1.2.23)(1.2.23)

(1.1.7)(1.1.7)

(1.2.24)(1.2.24)

(1.2.19)(1.2.19)

(1.1.9)(1.1.9)

(1.2.16)(1.2.16)

(1.1.16)(1.1.16)

(1.1.8)(1.1.8)

(1.1.10)(1.1.10)

(1.2.6)(1.2.6)

(1.2.22)(1.2.22)

(1.2.10)(1.2.10)

solve int lhs (1.1.14) , s = const, Diff psi s , s
d
ds

s =
const
w s 2

Putting this into (1.1.11) we get an equation for w(s):
subs subs Diff = diff, const = 1, (1.1.15) , (1.1.11)  

# Maple technical note: subs won't recognize Diff when substituting diff
1

w s 3 w s  k s
d2

ds2 w s = 0

where we also replaced the constant with the value 1.
We have two relations: 
1. w(s) has to be > 0 for ψ(s) to be real (for periodic solution) and a smooth function of s.
2. We have a differential equation for the amplitude function w(s), the envelope equation.

Matrix representation of solution to Hill's equation

Solving the envelope equation requires us to define the focusing function k(s); we will keep this 
for later. For now we will make use of another feature of Hills equations, which is the ability to 
express their solution in matrix form. Specifically:
Vector x L , eval diff x s , s , s = L  = R.Vector x 0 , eval diff x s , s , s = 0 ;

x L

d
dL

x L
= R

x 0

d
ds

x s

s = 0

A fundamental solution matrix is the matrix made of both solutions and their derivatives and 
transforms in the same way:

Matrix 1 0 , eval
d
ds

1 s , s = 0 2 0 , eval
d
ds

2 s , s = 0

a w 0  cos 0 , a w 0  sin 0 , 

a 
d
ds

w s

s = 0

 cos 0 a w 0  
d
ds

s

s = 0

 sin 0 , 

a 
d
ds

w s

s = 0

 sin 0 a w 0  
d
ds

s

s = 0

 cos 0



USPAS 2016 at UT Austin Accelerator Physics with Maple Hill's Equation and Matrix Optics

44

(1.2.21)(1.2.21)

(1.2.26)(1.2.26)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.1)(1.2.1)

(1.2.8)(1.2.8)

(1.2.18)(1.2.18)

(1.2.14)(1.2.14)

(1.2.13)(1.2.13)

(1.2.27)(1.2.27)

(1.2.5)(1.2.5)

(1.2.23)(1.2.23)

(1.2.17)(1.2.17)

(1.2.24)(1.2.24)

(1.2.12)(1.2.12)

(1.2.7)(1.2.7)

(1.2.19)(1.2.19)

(1.2.3)(1.2.3)

(1.2.15)(1.2.15)

(1.2.20)(1.2.20)

(1.2.16)(1.2.16)

(1.2.4)(1.2.4)

(1.2.6)(1.2.6)

(1.2.22)(1.2.22)

(1.2.10)(1.2.10)

Matrix 1 L , eval
d
ds

1 s , s = L 2 L , eval
d
ds

2 s , s = L = R

Matrix 1 0 , eval
d
ds

1 s , s = 0 2 0 , eval
d
ds

2 s , s = 0

a w L  cos L , a w L  sin L , 

a 
d
dL

w L  cos L a w L  
d
dL

L  sin L , a 
d
dL

w L  sin L a w L  
d
dL

L  cos L = R

a w 0  cos 0 , a w 0  sin 0 , 

a 
d
ds

w s

s = 0

 cos 0 a w 0  
d
ds

s

s = 0

 sin 0 , 

a 
d
ds

w s

s = 0

 sin 0 a w 0  
d
ds

s

s = 0

 cos 0

where the matrix R is defined as
R Matrix r11, r21 r12, r22

R
r11 r12

r21 r22

We can now make use of the periodicity of w(s) by setting w(L)=w(0) and likewise for the 
differentials and solve for the rij:
subs w L = w 0 , subs diff w L , L = eval diff w s , s , s = 0 , eval diff W s , s , s

= L = eval diff w s , s , s = 0 , (1.2.3)  
# Maple technical note: make sure differentials aren't being clobbered

a w 0  cos L , a w 0  sin L , 

a 
d
ds

w s

s = 0

 cos L a w 0  
d
dL

L  sin L , 

a 
d
ds

w s

s = 0

 sin L a w 0  
d
dL

L  cos L

= r11 a w 0  cos 0 r12 a 
d
ds

w s

s = 0

 cos 0
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(1.2.21)(1.2.21)

(1.2.26)(1.2.26)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.1)(1.2.1)

(1.2.8)(1.2.8)

(1.2.18)(1.2.18)

(1.2.14)(1.2.14)

(1.2.13)(1.2.13)

(1.2.27)(1.2.27)

(1.2.5)(1.2.5)

(1.2.23)(1.2.23)

(1.2.17)(1.2.17)

(1.2.24)(1.2.24)

(1.2.12)(1.2.12)

(1.2.7)(1.2.7)

(1.2.19)(1.2.19)

(1.2.3)(1.2.3)

(1.2.15)(1.2.15)

(1.2.20)(1.2.20)

(1.2.16)(1.2.16)

(1.2.4)(1.2.4)

(1.2.6)(1.2.6)

(1.2.22)(1.2.22)

(1.2.10)(1.2.10)

a w 0  
d
ds

s

s = 0

 sin 0 , r11 a w 0  sin 0

r12 a 
d
ds

w s

s = 0

 sin 0 a w 0  
d
ds

s

s = 0

 cos 0 , 

r21 a w 0  cos 0 r22 a 
d
ds

w s

s = 0

 cos 0

a w 0  
d
ds

s

s = 0

 sin 0 , r21 a w 0  sin 0

r22 a 
d
ds

w s

s = 0

 sin 0 a w 0  
d
ds

s

s = 0

 cos 0

simplify~ solve seq seq lhs (1.2.5) ii jj = rhs (1.2.5) ii jj , ii = 1 ..2 , jj = 1 ..2 ,
r11, r12, r21, r22

r11 =
1

w 0  
d
ds

s

s = 0

sin L  w 0  
d
ds

s

s = 0

 sin 0 w 0  cos L  cos 0  
d
ds

s

s = 0

sin L  cos 0  
d
ds

w s

s = 0

d
ds

w s
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(1.2.21)(1.2.21)

(1.2.26)(1.2.26)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.1)(1.2.1)

(1.2.8)(1.2.8)

(1.2.18)(1.2.18)

(1.2.14)(1.2.14)

(1.2.13)(1.2.13)

(1.2.27)(1.2.27)

(1.2.5)(1.2.5)

(1.2.23)(1.2.23)

(1.2.17)(1.2.17)

(1.2.24)(1.2.24)

(1.2.12)(1.2.12)

(1.2.7)(1.2.7)

(1.2.19)(1.2.19)

(1.2.3)(1.2.3)

(1.2.15)(1.2.15)

(1.2.20)(1.2.20)

(1.2.16)(1.2.16)

(1.2.4)(1.2.4)

(1.2.6)(1.2.6)

(1.2.22)(1.2.22)

(1.2.10)(1.2.10)

s = 0

 cos L  sin 0 , r12

=
sin L  cos 0 cos L  sin 0

d
ds

s

s = 0

, r21

=
1

w 0 2 
d
ds

s

s = 0

d
dL

L  sin L  w 0 2 cos 0  
d
ds

s

s = 0

d
dL

L  w 0 2 cos L  
d
ds

s

s = 0

 sin 0
d
dL

L  sin L  w 0  
d
ds

w s

s = 0

 sin 0
d
dL

L  w 0  cos L  cos 0  
d
ds

w s

s = 0
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(1.2.21)(1.2.21)

(1.2.26)(1.2.26)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.1)(1.2.1)

(1.2.8)(1.2.8)

(1.2.18)(1.2.18)

(1.2.14)(1.2.14)

(1.2.13)(1.2.13)

(1.2.27)(1.2.27)

(1.2.5)(1.2.5)

(1.2.23)(1.2.23)

(1.2.17)(1.2.17)

(1.2.24)(1.2.24)

(1.2.12)(1.2.12)

(1.2.7)(1.2.7)

(1.2.19)(1.2.19)

(1.2.3)(1.2.3)

(1.2.15)(1.2.15)

(1.2.20)(1.2.20)

(1.2.16)(1.2.16)

(1.2.4)(1.2.4)

(1.2.6)(1.2.6)

(1.2.22)(1.2.22)

(1.2.10)(1.2.10)

sin L  w 0  
d
ds

w s

s = 0

 
d
ds

s

s = 0

 sin 0

w 0  cos L  cos 0  
d
ds

w s

s = 0

 
d
ds

s

s = 0

sin L  cos 0  
d
ds

w s

s = 0

2
cos L  

d
ds

w s

s = 0

2
 sin 0 , r22 =

1

w 0  
d
ds

s

s = 0

w 0  
d
dL

L  sin L  sin 0
d
dL

L  w 0  cos L  cos 0

sin L  cos 0  
d
ds

w s

s = 0

d
ds

w s

s = 0

 cos L  sin 0

Get rid of the differentials of ψ(s):

combine~ collect expand~ subs~ subs Diff = diff, const = 1, (1.1.15) , diff psi L , L

=
1

w 0 2 , (1.2.6) , eval diff w s , s , s = 0 , diff psi L , L , sin, cos , trig
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(1.2.21)(1.2.21)

(1.2.26)(1.2.26)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.1)(1.2.1)

(1.2.8)(1.2.8)

(1.2.18)(1.2.18)

(1.2.14)(1.2.14)

(1.2.13)(1.2.13)

(1.2.27)(1.2.27)

(1.2.5)(1.2.5)

(1.2.23)(1.2.23)

(1.2.17)(1.2.17)

(1.2.24)(1.2.24)

(1.2.12)(1.2.12)

(1.2.7)(1.2.7)

(1.2.19)(1.2.19)

(1.2.3)(1.2.3)

(1.2.15)(1.2.15)

(1.2.20)(1.2.20)

(1.2.16)(1.2.16)

(1.2.4)(1.2.4)

(1.2.6)(1.2.6)

(1.2.22)(1.2.22)

(1.2.10)(1.2.10)

r11 =
1

w 0  
1

w s 2

s = 0

cos L 0  w 0  
1

w s 2

s = 0

d
ds

w s

s = 0

 sin L 0 , r12 =
sin L 0

1
w s 2

s = 0

,

r21 =
1

w 0 3 
1

w s 2

s = 0

1
w s 2

s = 0

 cos L

0  w 0 2 
d
ds

w s

s = 0

d
ds

w s

s = 0

2
 sin L

0  w 0 w 0  
1

w s 2

s = 0

 sin L 0 cos L

0  
d
ds

w s

s = 0

, r22
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(1.2.21)(1.2.21)

(1.2.26)(1.2.26)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.1)(1.2.1)

(1.2.8)(1.2.8)

(1.2.18)(1.2.18)

(1.2.14)(1.2.14)

(1.2.13)(1.2.13)

(1.2.27)(1.2.27)

(1.2.5)(1.2.5)

(1.2.23)(1.2.23)

(1.2.17)(1.2.17)

(1.2.24)(1.2.24)

(1.2.12)(1.2.12)

(1.2.7)(1.2.7)

(1.2.19)(1.2.19)

(1.2.3)(1.2.3)

(1.2.15)(1.2.15)

(1.2.20)(1.2.20)

(1.2.16)(1.2.16)

(1.2.4)(1.2.4)

(1.2.6)(1.2.6)

(1.2.22)(1.2.22)

(1.2.10)(1.2.10)

=

d
ds

w s

s = 0

 sin L 0  w 0 cos L 0

w 0 2 
1

w s 2

s = 0
To make this more readable we will introduce the standard notation for the "Twiss" parameters: α,
β and γ:

w s = s

w s = s

diff w s , s =
alpha s

w s
d
ds

w s =
s

w s

gamma s =
1 alpha s 2

beta s

s =
1 s

2

s
collect subs psi L psi 0 = mu L , subs w 0 = sqrt beta 0 , eval~ collect subs

(1.2.8), subs (1.2.9), (1.2.7) , eval , sin

r11 = 0  sin L cos L , r12 = sin L  0 , r21 =
0

2

0

1
0

 sin L , r22 = 0  sin L cos L

# Here we have an expression for the R matrix in terms of the periodic functions α and β as well 
as the phase advance µ.

Rp subs (1.2.11) , R

Rp

0  sin L cos L sin L  0

0
2

0
1
0

 sin L 0  sin L cos L

Rp represents stable motion if its Eigenvalues are finite. Note that the factor a no longer shows up
here. (1.2.12) will represent stable motion if its determinant is 1:
simplify det Rp ;

1
and if µ(L) is real, or the Trace of Rp is <= 2:
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(1.2.21)(1.2.21)

(1.2.26)(1.2.26)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.1)(1.2.1)

(1.2.8)(1.2.8)

(1.2.18)(1.2.18)

(1.2.14)(1.2.14)

(1.2.13)(1.2.13)

(1.2.27)(1.2.27)

(1.2.5)(1.2.5)

(1.2.23)(1.2.23)

(1.2.17)(1.2.17)

(1.2.24)(1.2.24)

(1.2.12)(1.2.12)

(1.2.7)(1.2.7)

(1.2.19)(1.2.19)

(1.2.3)(1.2.3)

(1.2.15)(1.2.15)

(1.2.20)(1.2.20)

(1.2.16)(1.2.16)

(1.2.4)(1.2.4)

(1.2.6)(1.2.6)

(1.2.22)(1.2.22)

(1.2.10)(1.2.10)

LinearAlgebra:-Trace (1.2.12) ;
2 cos L

We need to attend to one more detail in this section: in the derivation, by basing everything on the 
phase advance µ(s) and the envelope function β(s), we seem to have lost the connection to the 
focusing function k(s). Matrix optics allows us to make this connection. 
To find this connection we need to find the one-turn matrix at a different location—different by a 
small amount ds than the location where we calculated the one-turn matrix (1.2.12). In general 
this is a similarity transformation:
M 1 turn s2 = s ds  = M ds M 1 turn s M ds

Mturn s2 = s ds = M ds  Mturn s  M ds

In our ring, the matrix M(ds) is the transfer matrix of a (short) piece of ring with the focusing 
strength k(s). Note that k(s) can be 0 when we pass through a drift section; or take on any other 
value. We define (and note that we are jumping a bit ahead here in that we will establish that this 
is indeed the right formulation later):
M ds 1 ds , k s ds 1

Mds

1 ds

k s  ds 1

and get (evaluating Rp at a location s rather than 0)
simplify~  M ds .subs alpha 0 = alpha s , beta 0 = beta s , Rp .LinearAlgebra:-

MatrixInverse M ds

1
s  1 ds2 k s

sin L  s  s  k s  ds2

sin L  s
2
 k s  ds cos L  s  k s  ds2 sin L  s

2
 ds

sin L  s  s sin L  ds cos L  s , 

sin L  s
2
 ds2 2 s  s  ds s

2
ds2

s  1 ds2 k s
, 

sin L  s
2
 k s 2 ds2 2 s  s  k s  ds s

2
1

s  1 ds2 k s
, 

1
s  1 ds2 k s

sin L  s  s  k s  ds2

sin L  s
2
 k s  ds cos L  s  k s  ds2 sin L  s

2
 ds

sin L  s  s sin L  ds cos L  s
We limit ourselves to first order in ds and
collect subs ds2 = 0, (1.2.17) , ds



USPAS 2016 at UT Austin Accelerator Physics with Maple Hill's Equation and Matrix Optics

51

(1.2.21)(1.2.21)

(1.2.26)(1.2.26)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.1)(1.2.1)

(1.2.8)(1.2.8)

(1.2.18)(1.2.18)

(1.2.14)(1.2.14)

(1.2.13)(1.2.13)

(1.2.27)(1.2.27)

(1.2.5)(1.2.5)

(1.2.23)(1.2.23)

(1.2.17)(1.2.17)

(1.2.24)(1.2.24)

(1.2.12)(1.2.12)

(1.2.7)(1.2.7)

(1.2.19)(1.2.19)

(1.2.3)(1.2.3)

(1.2.15)(1.2.15)

(1.2.20)(1.2.20)

(1.2.16)(1.2.16)

(1.2.4)(1.2.4)

(1.2.6)(1.2.6)

(1.2.22)(1.2.22)

(1.2.10)(1.2.10)

sin L  s
2
 k s sin L  s

2
sin L  ds

s

sin L  s  s cos L  s
s

, 2 s  sin L  ds

sin L  s , 

2 sin L  s  k s  ds
1 s

2
 sin L

s
, 

sin L  s
2
 k s sin L  s

2
sin L  ds

s

sin L  s  s cos L  s
s

The difference of (1.2.18) from Rp evaluated at location s, divided by ds, is then the differential of
the matrix elements for a given k(s).
subs alpha 0 = alpha s , beta 0 = beta s , Rp

s  sin L cos L sin L  s

s
2

s
1
s

 sin L s  sin L cos L

collect simplify (1.2.18) 1, 1 ~ (1.2.19) 1, 1 , ds

sin L  s
2
 k s s

2
1  ds

s
collect simplify (1.2.18) 1, 2 ~ (1.2.19) 1, 2 , ds

2 s  sin L  ds
collect simplify (1.2.18) 2, 1 ~ (1.2.19) 2, 1 , ds

2 sin L  s  k s  ds
collect simplify (1.2.18) 2, 2 ~ (1.2.19) 2, 2 , ds

sin L  s
2
 k s s

2
1  ds

s
The matrix (1.2.25...1.2.28) is the differential or Rp wrt. s so we can compare the coefficients of 
the sine functions to the straight differential of Rp:
diff~ (1.2.19), s

d
ds

s  sin L , sin L  
d
ds

s , 
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(1.2.21)(1.2.21)

(1.2.1)(1.2.1)

(1.3.4)(1.3.4)

(1.2.18)(1.2.18)

(1.2.13)(1.2.13)

(1.2.17)(1.2.17)

(1.2.12)(1.2.12)

(1.2.7)(1.2.7)

(1.2.3)(1.2.3)

(1.3.5)(1.3.5)

(1.3.2)(1.3.2)

(1.2.15)(1.2.15)

(1.2.20)(1.2.20)

(1.2.4)(1.2.4)

(1.3.6)(1.3.6)

(1.2.26)(1.2.26)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.8)(1.2.8)

(1.3.1)(1.3.1)

(1.2.14)(1.2.14)

(1.3.3)(1.3.3)

(1.2.27)(1.2.27)

(1.2.5)(1.2.5)

(1.2.23)(1.2.23)

(1.2.24)(1.2.24)

(1.2.19)(1.2.19)

(1.2.16)(1.2.16)

(1.2.6)(1.2.6)

(1.2.22)(1.2.22)

(1.2.10)(1.2.10)

2 s  
d
ds

s

s

s
2
 

d
ds

s

s
2

d
ds

s

s
2  sin L , 

d
ds

s  sin L

frontend coeff, (1.2.24)1, 1, sin L = frontend coeff,
(1.2.20)

ds
, sin L

d
ds

s =
s

2
 k s s

2
1

s

frontend coeff, (1.2.24)1, 2, sin L = frontend coeff,
(1.2.21)

ds
, sin L

d
ds

s = 2 s

(The other two are just variations of the first two elements).
simplify solve (1.2.25), k s

k s =

d
ds

s  s s
2

1

s
2

Here we have the connection between the beta function and the focusing function k(s).

Floquet transformation

The matrix Rp (eq (1.2.12)) is the fundamental solution to our equation of motion and by our
ansatz can be used to transport particle coordinates around the ring. It looks somewhat similar to 
a rotation matrix. In fact, we can transform into a suitable coordinate system to bring out this 
similarity in a better way. For this we transform the general solution into the normalized or 
Floquet coordinate system using the matrix
F Matrix 1 / sqrt beta s 0 , alpha s / sqrt beta s sqrt beta s  

F

1

s
0

s

s
s

and get
Q F. x, xp
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(1.3.5)(1.3.5)

(1.3.2)(1.3.2)

(1.3.1)(1.3.1)

(1.3.3)(1.3.3)

(1.3.6)(1.3.6)

(1.3.4)(1.3.4)

Q

x

s

s  x

s
s  xp

for a phase-space vector and
Rn simplify~ subs s = 0, F.Rp.LinearAlgebra:-MatrixInverse F ;

Rn
cos L sin L

sin L cos L

for the transformation matrix. This is just a rotation in phase space by the phase advance µ(L). 
Now transporting the vector Q using Rn
Rn.Q

cos L  x

s
sin L  

s  x

s
s  xp

sin L  x

s
cos L  

s  x

s
s  xp

and taking its length (which has to be constant) we get
a2 = simplify (1.3.4)1

2 (1.3.4)2
2

a2 =
s

2
 xp2 2 s  s  x xp s

2
 x2 x2

s
algsubs 1 alpha s ^2 / beta s = gamma s , collect (1.3.5), alpha s , beta s

a2 = x2 s xp2 s 2 x xp s
We have thus found a to be constant of motion that does not change as we transport beam 
particles around a ring. (1.3.6) describes an ellipse in phase space the tilt of which is given by α, 
see the figure below, taken from [26]. ε=a2/π is the area in phase space of the ellipse expressed in 
units of π and called the emittance. Its units are m*radians. It is not uncommon, but highly 
confusing, to quote the emittance in units of "π m-rad", except that the number given times π is the
area of the ellipse. Note that the lattice functions are a property of the machine, whereas the 
emittance is a property of the beam.
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(1.4.7)(1.4.7)

(1.4.4)(1.4.4)

(1.4.5)(1.4.5)

(1.4.11)(1.4.11)

(1.4.10)(1.4.10)

(1.4.9)(1.4.9)

(1.4.8)(1.4.8)

(1.4.12)(1.4.12)

(1.4.2)(1.4.2)

(1.4.6)(1.4.6)

(1.4.1)(1.4.1)

Propagation of particle coordinates.

Having found the Twiss functions at one particular location establishes betatron stability to first 
order (if the Twiss functions exist and are real!), but we also need to know how to propagate 
particles along a machine over a fraction of a turn, from point 0 to point s in this case, by just 
knowing the lattice functions at either end and the phase ψ in between these locations. To this 
extent we rewrite the general solutions ξ, (1.1.3) and (1.1.4),  at some point s in terms of β and α:

x s = collect subs w s = sqrt beta s , xi1 s
b
a

2 s , beta s

x s = cos s  a sin s  b  s
and its differential
diff (1.4.1), s
d
ds

x s =
d
ds

s  sin s  a
d
ds

s  cos s  b  s

cos s  a sin s  b  
d
ds

s

2 s
With ((1.2.9)):
subs w s = sqrt beta s , (1.2.9)
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(1.4.3)(1.4.3)

(1.4.7)(1.4.7)

(1.4.4)(1.4.4)

(1.4.5)(1.4.5)

(1.4.11)(1.4.11)

(1.4.10)(1.4.10)

(1.4.9)(1.4.9)

(1.4.8)(1.4.8)

(1.4.12)(1.4.12)

(1.4.2)(1.4.2)

(1.4.6)(1.4.6)

(1.4.1)(1.4.1)

d
ds

s =
s

s
solve (1.4.3), alpha s

s =

d
ds

s

2
and
subs~ w s = sqrt beta s , const = 1, (1.1.15)

d
ds

s =
1
s

we get

collect algsubs rhs (1.4.4) = lhs (1.4.4) , (1.4.2) , a, b  #
 replace d

ds

d
ds

x s =
sin s  s  

d
ds

s cos s  s  a

s

cos s  s  
d
ds

s sin s  s  b

s
subs~ value (1.4.5) , (1.4.6)  # replace d _ds, need to use value here to match the diff

d
ds

x s =
sin s cos s  s  a

s

cos s sin s  s  b

s
We now use the initial conditions (x(0);xp(0) with ψ(0=0) to find a and b:
solve simplify subs psi 0 = 0, subs s = 0, (1.4.1) , a

a =
x 0

0

subs
d
ds

 x s

s = 0

= xp 0 , solve simplify subs (1.4.8), subs psi 0 = 0, eval (1.4.7), s

= 0 , b

b =
xp 0  0 0  x 0

0
We can now insert these into our general solutions:
collect simplify subs (1.4.8), (1.4.9) , (1.4.1) , x 0 , xp 0
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(1.5.6)(1.5.6)

(1.4.7)(1.4.7)

(1.4.5)(1.4.5)

(1.5.5)(1.5.5)

(1.5.13)(1.5.13)

(1.4.2)(1.4.2)

(1.4.6)(1.4.6)

(1.5.15)(1.5.15)

(1.4.4)(1.4.4)

(1.4.11)(1.4.11)

(1.5.4)(1.5.4)

(1.4.8)(1.4.8)

(1.5.1)(1.5.1)

(1.5.8)(1.5.8)

(1.4.3)(1.4.3)

(1.5.16)(1.5.16)

(1.5.17)(1.5.17)

(1.5.12)(1.5.12)

(1.4.10)(1.4.10)

(1.5.18)(1.5.18)

(1.5.7)(1.5.7)

(1.4.1)(1.4.1)

(1.5.19)(1.5.19)

(1.4.9)(1.4.9)

(1.5.10)(1.5.10)

(1.5.9)(1.5.9)

(1.5.14)(1.5.14)

(1.5.11)(1.5.11)

(1.4.12)(1.4.12)

x s =
s  0  sin s cos s  x 0

0

s  xp 0  0  sin s

and
collect collect simplify subs (1.4.8), (1.4.9) , (1.4.7) , sin, cos , x 0 , xp 0
d
ds

x s =
0  s 1  sin s

s  0

0 s  cos s

s  0
 x 0

0  s  sin s

s

0  cos s

s
 xp 0

This can be be then expressed in matrix form to yield, finally, the matrix from 0 to s expressed in 
terms of β(0) and β(s), α(0) and α(s) and the phase ψ(s) between the two points.

R_T collect coeff rhs (1.4.10) , x 0 coeff rhs (1.4.10) , xp 0 , coeff rhs
(1.4.11) , x 0 coeff rhs (1.4.11) , xp 0 , beta s , beta 0

R_T
s  0  sin s cos s

0
, s  0  sin s , 

0  s 1  sin s 0 s  cos s

0  s
, 

cos s sin s  s  0

s

Dispersion

We replace eq. (1.1.1) with the dispersive term kept:

subs 1 delta = 1,
d2

ds2 X2 s =
1  X2 s

2

csgn
1

 csgn 1  
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(1.5.6)(1.5.6)

(1.5.16)(1.5.16)

(1.5.17)(1.5.17)

(1.5.5)(1.5.5)

(1.5.12)(1.5.12)

(1.5.18)(1.5.18)

(1.5.13)(1.5.13)

(1.5.15)(1.5.15)

(1.5.7)(1.5.7)

(1.5.4)(1.5.4)

(1.5.19)(1.5.19)

(1.5.10)(1.5.10)

(1.5.9)(1.5.9)

(1.5.14)(1.5.14)

(1.5.11)(1.5.11)

(1.5.1)(1.5.1)

(1.5.8)(1.5.8)

d2

ds2 X2 s =
X2 s

2

csgn
1

 

where we have omitted the chromatic term in the dipole focusing as it is of little consequence for 
this part.
In order to keep the math from becoming too cumbersome we will restrict ourselves to a 
symmetry point in the lattice, where α(0)=0.
We can also simplify the notation by writing for the particular solution
x s  = C s x0 S s xp 0 Disp s delta

x s = C s  x0 S s  xp0 Disp s  

xp s  = Cp s x0 Sp s xp0 Dispp s delta

xp s = Cp s  x0 Sp s  xp0 Dispp s  

We can make an ansatz for Disp(s):

Disp s  = S s  Int
C sigma

rho sigma
, sigma = 0 ..L C s Int

S sigma
rho sigma

, sigma = 0 ..L

Disp s = S s  
0

L
C

d C s  
0

L
S

d

and

Dispp s  = subs
d
ds

S s = Sp s ,
d
ds

C s = Cp s , diff rhs (1.5.4) , s

Dispp s = Sp s  
0

L
C

d Cp s  
0

L
S

d

(the ansatz can be verified by putting it back into the original eq. of motion) 
The solution ansatz in matrix form is, 

x, xp, = C s S s Disp s , Cp s Sp s Dispp s , 0 0 1 . x0, xp0, delta

x

xp =

C s  x0 S s  xp0 Disp s  

Cp s  x0 Sp s  xp0 Dispp s  

For the solution with no betatron oscillations but at a momentum offset delta, we require that x 
and xp remain the same after one turn (as the momentum does not change), and we call this 
particular set of coordinates η and etap. 
eta, etap, = C s S s Disp s , Cp s Sp s Dispp s , 0 0 1 . eta, etap, delta
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(1.5.6)(1.5.6)

(1.5.16)(1.5.16)

(1.5.17)(1.5.17)

(1.5.5)(1.5.5)

(1.5.12)(1.5.12)

(1.5.18)(1.5.18)

(1.5.13)(1.5.13)

(1.5.15)(1.5.15)

(1.5.7)(1.5.7)

(1.5.4)(1.5.4)

(1.5.19)(1.5.19)

(1.5.10)(1.5.10)

(1.5.9)(1.5.9)

(1.5.14)(1.5.14)

(1.5.11)(1.5.11)

(1.5.1)(1.5.1)

(1.5.8)(1.5.8)

etap =

C s  S s  etap Disp s  

Cp s  Sp s  etap Dispp s  

and we can solve for η:
subs~ delta = 1, solve  eta = rhs (1.5.7) 1 , etap = rhs (1.5.7) 2 , eta, etap

=
Disp s  Sp s Dispp s  S s Disp s

Cp s  S s Sp s  C s Sp s C s 1
, etap =

Cp s  Disp s Dispp s  C s Dispp s
Cp s  S s Sp s  C s Sp s C s 1

denom rhs (1.5.8) 1
Cp s  S s Sp s  C s Sp s C s 1

subs Cp s = Rp 2, 1 , Sp s = Rp 2, 2 , C s = Rp 1, 1 , S s = Rp 1, 2 , (1.5.9)

0
2

0
1
0

 sin L
2
 0 0  sin L

cos L  0  sin L cos L 2 cos L 1
combine %, trig

2 2 cos L

subs cos mu L = 1 2 sin
mu L

2

2
, (1.5.11)

4 sin
L
2

2

so the denominator is Tr(Rn)-2.
The numerator in η is
numer rhs (1.5.8) 1

Disp s  Sp s Dispp s  S s Disp s
subs (1.5.4), (1.5.5), (1.5.13)

S s  
0

L
C

d C s  
0

L
S

d  Sp s Sp s  
0

L
C

d

Cp s  
0

L
S

d  S s S s  
0

L
C

d C s  
0

L
S

d

collect simplify (1.5.14) ,
S

d ,  
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(1.5.6)(1.5.6)

(1.5.16)(1.5.16)

(1.5.17)(1.5.17)

(1.5.5)(1.5.5)

(1.5.12)(1.5.12)

(1.5.18)(1.5.18)

(1.5.13)(1.5.13)

(1.5.15)(1.5.15)

(1.5.7)(1.5.7)

(1.5.4)(1.5.4)

(1.5.19)(1.5.19)

(1.5.10)(1.5.10)

(1.5.9)(1.5.9)

(1.5.14)(1.5.14)

(1.5.11)(1.5.11)

(1.5.1)(1.5.1)

(1.5.8)(1.5.8)

0

L
S

d  Cp s  S s
0

L
S

d  Sp s  C s S s  
0

L
C

d

C s  
0

L
S

d

We see that the factor in front of the sine integral has Cp*S-SP*C in it; that is the determinant of
Rn and therefore 1:

num = simplify (1.5.15), C s  Sp s Cp s  S s = 1

num = S s  
0

L
C

d C s  
0

L
S

d
0

L
S

d

NOTE: This is just the numerator!!
collect (1.5.16), Int

num = S s  
0

L
C

d C s 1  
0

L
S

d

We will not go through the evaluation of this as it is tedious and not particularly instructive.
(Note: see "Dispersion evaluation detail.mw"). At the end one arrives at

num = 2  sqrt beta 0 sin Pi Q0

int
sqrt beta sigma cos mu sigma mu 0 Pi Q0

rho sigma
, sigma = 0 ..L

num = 2 0  sin  Q0  

0

L
 cos 0  Q0

d

and η becomes

eta =
rhs (1.5.18)

subs mu L = 2 Pi Q0, (1.5.12)

=

0  

0

L
 cos 0  Q0

d

2 sin  Q0
What this tells us is that the dispersion scales with √β and √βavg in the dipoles, and is sensitive to 
the machine tune; and is smallest for Q0 = (2n+1)/2, everything else being equal. In practice, eq. 
(1.5.19) is not as useful as one might think as the local dispersion is controlled by specifics of the 
lattice, as we will see later.

Element wise Matrix optics
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(2.1.4)(2.1.4)

(2.1.1)(2.1.1)

(2.1.7)(2.1.7)

(2.1.5)(2.1.5)

(2.1.6)(2.1.6)

(2.1)(2.1)

(2.2)(2.2)

(2.1.2)(2.1.2)

(2.1.3)(2.1.3)

In establishing the R matrix for a ring we actually did not invoke the periodicity until we established the
closed solution in eq (1.2.5). In fact, matrix optics works perfectly well for any section of a machine. In
the following we will establish the matrices for the simplest and most important elements of a ring 
accelerator, in fact, of any beam guidance system.

We start from eq. 3.3.1 and 3.3.2 from Sec. "Field Gradient", which we restate here:
d2

ds2 X2 s =
X2 s

2 k X2 s

d2

ds2 X2 s =
X2 s

2 k X2 s

d2

ds2 X3 s = k X3 s

d2

ds2 X3 s = k X3 s

We now take k and ρ as piecewise constant and will find the 2x2 matrices that represent the solutions 
for the most important elements: drift section (i.e. no field); quadrupole (i.e. pure gradient) and dipole 
(gradient and bending).

Drift section

The drift sections is easiest: k=0 and ρ=∞:
subs rho = infinity, k = 0, (2.1)

d2

ds2 X2 s = 0

dsolve (2.1.1)
X2 s = _C1 s _C2

Initial conditions: X2(0)=x0, dX2/ds = xp0 for s=0:
eval (2.1.2), s = 0

X2 0 = _C2
eval diff (2.1.2), s , s = 0

d
ds

X2 s

s = 0

= _C1

so _C1 is xp0 and _C2 is x0:
subs _C1 = xp0, _C2 = x0, (2.1.2)

X2 s = s xp0 x0
diff (2.1.5), s

d
ds

X2 s = xp0

or in matrix form
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(2.1.4)(2.1.4)

(2.1.1)(2.1.1)

(2.1.2)(2.1.2)

(2.3.7)(2.3.7)

(2.3.5)(2.3.5)

(2.1.3)(2.1.3)

(2.1.7)(2.1.7)

(2.1.5)(2.1.5)

(2.3.4)(2.3.4)

(2.1.6)(2.1.6)

(2.3.1)(2.3.1)

(2.3.2)(2.3.2)

(2.3.3)(2.3.3)

(2.3.6)(2.3.6)

Rdrift coeff op 2, (2.1.5) , x0 coeff op 2, (2.1.5) , xp0 ,
                  coeff op 2, (2.1.6) , x0 coeff op 2, (2.1.6) , xp0

Rdrift
1 s

0 1

This indeed is the R matrix for a drift section.

Quadrupole

Bolstered by this success we will now treat the case with a field gradient:
subs rho = infinity, (2.1)

d2

ds2 X2 s = k X2 s (2.2.1)

dsolve (2.2.1)

X2 s = _C1 sin k  s _C2 cos k  s (2.2.2)
with the initial conditions
eval (2.2.2), s = 0

X2 0 = _C2 (2.2.3)
eval diff (2.2.2), s , s = 0

d
ds

X2 s

s = 0

= _C1 k (2.2.4)

subs _C1 =
xp0

sqrt k
, _C2 = x0, (2.2.2), diff (2.2.2), s

X2 s =
xp0 sin k  s

k
x0 cos k  s ,

d
ds

X2 s = xp0 cos k  s

x0 k  sin k  s

(2.2.5)

Rquad coeff op 2, (2.2.5) 1 , x0 coeff op 2, (2.2.5) 1 , xp0 ,
                  coeff op 2, (2.2.5) 2 , x0 coeff op 2, (2.2.5) 2 , xp0

Rquad
cos k  s

sin k  s

k

k  sin k  s cos k  s

(2.2.6)

Dipole
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(2.3.4)(2.3.4)

(2.3.1)(2.3.1)

(2.3.2)(2.3.2)

(2.3.3)(2.3.3)

(2.3.7)(2.3.7)

(2.3.5)(2.3.5)

(2.3.6)(2.3.6)

For the dipole we also need to carry the dispersive term that we actually haven't done yet.

lhs (2.1) = rhs (2.1)
delta
rho

d2

ds2 X2 s =
X2 s

2 k X2 s

dsolve (2.3.1) ;

X2 s = sin
k 

2
1  s

 _C2 cos
k 

2
1  s

 _C1
 

k 
2

1
To use the matrix approach we need to carry a third component along for δ; which is a beam 
property and not a property of the element.
Our matrices then become 3x3 matrices, acting on 3-vectors [x,xp,δ].
The initial conditions are now
subs X2 0 = x0, solve eval (2.3.2), s = 0 , _C1

_C1 =
x0 k 

2
 x0

k 
2

1
subs eval diff X2 s , s , s = 0 = xp0, solve eval diff (2.3.2), s , s = 0 , _C2

_C2 =
xp0 

k 
2

1
collect subs (2.3.3) , (2.3.4) , (2.3.2) , x0, xp0, delta

X2 s = cos
k 

2
1  s

 x0
sin

k 
2

1  s
 xp0 

k 
2

1

cos
k 

2
1  s

 

k 
2

1 k 
2

1
 

diff (2.3.5), s

d
ds

X2 s =
k 

2
1  sin

k 
2

1  s
 x0

cos
k 

2
1  s

 xp0

sin
k 

2
1  s

 

k 
2

1
Rdipole coeff op 2, (2.3.5) , x0 coeff op 2, (2.3.5) , xp0 coeff op 2, (2.3.5) ,

delta ,
                   coeff op 2, (2.3.6) , x0 coeff op 2, (2.3.6) , xp0 coeff op 2, (2.3.6) , delta ,
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(2.4.8)(2.4.8)

(2.4.24)(2.4.24)

(2.4.22)(2.4.22)

(2.4.18)(2.4.18)

(2.4.25)(2.4.25)

(2.4.2)(2.4.2)

(2.4.13)(2.4.13)

(2.4.7)(2.4.7)

(2.4.17)(2.4.17)

(2.3.7)(2.3.7)

(2.4.23)(2.4.23)

(2.4.10)(2.4.10)

(2.4.14)(2.4.14)

(2.4.15)(2.4.15)

(2.3.2)(2.3.2)

(2.4.26)(2.4.26)

(2.4.11)(2.4.11)

(2.4.16)(2.4.16)

(2.3.5)(2.3.5)

(2.4.21)(2.4.21)

(2.4.4)(2.4.4)

(2.4.19)(2.4.19)

(2.4.20)(2.4.20)

(2.3.4)(2.3.4)

(2.4.1)(2.4.1)

(2.4.3)(2.4.3)

(2.3.1)(2.3.1)

(2.4.27)(2.4.27)

(2.4.9)(2.4.9)

(2.3.3)(2.3.3)

(2.3.6)(2.3.6)

(2.4.12)(2.4.12)

(2.4.5)(2.4.5)

                   0 0 1

Rdipole cos
k 

2
1  s

, 
sin

k 
2

1  s
 

k 
2

1
, 

cos
k 

2
1  s

 

k 
2

1 k 
2

1
, 

k 
2

1  sin
k 

2
1  s

, cos
k 

2
1  s

, 

sin
k 

2
1  s

k 
2

1
, 

0, 0, 1

Machine ellipse vs Beam ellipse

At this time we need to return to the phase-space ellipse defined by the Courant-Snyder invariant, 
eq. (1.3.6). The derivation of this invariant was done solely based on the transfer matrices of a 
ring and therefore the shape and orientation are properties of the magnet lattice.
How does this relate to a beam? For a single particle the answer is that it will trace out exactly the 
ellipse defined by (1.3.6) with a value of ε given by its amplitude. If we have e.g. a beam with a 
Gaussian distribution that has the same parameters, this distribution will be stationary and it is 
said that the beam is matched.
Therefore we can describe a beam in the same way, except that there are no matching conditions e.
g. in a single-pass beam line or linac. To distinguish the machine ellipse and the beam ellipse, and 
to extend the algorithm to the 6-d case, we describe the beam with a Σ matrix:
Sigma = Sigma11 Sigma12 , Sigma21 Sigma22

=
11 12

21 22

We can draw the same ellipse as above for a machine, except that now it represents a beam 
property and is parametrized by the ∑ Matrix:
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(2.4.24)(2.4.24)

(2.4.22)(2.4.22)

(2.4.18)(2.4.18)

(2.4.25)(2.4.25)

(2.4.2)(2.4.2)

(2.4.13)(2.4.13)

(2.4.7)(2.4.7)

(2.4.17)(2.4.17)

(2.4.23)(2.4.23)

(2.4.10)(2.4.10)

(2.4.14)(2.4.14)

(2.4.15)(2.4.15)

(2.4.26)(2.4.26)

(2.4.11)(2.4.11)

(2.4.16)(2.4.16)

(2.4.21)(2.4.21)

(2.4.4)(2.4.4)

(2.4.19)(2.4.19)

(2.4.20)(2.4.20)

(2.4.1)(2.4.1)

(2.4.3)(2.4.3)

(2.4.27)(2.4.27)

(2.4.9)(2.4.9)

(2.4.12)(2.4.12)

(2.4.5)(2.4.5)

The figure is again taken from [26] and note the small σ used in the figure are the same as the 
capital ∑ used in the text here.

We define the average as a linear function 
undefine avg
define avg,'flat ', avg a nonunit algebraic b nonunit algebraic = avg a

avg b ,
           'conditional ' avg a algebraic = a, _type a, freeof x  &and _type a, freeof xp  &

and _type a, freeof mu  , 
           'conditional ' avg a nonunit algebraic b nonunit algebraic = a avg b ,

_type a, freeof x  &and _type a, freeof xp  &and _type a, freeof mu  
and then 
Sigma11 = avg x2

11 = avg x2

Sigma12 = avg x xp
12 = avg x xp

Sigma22 = avg xp2

22 = avg xp2

and Σ12=Σ21, with an obvious extension to 6-d description. Here the averages are to be taken 
over the particle ensemble making up the beam. 
The determinant is then
subs (2.4.2), (2.4.3), (2.4.4), subs Sigma21 = Sigma12, LinearAlgebra:-Determinant rhs

(2.4.1)
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(2.4.8)(2.4.8)

(2.4.24)(2.4.24)

(2.4.22)(2.4.22)

(2.4.18)(2.4.18)

(2.4.25)(2.4.25)

(2.4.2)(2.4.2)

(2.4.13)(2.4.13)

(2.4.7)(2.4.7)

(2.4.17)(2.4.17)

(2.4.23)(2.4.23)

(2.4.10)(2.4.10)

(2.4.14)(2.4.14)

(2.4.15)(2.4.15)

(2.4.26)(2.4.26)

(2.4.11)(2.4.11)

(2.4.16)(2.4.16)

(2.4.21)(2.4.21)

(2.4.4)(2.4.4)

(2.4.19)(2.4.19)

(2.4.20)(2.4.20)

(2.4.1)(2.4.1)

(2.4.3)(2.4.3)

(2.4.27)(2.4.27)

(2.4.9)(2.4.9)

(2.4.12)(2.4.12)

(2.4.5)(2.4.5)avg x2  avg xp2 avg x xp 2

We can now insert the solutions for x and xp,

x = epsilon s  sin s

x =  s  sin s

xp = simplify subs diff beta s , s = 2 alpha s , diff mu s , s =
1

beta s
,

 simplify diff rhs (2.4.6) , s , symbolic , symbolic

xp =
 sin s  s cos s

s
We put this into the determinant,
subs (2.4.7), (2.4.6), (2.4.5)

avg  s  sin s
2

 avg
 sin s  s cos s

2

s
avg

 s  sin s   sin s  s cos s

s

2

expand simplify (2.4.8), symbolic

2 s  avg
sin s  s cos s

2

s
 avg cos s

2

2 s  avg
sin s  s cos s

2

s

 s  avg
sin s   sin s  s cos s

s

2

map simplify, (2.4.9)

2 s  avg
sin s  s cos s

2

s
 avg cos s

2

2 s  avg
sin s  s cos s

2

s

 s  avg
sin s   sin s  s cos s

s

2

and will now replace the averages of squared sines and cosines with 1/2, whereas the product of 
sine and cosine vanishes. Note that some of the substitutions here were verified on a separate 
sheet to prevent the algebra here from becoming too cumbersome. Some substitutions have to be 
done repeatedly to get to our goal of a most simple expression.
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(2.4.8)(2.4.8)

(2.4.24)(2.4.24)

(2.4.22)(2.4.22)

(2.4.18)(2.4.18)

(2.4.25)(2.4.25)

(2.4.2)(2.4.2)

(2.4.13)(2.4.13)

(2.4.7)(2.4.7)

(2.4.17)(2.4.17)

(2.4.23)(2.4.23)

(2.4.10)(2.4.10)

(2.4.14)(2.4.14)

(2.4.15)(2.4.15)

(2.4.26)(2.4.26)

(2.4.11)(2.4.11)

(2.4.16)(2.4.16)

(2.4.21)(2.4.21)

(2.4.4)(2.4.4)

(2.4.19)(2.4.19)

(2.4.20)(2.4.20)

(2.4.1)(2.4.1)

(2.4.3)(2.4.3)

(2.4.27)(2.4.27)

(2.4.9)(2.4.9)

(2.4.12)(2.4.12)

(2.4.5)(2.4.5)

eval simplify subs sin mu s 2 =
1
2

, cos mu s 2 =
1
2

, cos mu s sin mu s = 0,

(2.4.9)

 s  
 avg

sin s  s cos s
2

s
2

avg
sin s   sin s  s cos s

s

2

We deal with some other terms:

 eval subs sin s  s cos s
2

=
1 alpha s 2

2
, (2.4.11)

 s  
 

1
2

s
2

2
2 s

avg
sin s   sin s  s cos s

s

2

whichop (2.4.12), sin s  s cos s
4, 2, 1

op 4, 2, 1, 1 , (2.4.12)
sin s   sin s  s cos s

s
applyop expand, 4, 2, 1, 1 , (2.4.12)

 s  
 

1
2

s
2

2
2 s

avg
sin s

2
  s

s

sin s   cos s

s

2

We average the sine and cosine terms again:

eval subs sin mu s 2 =
1
2

, (2.4.15)
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(2.4.22)(2.4.22)

(2.4.18)(2.4.18)

(2.4.25)(2.4.25)

(2.4.2)(2.4.2)

(2.4.13)(2.4.13)

(2.4.7)(2.4.7)

(2.4.17)(2.4.17)

(2.4.23)(2.4.23)

(2.4.10)(2.4.10)

(2.4.14)(2.4.14)

(2.4.15)(2.4.15)

(2.4.26)(2.4.26)

(2.4.11)(2.4.11)

(2.4.16)(2.4.16)

(2.4.21)(2.4.21)

(2.4.4)(2.4.4)

(2.4.19)(2.4.19)

(2.4.20)(2.4.20)

(2.4.1)(2.4.1)

(2.4.3)(2.4.3)

(2.4.27)(2.4.27)

(2.4.9)(2.4.9)

(2.4.12)(2.4.12)

(2.4.5)(2.4.5)

 s  
 

1
2

s
2

2
2 s

 s

2 s

avg
sin s   cos s

s

2

op 4, 2, 1, 2, 2, 1 , (2.4.16) ;
 subsop 4, 2, 1, 2, 2, 1 = 0, (2.4.16)

sin s   cos s

s

 s  
 

1
2

s
2

2
2 s

 s

2 s
avg 0

2

and finally we get
simplify eval (2.4.17)

2

4

This result reflects the fact, that an oscillation with amplitude √ε has a mean-square amplitude of 
ε/2 with the beta and alpha values normalized away. The evaluation above was done for a matched
beam; i.e. the ∑ ellipse is the same as the ellipse defined by the Twiss parameters, which we 
ensured by using the alpha and beta values in the expressions for x and xp.
We can use what we did here to derive the formalism needed to track the Twiss parameters 
through a beamline. This is useful e.g. in determining the properties of beam in an extraction line. 
But it also lets us investigate what happens to a non-matched beam in an accelerator lattice.

To do this we restate the Courant-Snyder invariant:
(1.3.6)

a2 = x2 s xp2 s 2 x xp s

This can be expressed in matrix form as
Xt.T1 1.X = a2

Xt 1
T1

X = a2

(Maple uses the a bit unconventional notation 1/T1 for T1 1) where
X = x, xp

X =
x

xp

and
T1 = beta s , alpha s alpha s , gamma s
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(2.4.24)(2.4.24)

(2.4.22)(2.4.22)

(2.4.18)(2.4.18)

(2.4.25)(2.4.25)

(2.4.2)(2.4.2)

(2.4.13)(2.4.13)

(2.4.7)(2.4.7)

(2.4.17)(2.4.17)

(2.4.23)(2.4.23)

(2.4.10)(2.4.10)

(2.4.14)(2.4.14)

(2.4.15)(2.4.15)

(2.4.26)(2.4.26)

(2.4.11)(2.4.11)

(2.4.16)(2.4.16)

(2.4.21)(2.4.21)

(2.4.4)(2.4.4)

(2.4.19)(2.4.19)

(2.4.20)(2.4.20)

(2.4.1)(2.4.1)

(2.4.3)(2.4.3)

(2.4.27)(2.4.27)

(2.4.9)(2.4.9)

(2.4.12)(2.4.12)

(2.4.5)(2.4.5)

T1 =
s s

s s

We now use a matrix R12 that transfers particle coordinates from location 1 to location 2 along a 
beam line (or ring). At location 2, the Courant-Snyder invariant ((2.4.19) is valid as well for the 
transported particles, so there we have in complete analogy:
subs X = R12. X, T1 = T2, (2.4.20)

R12 X t 1
T2

R12 X = a2

 and
subs R12.X t = Xt.R12t, (2.4.23)

Xt R12t 1
T2

R12 X = a2

so comparing to (2.4.20) we have for T1 1

T1 1 = R12t.T2 1.R12
1
T1

= R12t 1
T2

R12

or, inverting this
T2 = R12.T1.R12t

T2 = R12 T1 R12t

It will be left as an exercise to find the explicit equations for the Twiss parameters.

We can now relate the ∑ matrix to the T matrix:
rhs (2.4.1) = epsilon rhs (2.4.22)

11 12

21 22
=

 s  s

 s  s

where we also define ε=a2. It is then clear that the ∑ matrix of beam properties is transported in 
the same way as the Twiss parameters. In fact, in practical use many people use the Twiss 
parameters to describe a beam line even though the ∑ matrix is a better description of what is 
being done. Nevertheless the analogy we just derived demonstrates that the use of Twiss 
parameters is mathematically valid as long as one is aware of what is being done.

An interesting case, however, is when the ∑ ellipse of a beam is not matched to the beta function 
in a lattice. The situation is shown in the following picture. E1 stands for the machine ellipse 
defined by beta and alpha, whereas E1 and E2 are beam ellipses. Upon one turn, say, E1 
transforms into E2, which is analogous to transforming the Twiss functions from one location in 
a beam line to another. If the two locations happen to be the same in a closed ring, this is another 
way of saying that the beam ellipse is not matched to the ring: they are not constant turn after turn.
Each point on the beam ellipse will, upon repeated turns, trace out an ellipse similar to the machine
ellipse (meaning that the tilt and aspect ratio are the same). If there are slight tune shifts with 
betatron amplitude in the machine due to nonlinearities (and in practise, there will be), then 
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(2.4.18)(2.4.18)

(2.4.25)(2.4.25)

(2.4.2)(2.4.2)

(2.4.13)(2.4.13)

(2.4.7)(2.4.7)

(2.4.17)(2.4.17)

(2.4.23)(2.4.23)

(2.4.10)(2.4.10)

(2.4.14)(2.4.14)

(2.4.15)(2.4.15)

(2.4.26)(2.4.26)

(2.4.11)(2.4.11)

(2.4.16)(2.4.16)

(2.4.21)(2.4.21)

(2.4.4)(2.4.4)

(2.4.19)(2.4.19)

(2.4.20)(2.4.20)

(2.4.1)(2.4.1)

(2.4.3)(2.4.3)

(2.4.27)(2.4.27)

(2.4.9)(2.4.9)

(2.4.12)(2.4.12)

(2.4.5)(2.4.5)

eventually the beam will fill the machine ellipse. The beam emittance has now effectively grown.
We will explore this a bit more in-class. 
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(1.4)(1.4)

(1.13)(1.13)

(1.2)(1.2)

(1.7)(1.7)

(1.15)(1.15)

(1.3)(1.3)

(1.17)(1.17)

(1.8)(1.8)

(1.5)(1.5)

(1.19)(1.19)

(1.18)(1.18)

(1.9)(1.9)

(1.14)(1.14)

(1.11)(1.11)

(1.6)(1.6)

(1.12)(1.12)

(1.1)(1.1)

Chromaticity
Up to now we have considered momentum dispersion but not in any detail the effect of a momentum 
deviation of beam particles on the betatron tune. We will now analyze this effect, chromaticity, which is
analogous to the change of the focal length of an uncorrected optical lens with the wavelength of the 
light.

A magnetic focusing system has chromatic terms due to the focusing strength depending on the 
inverse of the momentum deviation δ(p/p0). Chromaticity is important esp. in large machines.

Chromaticity can in principle be corrected by placing in a dispersive location an element the gradient 
of which varies with the dispersive offset of the particles. The corrective element will just add the 
required gradient to compensate the chromatic tune shift.
Diff B x , x

Brho
 = k2 * x;

d
dx

B x

Brho
= k2 x

We integrate this to get the field
lhs (1.1) dx = rhs (1.1) dx Brho

B x =
Brho k2 x2

2
As we already know, this is a sextupolar field. Due to Maxwell's equations and the form of vector 
potential A this specific field dependence is not the whole dependence for a physical sextupole 
magnets, but in what follows we will ignore those other components as they do not affect the 
chromaticity per se.

In order to get an idea what strength of sextupole we may need, we will analyze a FODO lattice and 
work out its chromaticity and the sextupole strength needed.
QF 1 0 , kq 1 :
QD 1 0 , kq 1 :
DR 1 L / 2 , 0 1 :
 FODO simplify~ QF.DR.QD.DR

FODO

1
kq L

2
L

1
4

 kq L2

kq2 L
2

1
4

 kq2 L2 1
2

 kq L 1

We get the tune from the trace:
cos mu = LinearAlgebra:-Trace FODO / 2

cos = 1
kq2 L2

8

solve (1.4),
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(1.16)(1.16)

(1.4)(1.4)

(1.13)(1.13)

(1.2)(1.2)

(1.7)(1.7)

(1.15)(1.15)

(1.3)(1.3)

(1.17)(1.17)

(1.8)(1.8)

(1.5)(1.5)

(1.19)(1.19)

(1.18)(1.18)

(1.9)(1.9)

(1.14)(1.14)

(1.11)(1.11)

(1.6)(1.6)

(1.12)(1.12)

(1.1)(1.1)

= arccos
kq2 L2

8
1

Chromaticity comes in by the fact, that kq depends on the deviation of the beam momentum from the 
central momentum, i.e.

kq =
kq 0 1
1 delta

kq =
kq0

1
We put this back into the equation for the phase advance mu:
subs (1.6), (1.5)

= arccos
kq0

2 L2

8 1
2 1

and expand to 1st order in the (presumably small) momentum deviation δ:
convert convert series rhs (1.7) , , 2 , polynom , arccos

arccos
kq0

2 L2

8
1

2 kq0
2 L2 

kq0
4 L4 16 kq0

2 L2

Comparing this to (1.5) (evaluated at kq=kq0) we can write down an expression for the difference 
from the undisturbed tune:
dmu = (1.8) subs kq = kq 0 , rhs (1.5) ;

dmu =
2 kq0

2 L2 

kq0
4 L4 16 kq0

2 L2

(We will leave it as an in-class exercise to find dmu as function of the tune and plot the result).

Having found the chromaticity we can now introduce the tune shift due to a sextupole placed at QF in
the FODO lattice. Note that in a multi-cell lattice this would imply a sextupole placed at each focusing
quadrupole. We can parametrize the sextupole in the following way (using (1.1)):
S 1 0 , k2 * eta * delta 1

S
1 0

k2  1

where we accept the notational uncleanliness of having an element a parameter of which depends on 
the beam properties. Note the – sign in (1.10) which we introduce so a focusing sextupole has a k2 > 
0.
We append this to the FODO cell:
FODO.S

1
kq L

2
L

1
4

 kq L2  k2  L
1
4

 kq L2

kq2 L
2

1
4

 kq2 L2 1
2

 kq L 1  k2  
1
4

 kq2 L2 1
2

 kq L 1
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and get the cosine of the phase advance

cos mu = subs kq =
kq 0

1 delta
,

LinearAlgebra:-Trace (1.11)
2

cos = 1
L

kq0 L2

4 1
 k2  

2

kq0
2 L2

8 1
2

We subtract the cosine of the on-momentum phase advance:
dcos mu = rhs (1.12) subs kq = kq 0 , rhs (1.4)

dcos =
L

kq0 L2

4 1
 k2  

2

kq0
2 L2

8 1
2

kq0
2 L2

8

We expand this to 1st order in δ:
dcos mu = convert series rhs (1.13) , delta, 2 , polynom

dcos =
L

1
4

 kq0 L2  k2 

2

kq0
2 L2

4
 

and solve for k2 to make this 0:
solve rhs (1.14) = 0, k2

k2 =
2 kq0

2 L

L kq0 4  

We have made a number of 1st-oder approximations to get to an expression for k2, so we can expect 
that the chromaticity correction will be only effective very near the reference momentum. This is 
indeed the case, esp. with lattices more complicated than a regular FODO.

Sextupoles do introduce nonlinearities into a machine lattice and therefore potentially reduce the 
machine acceptance; we will see more of this soon. However, we can show that sextupole pairs π in 
phase advance apart from each other cancel as far as the geometric aberrations are concerned, while, 
if the dispersion has the same polarity at each of them, their effect on the chromaticity adds up.

The matrix for a cell is given by
R1  Matrix 2, 2, 1, 1  = sin mu L * alpha s cos mu L , 1, 2  = sin mu L

* beta s , 2, 1  = alpha s ^2 / beta s 1 / beta s * sin mu L , 2, 2  = sin mu L
* alpha s cos mu L

R1

sin L  s cos L sin L  s

s
2

s
1
s

 sin L sin L  s cos L

A particle coming in at an offset x and passing through a sextupole can be parameterized by
Xs 0, x^2 ~ x, 0
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Xs
x

x2

and transported through R1:
R1.Xs

sin L  s cos L  x sin L  s  x2

s
2

s
1
s

 sin L  x sin L  s cos L  x2

For µ(L)=π, we get
simplify subs mu L = Pi, (1.18) ;

x

x2

so an identical sextupole placed at the end will cancel x2 dependent angle thus compensate the 
quadratic aberration of the first sextupole. Note that we implicitly have made a number of 
approximations and assumptions and therefore this cancellation, while quite effective in practice, is 
not perfect and higher-order effects remain. For lattices with high chromaticity, like in light sources 
and in colliders with their low beta sections, the chromaticity correction system limits the acceptance 
of the machine and thus the ability to carry high beam current for a long time.
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Multipole Expansion of B-field
In a current-free region, we have curl(B)=0 and can write the B field as gradient of a scalar potential Φ 
[3] (note: the signs are chosen to agree with the convention in [3]). This potential can be written as a 
Fourier series:
Phi = Sum rm A m cos theta I sin theta m I B m cos theta I

sin theta m , m = 0 ..infinity

=
m = 0

rm Am cos I sin
m

I Bm cos I sin
m

Here the real terms are the horizontal field component and the imaginary, the vertical component. Am*r 
is the horizontal coordinate and Bm*r, the vertical.
We can simplify this by using the exponential representation of sin and cos:
convert (1.1), exp

=
m = 0

eln r  m Am eln eI  m I Bm eln eI  m

simplify (1.2)  assuming real, m nonnegint # Maple 

=
m = 0

rm I Bm Am  eI m 

This is significant as it demonstrates the direct connection between the polynomial field expansion and 
the field harmonics. It is the basis for measuring multipoles using rotating coils. Fourier analysis of the 
induced voltage gives the order of the multipole (frequency) while the phase encodes the tilt of the field 
about the coil axis.
For beam calculations we need B(x,y). We can directly replace the radius times the cosine and sine 
terms with the cartesian x and z terms and get
subs cos theta = x, sin theta = z, r = 1, (1.1)

=
m = 0

Am x I z m I Bm x I z m

and get the field components as differentiation of Φ:
B x = Diff rhs (1.4) , x

Bx =
d
dx m = 0

Am x I z m I Bm x I z m

and
B z = Diff rhs (1.4) , z

Bz =
d
dz m = 0

Am x I z m I Bm x I z m

We can now investigate the individual field harmonics:
Phi m = Am x I z m I Bm x I z m

m = Am x I z m I Bm x I z m



USPAS 2016 at UT Austin Accelerator Physics with Maple Multipole Expansion

76

(1.11)(1.11)

(1.17)(1.17)

(1.13)(1.13)

(1.15)(1.15)

(1.8)(1.8)

(1.18)(1.18)

(1.10)(1.10)

(1.9)(1.9)

(1.16)(1.16)

(1.14)(1.14)

and get, e.g. for m=1 (dipole component, normal),
subs m = 1, rhs (1.7)

A1 x I z I B1 x I z

Normal or upright components have Am=0, and the normal terms are the imaginary ones, so we get
evalc subs A 1 = 0, (1.8)

I B1 x B1 z

and
B z = diff (1.9), z

Bz = B1

The general solution is then (normal)
subs A m = 0, (1.7)

m = I Bm x I z m

(skew)
subs B m = 0 , (1.7)

m = Am x I z m

With these we can directly find the potential for any order  mh=1 (dipole), 2(quad), 3 (sext), 4 (oct), 
etc.

mh 4
mh 4

Normal:
expand subs m = mh, (1.11)

4 = I B4 x4 4 B4 x3 z 6 I B4 x2 z2 4 B4 x z3 I B4 z4

simplify (1.14)

4 = I B4 x4 4 B4 x3 z 6 I B4 x2 z2 4 B4 x z3 I B4 z4

evalc Re (1.15)

4 = 4 B4 x3 z 4 B4 x z3

B x = collect diff rhs (1.16) , x , B mh
Bx = 12 x2 z 4 z3  B4

B z = collect diff rhs (1.16) , z , B mh
Bz = 4 x3 12 x z2  B4

We see that the sextupole has a coupling term when z ≠ 0 since Bx ∝ x. This is one of the main causes 
of vertical emittance in electron rings as we will see when we discuss synchrotron radiation.
plots:-display Array 1 ..2,
 plot3d subs B mh = 1, rhs (1.18) , x = 3 ..3, z = 3 ..3, labels = typeset 'x ' , typeset 'z ' ,

typeset 'B ' z ,
plot3d subs B mh = 1, rhs (1.17) , x = 3 ..3, z = 3 ..3, labels = typeset 'x ' , typeset 'z ' ,

typeset 'B ' x , projection = 0.7
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(1.19)(1.19)

(1.20)(1.20)

We can plot the field around a circle by going back to the phase-amplitude representation of x and y:
B x = subs x = cos theta , z = sin theta , rhs (1.17)

Bx = 12 cos
2
 sin 4 sin

3
 B4

B z = subs x = cos theta , z = sin theta , rhs (1.18)

Bz = 4 cos
3

12 cos  sin
2

 B4

plot subs B mh = 1, rhs (1.19) , rhs (1.20) , theta = 0 ..2 Pi, labels = typeset 'theta' ,
typeset 'B ' x , "(red). ",'B ' z , "(green)" ;
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This is the basis of the magnetic measurement using a rotating coil as shown in the sketch below. A 
(long) coil is rotated inside the magnet under test and its output voltage is integrated. The induced emf 
(which is ∝ to dB/dt) is integrated and Fourier analyzed to produce a spectrum of the magnetic field. 

The coil will however pick up any field harmonic there is and therefore gives a measure of the field 
nonuniformity parameterized in terms of the field harmonics. These data can be directly entered into 
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(1.22)(1.22)

(1.24)(1.24)

(1.21)(1.21)

(1.23)(1.23)

tracking and machine design programs and their effect studied via particle tracking.

Skew:
expand subs m = mh, (1.12)

4 = A4 x4 4 I A4 x3 z 6 A4 x2 z2 4 I A4 x z3 A4 z4

evalc Re (1.21)

4 = A4 x4 6 A4 x2 z2 A4 z4

B x = collect diff rhs (1.22) , x , A mh
Bx = 4 x3 12 x z2  A4

B z = collect diff rhs (1.22) , z , A mh
Bz = 12 x2 z 4 z3  A4

plots:-display Array 1 ..2,
 plot3d subs A mh = 1, rhs (1.24) , x = 3 ..3, z = 3 ..3, labels = typeset 'x ' , typeset 'z ' ,

typeset 'B ' z ,
plot3d subs A mh = 1, rhs (1.23) , x = 3 ..3, z = 3 ..3, labels = typeset 'x ' , typeset 'z ' ,

typeset 'B ' x , projection = 0.7
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Realization and measurments of Accelerator Magnets
Bending magnets provide a most uniform field in the appropriate direction (mostly vertical). Typical 
field uniformity specifications are near dB/B=10 4 across the good-field region. A cross sectional 
diagram (from []) and a specimen are shown here:
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Fodusing magnets produce a field gradient and are realized as quadrupoles (4-poles). Typical tolerances
are 10 3 to 10 4 (and these are measured as the difference of the actual field from the nominal field 
normalized to the nominal field at the nominal aperture radius). 
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(2.2)(2.2)

(2.1)(2.1)

Expressed in terms of the field harmonic m we used above, the number of magnetic poles is then
n p = 2 m

np = 2 m

or, for the example given above using mh:
n p = 2 mh

np = 8
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(1.2)(1.2)

(1.1)(1.1)

(1.4)(1.4)

(1.3)(1.3)

Hamiltonian Description in one Dimension
Hamiltonian mechanics is a powerful tool to investigate beam dynamics in particle accelerators, esp. to 
understand nonlinear motion, machine resonances and other effects that may reduce the abbility to store
and accelerate beams in circular machines. It would be beyond the scope of this course to give a 
comprehensive introduction to Hamiltonian mechanics (there are more than enough highly suitable 
textbooks in existence), but the course would be incomplete without giving at least an overview and 
demonstrating the way canonical transformations are used to elicit invariants of the motion and thereby 
gradually simplifying the description as much as possible to bring out the physics involved.

When we analyse a physical system mechanically, we operate in a coordinate system of our choice, 
with the "Physics" being encoded in a differential equation. Dealing with electromagnetic phenomena 
these are Maxwell's equations, for particle motion in electromagnetic fields we use the Lorentz equation
diff p_ t , t = e E B

p
.

t = e E B
Here the Physics is in the specific properties of the fields E and B.
In Hamiltonian mechanics, the coordinate system used is quite different in that we use generalized 
positions and generalized momenta, often denoted qi and pi. They can be in certain cases the same as 
our regular coordinates and momenta, but they do not have to and often are not. The "physics" of the 
problem is encoded in a function called the Hamiltonian [function] which describes the system, and 
Hamilton's equations of motion which connect the generalized coordinates (understood to include 
momenta) and their derivatives. Without proof we state that for many cases—including our particles in 
electro-magnetic fields—the Hamiltonian of a system is just its total energy, understood to be the 
relativistic energy and including the rest energy. 
H = T V;

H = T V
It is then intuitively understandable that the Hamiltonian is a constant of the motion as long as we are 
looking at a conservative system (no friction and no energy injected from outside). As we have already 
seen, in many cases the transverse motion in a storage ring can be analysed in this way (and in many 
cases even the motion during acceleration can be approximated to good accuracy in this way).
The Hamiltonian equations of motion are given by
diff q i t , t = diff H q i , p i , t , p i

qi
.

t =
pi

H qi, pi, t

and
diff p i t , t = diff H q i , p i , t , q i

pi
.

t =
qi

H qi, pi, t

The Hamiltonian of a Particle in Free Space
Following (1.2) we can state the general relativistic Hamiltonian of a particle in free space:
H sqrt p_.p_ c2 m2 c4 # Maple technical note: don't use p2 here as it is misinterpreted
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(1.1.4)(1.1.4)

(1.1.7)(1.1.7)

(1.1.6)(1.1.6)

(1.1.2)(1.1.2)

(1.1.1)(1.1.1)

(1.1.5)(1.1.5)

(1.1.3)(1.1.3)

H p 2 c2 m2 c4

To get this into a more useful form, we write the components of q and p in an explicit form in the 
Cartesian coordinate system defined by unit vectors i,j and k (and note that this needs Maple's 
Physics package loaded to work):
q_ q1 t _i q2 t _j q3 t _k;
 p_ p1 t _i p2 t _j p3 t _k

q q1 t  i q2 t  j q3 t  k

p p1 t  i p2 t  j p3 t  k
H

p1 t 2 p2 t 2 p3 t 2  c2 m2 c4

simplify diffF H, p1 t _i diffF H, p2 t _j diffF H, p3 t _k ;
c2 p1 t  i p2 t  j p3 t  k

c2 c2 m2 p1 t 2 p2 t 2 p3 t 2

so (1.3) becomes
diff q_, t = (1.1.4)

q1
.

t  i q2
.

t  j q3
.

t  k =
c2 p1 t  i p2 t  j p3 t  k

c2 c2 m2 p1 t 2 p2 t 2 p3 t 2

which Maple can solve for p:
solve (1.1.5), p_
Warning, solving for expressions other than names or functions
is not recommended.

p1 t  i p2 t  j p3 t  k

=
c2 c2 m2 p1 t 2 p2 t 2 p3 t 2  q1

.
t  i q2

.
t  j q3

.
t  k

c2

For Maple to put all the pi on one side we need to convert this vector equation into a system of 3 
equations:
seq Component lhs (1.1.6) 1 , i = Component rhs (1.1.6) 1 , i , i = 1 ..3

p1 t =
c2 c2 m2 p1 t 2 p2 t 2 p3 t 2  q1

.
t

c2 , p2 t

=
c2 c2 m2 p1 t 2 p2 t 2 p3 t 2  q2

.
t

c2 , p3 t

=
c2 c2 m2 p1 t 2 p2 t 2 p3 t 2  q3

.
t

c2

which we can now solve for the pi(t):
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(1.1.8)(1.1.8)

(1.1.9)(1.1.9)

(1.1.1)(1.1.1)

(1.2.1)(1.2.1)

(1.2.3)(1.2.3)

(1.2.2)(1.2.2)

convert solve (1.1.7) , p1 t , p2 t , p3 t 1 , radical

p1 t =
1

c2 q1
.

t
2

q2
.

t
2

q3
.

t
2  c m q1

.
t , p2 t

=
1

c2 q1
.

t
2

q2
.

t
2

q3
.

t
2  c m q2

.
t , p3 t

=
1

c2 q1
.

t
2

q2
.

t
2

q3
.

t
2  c m q3

.
t

This directly gets us to the relativistic equations of motion
algsubs q1

.
t

2
q2
.

t
2

q3
.

t
2

= v2, (1.1.8)
where the square root is just γ/c. We have shown that the Hamiltonian (1.1.1) yields the correct 
relativistic expression for the momentum of a particle in free space.
H

p1 t 2 p2 t 2 p3 t 2  c2 m2 c4

The Hamiltonian of a Particle in a Magnetic Field
We now add the electromagnetic field. It turns out addition of the field modifies the canonical 
momentum p to be
p_ = beta_ t gamma m c e A_

p1 t  i p2 t  j p3 t  k = t   m c e A

So we modify the Hamiltonian H:
H sqrt p_ e A_ . p_ e A_ m2 c4

H p1 t  i p2 t  j p3 t  k e A
2

m2 c4

The first Hamiltonian equation of motion give us
diff q1 t , t = diffF H, p1 t ;

q1
.

t =
p1 t  i p2 t  j p3 t  k e A  i

p1 t  i p2 t  j p3 t  k e A
2

m2 c4

which, in complete analogy to the above, yields in the confirmation of (1.2.1).
It turns out that the second equation of motion becomes too clumsy to solve in Maple due to 
limitations in its Physics package in the version used for preparing this course. We end up with the 
relativistic formulation of the usual equation of motion.

We now need to transform H into the Frenet-Serret coordinate system. Conceptually this happens 
like the TNB transformation we used in the previous chapter, however, here we will use a slightly 
different transformation. We will want this to be a canonical transformation, in order to ensure this 
we will make use of a generating function.

In the context of Hamiltonian mechanics, a generating function connects the new and the old 
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(1.2.6)(1.2.6)

(1.2.7)(1.2.7)

(1.2.5)(1.2.5)

(1.1.1)(1.1.1)

(1.2.4)(1.2.4)

variables. If we call the old variables q and p (lower case) and the new ones Q and P (upper case), 
then we can formally write 4 different function, each one depending on one of the new and one of 
the old variables:

F1(q,Q,t),F2(q,P,t),F3(p,Q,t),F4(p,P,t)
Each of these can perform a specific set of transformations, e.g. F1 is useful for finding invariants 
that are combinations of the transverse coordinates and momenta, while F2 can be used for rotations
and perturbations in displacement and momentum space.
For each generating function, a set of formulae prescribes how to perform the transformation. E.g. 
for F1, we have

pi = diff(F1(qi, Qi, t), qi); and Pi=–diff(F1(qi, Qi, t),Qi),
where the index i counts the dimensions. 
The Hamiltonian then gets transformed by

K = H+diff(F1(qi, Qi, t), t); 
(and H has now be expressed in the new coordinates).
We now use a generating function of the form F3 to transform into a Frenet-Serret coordinate 
system:

F3 Q1, p1, Q2, p2, Q3, p3 rho Q1 cos
Q2
rho

rho p1 rho Q1

sin
Q2
rho

p2 Q3 p3

F3 Q1, p1, Q2, p2, Q3, p3 Q1  cos
Q2

 p1

Q1  sin
Q2

 p2 Q3 p3

The relationships for the old coordinates are then given by
q1 = diff F3 Q1, p1, Q2, p2, Q3, p3 , p1

q1 = Q1  cos
Q2

q2 = diff F3 Q1, p1, Q2, p2, Q3, p3 , p2

q2 = Q1  sin
Q2

q3 = diff F3 Q1, p1, Q2, p2, Q3, p3 , p3
q3 = Q3

Note that this is a rotation by the angle Q2/ρ, and Q1 is not equal to q1 because of the rotation in the
coordinate systems against each other. The situation is shown in the following sketch:
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(1.2.8)(1.2.8)

(1.2.11)(1.2.11)

(1.2.10)(1.2.10)

(1.1.1)(1.1.1)

(1.2.9)(1.2.9)

Fig. 1: coordinate system transformation. x,z are the original coordinates. Q1 and Q2 are the 
coordinates in the new, beam-following Frenet-Serret system. Eventually these get renamed to x (for

Q1) and s (for Q2). The y coordinate is into the plane.  is the (local) bending radius of the 
machine.

For the new momenta we get in a similar fashion
P1 = diff F3 Q1, p1, Q2, p2, Q3, p3 , Q1

P1 = cos
Q2

 p1 sin
Q2

 p2

P2 = diff F3 Q1, p1, Q2, p2, Q3, p3 , Q2

P2 =
Q1  sin

Q2
 p1 Q1  cos

Q2
 p2

P3 = diff F3 Q1, p1, Q2, p2, Q3, p3 , Q3
P3 = p3

We can solve for the new coordinates as function of the old ones if we want to see this relationship.
simplify~ solve (1.2.5), (1.2.6) , Q1, Q2 , explicit

Q1 = q12 2 q1 q22 2
, Q2

= arctan
q2

q12 2 q1 q22 2
,

q1

q12 2 q1 q22 2
 , Q1

= q12 2 q1 q22 2
, Q2 = arctan
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(1.2.15)(1.2.15)

(1.2.13)(1.2.13)

(1.2.16)(1.2.16)

(1.2.11)(1.2.11)

(1.2.17)(1.2.17)

(1.2.19)(1.2.19)

(1.1.1)(1.1.1)

(1.2.12)(1.2.12)

(1.2.14)(1.2.14)

(1.2.18)(1.2.18)

q2

q12 2 q1 q22 2
,

q1

q12 2 q1 q22 2
 

and for the old momenta in terms of the new ones
simplify~ solve (1.2.8), (1.2.10), (1.2.9) , p1, p2, p3 , trig

p1 =
sin

Q2
 P2 cos

Q2
 P1 Q1 cos

Q2
 P1 

Q1
, p2

=
sin

Q2
 P1 Q1 sin

Q2
 P1 P2  cos

Q2

Q1
, p3 = P3

For the vector potential A, in addition to replacing q1 and q2 by the above relations we also need to 
express the rotated new components:

A Q1 = A q1 cos
Q2
rho

A q2 sin
Q2
rho

AQ1 = Aq1 cos
Q2

Aq2 sin
Q2

A Q2 = A q2 cos
Q2
rho

A q1 sin
Q2
rho

AQ2 = Aq2 cos
Q2

Aq1 sin
Q2

 A Q3 = A q3
AQ3 = Aq3

We will need the inverse relation so we solve for A in the old system as function of A in the new 
system:
simplify solve (1.2.13), (1.2.14), (1.2.15) , A q1 , A q2 , A q3 , trig

Aq1 = sin
Q2

 AQ2 cos
Q2

 AQ1, Aq2 = AQ1 sin
Q2

AQ2 cos
Q2

,

Aq3 = AQ3

H (1.2.2)

H p1 t  i p2 t  j p3 t  k e A
2

m2 c4

The transformation of H is better done by explicitly writing out the absolute value involved in H:
H sqrt p1 A q1 2 p2 A q2 2 p3 A q3 2 m2 c4

H p1 Aq1
2 p2 Aq2

2 p3 Aq3
2 m2 c4

map collect, simplify subs (1.2.16) , subs (1.2.12) , H2 , size , rho
1

Q1
2 P1 AQ1  cos

Q2
sin

Q2
 AQ2 P2

2
 

2
2 Q1 P1
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(1.1.1)(1.1.1)

(1.2.11)(1.2.11)

(1.2.19)(1.2.19)

(1.2.20)(1.2.20)

AQ1  cos
Q2

sin
Q2

 AQ2 Q1  P1 AQ1  cos
Q2

sin
Q2

 AQ2 P2  Q1 P1 AQ1  cos
Q2

sin
Q2

 AQ2 Q1
2 1

Q1
2 P1 AQ1  sin

Q2

cos
Q2

 P2 AQ2

2
 

2
2 Q1 P1 AQ1  sin

Q2

AQ2 cos
Q2

 Q1  P1 AQ1  sin
Q2

cos
Q2

 P2 AQ2  

Q1 P1 AQ1  sin
Q2

AQ2 cos
Q2

 Q1
2

P3 AQ3
2

m2 c4

simplify (1.2.19), trig
1

Q1
2 2 Q1  AQ1

2 2 P1 Q12 AQ1 2 P1 
2
 AQ1 2 P2 

2
 AQ2 2 Q1  AQ2

2

2 P12 Q1 4 P1 Q1  AQ1 2 P2 Q1  AQ2 P22 
2

Q12 AQ1
2 Q12 AQ2

2

2
 AQ2

2 P12 Q12 P12 
2 2

 AQ1
2 Q12 c4 m2 c4 m2 

2
2 P32 Q1 

2 P3 Q12 AQ3 2 P3 
2
 AQ3 2 Q1  AQ3

2 2 Q1 c4 m2 4 P3 Q1  AQ3

4 cos
Q2 2

 P1 Q12 AQ1 4 cos
Q2 2

 P1 
2
 AQ1

4 cos
Q2 2

 P2 
2
 AQ2 P32 Q12 P32 

2
Q12 AQ3

2 2
 AQ3

2

4 sin
Q2

 cos
Q2

 P1 Q12 AQ2 4 sin
Q2

 cos
Q2

 P1 
2
 AQ2

4 sin
Q2

 cos
Q2

 P2 
2
 AQ1 8 cos

Q2 2
 P1 Q1  AQ1

4 cos
Q2 2

 P2 Q1  AQ2 4 sin
Q2

 cos
Q2

 P2 Q1  AQ1

8 sin
Q2

 cos
Q2

 P1 Q1  AQ2
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(1.2.23)(1.2.23)

(1.2.21)(1.2.21)

(1.2.11)(1.2.11)

(1.2.19)(1.2.19)

(1.1.1)(1.1.1)

(1.2.22)(1.2.22)

subs cos
Q2
rho

= 1, sin
Q2
rho

=
Q2
rho

, (1.2.20)

1

Q1
2

4 Q2 P1 Q12 AQ2 4 Q2  P1 AQ2 4 Q2  P2 AQ1

4 Q2 P2 Q1 AQ1 8 Q2 P1 Q1 AQ2 2 Q1  AQ1
2 2 P1 Q12 AQ1

2 P1 
2
 AQ1 2 P2 

2
 AQ2 2 Q1  AQ2

2 2 P12 Q1 4 P1 Q1  AQ1

2 P2 Q1  AQ2 P22 
2

Q12 AQ1
2 Q12 AQ2

2 2
 AQ2

2 P12 Q12 P12 
2

2
 AQ1

2 Q12 c4 m2 c4 m2 
2

2 P32 Q1 2 P3 Q12 AQ3 2 P3 
2
 AQ3

2 Q1  AQ3
2 2 Q1 c4 m2 4 P3 Q1  AQ3 P32 Q12 P32 

2
Q12 AQ3

2

2
 AQ3

2

factor (1.2.21)
1

Q1
2
 

Q12 c4 m2 2 Q1 c4 m2 
2

c4 m2 
3

P12 Q12 2 P12 Q1 
2

P12 
3

4 Q2 P1 Q12 AQ2 2 P1 Q12 AQ1 8 Q2 P1 Q1 AQ2 

4 P1 Q1 
2
 AQ1 4 Q2 

2
 P1 AQ2 2 P1 

3
 AQ1 P22 

3
4 Q2 P2 Q1 AQ1 

2 P2 Q1 
2
 AQ2 4 Q2 

2
 P2 AQ1 2 P2 

3
 AQ2 P32 Q12 2 P32 Q1 

2

P32 
3

2 P3 Q12 AQ3 4 P3 Q1 
2
 AQ3 2 P3 

3
 AQ3 Q12 AQ1

2  

Q12 AQ2
2  Q12 AQ3

2  2 Q1 
2
 AQ1

2 2 Q1 
2
 AQ2

2 2 Q1 
2
 AQ3

2 3
 AQ1

2

3
 AQ2

2 3
 AQ3

2

collect (1.2.22), A Q1 , A Q2 , A Q3

Q12 2 Q1 
2 3

 AQ1
2

Q1
2
 

2 P1 Q12 4 P1 Q1 
2

2 P1 
3

4 P2 Q1 Q2 4 P2 Q2 
2

 AQ1

Q1
2
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(1.2.23)(1.2.23)

(1.2.26)(1.2.26)

(1.2.25)(1.2.25)

(1.2.11)(1.2.11)

(1.2.19)(1.2.19)

(1.1.1)(1.1.1)

(1.2.24)(1.2.24)

Q12 2 Q1 
2 3

 AQ2
2

Q1
2
 

4 P1 Q12 Q2 8 P1 Q1 Q2 4 P1 Q2 
2

2 P2 Q1 
2

2 P2 
3

 AQ2

Q1
2
 

Q12 2 Q1 
2 3

 AQ3
2

Q1
2
 

2 P3 Q12 4 P3 Q1 
2

2 P3 
3

 AQ3

Q1
2
 

1

Q1
2
 

Q12 c4 m2 2 Q1 c4 m2 
2

c4 m2 
3

P12 Q12 

2 P12 Q1 
2

P12 
3

P22 
3

P32 Q12 2 P32 Q1 
2

P32 
3

map simplify, (1.2.23)

AQ1
2

2 AQ1 P1 Q1 P1 2 P2 Q2

Q1
AQ2

2

2 AQ2 2 P1 Q2 Q1 2 P1 Q2 P2 
2

 Q1
AQ3

2 2 AQ3 P3

1

Q1
2 Q12 c4 m2 2 Q1 c4 m2 c4 m2 

2
P12 Q12 2 P12 Q1 

P12 
2

P22 
2

P32 Q12 2 P32 Q1 P32 
2

map simplify, map collect, (1.2.24), P1, P2, P3

AQ1
2 2 AQ1 P1

4 AQ1 P2 Q2

Q1
AQ2

2
4 P1 Q2 AQ2 2 AQ2  P2

Q1
AQ3

2

2 AQ3 P3 P12
2
 P22

Q1
2 P32 m2 c4

subs Q2 = 0, (1.2.25)

AQ1
2 2 AQ1 P1 A0

2
2 A0  P2

Q1
AQ3

2 2 AQ3 P3 P12
2
 P22

Q1
2 P32

m2 c4

mtaylor (1.2.26), A Q1 = P1, A 0 = P2 * rho / rho Q1 , A Q3 = P3 , 6
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(1.2.23)(1.2.23)

(1.2.29)(1.2.29)

(1.2.11)(1.2.11)

(1.2.19)(1.2.19)

(1.2.27)(1.2.27)

(1.2.28)(1.2.28)

(1.1.1)(1.1.1)

(1.2.31)(1.2.31)

(1.2.30)(1.2.30)

m2 c4 A0
P2 

Q1

2

AQ1 P1 2 AQ3 P3 2

Note that using mtaylor here is a bit of a dirty trick in that one has to be sure all orders are found. In 
this case that is simple enough to do, however. Note further that the above is the squared 
Hamiltonian, H2, as the square root otherwise will make our life unnecessarily hard.

In doing this computation we have omitted the partial derivative of F3 against t. It turns out this is a 
bit of a messy calculation to do and we will not do this here. If we do it correctly we will end up 
with the new Hamiltonian.

H
e A Q2

P
1

Q1
rho

sqrt 1
P1 e A Q1

P

2 P3 e A Q3
P

2

H
e AQ2

P
1

Q1
 1

e AQ1 P1 2

P2

e AQ3 P3 2

P2

where we also snuck in the transformation of the independent variable from t to s.
If we consider only transverse fields—which is a good assumption for large rings without 
solenoidal fields as the end fields of the magnets are short and therefore negligible—we can retain 
only the longitudinal (Q2) component of the vector potential A and, again for large rings, we can go 
to the limit of infinite bending radius ρ:
limit subs A Q1 = 0, A Q3 = 0, (1.2.28) , rho = infinity

P2 P12 P32

P2  P e AQ2

P
This is not a good approximation for small rings, where fringe-field effects can become quite 
noticeable.
Finally the transverse momenta P1 and P3 are usually to good approximation very small compared 
to the total momentum P so we can develop to second order in P1 and P3:
mtaylor (1.2.29), P1, P3 , 3 ; 

# Maple technical comment: mtaylor returns an ordinary expression
e AQ2 P

P
P12

2 P2
P32

2 P2

The constant 1 in the Hamiltonian is not relevant as the equations of motion involve derivatives of 
the Hamiltonian and we can rename P1/P and P3/P to px and pz, respectively, to get
H expand subs P1 = px P, P3 = pz P, (1.2.30) 1

H
e AQ2

P

px
2

2

pz
2

2
This is the 2-dimensional Hamiltonian that many papers in the literature start from. While being 
extremely useful to analyse transverse motion in the presence of nonlinearities, the approximations 
made should not be forgotten. In particular if coupling or fringe fields become a significant effect, 
the Hamiltonian derived here does not have the relevant field components and one needs to back up 
to eq. (1.2.28) or add the effects in the correct way in the potential AQ2 in (1.2.31). 
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(1.2.32)(1.2.32)

(1.2.23)(1.2.23)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.12)(1.3.12)

(1.2.27)(1.2.27)

(1.3.3)(1.3.3)

(1.3.7)(1.3.7)

(1.3.11)(1.3.11)

(1.3.17)(1.3.17)

(1.3.14)(1.3.14)

(1.3.2)(1.3.2)

(1.3.6)(1.3.6)

(1.3.13)(1.3.13)

(1.3.9)(1.3.9)

(1.3.15)(1.3.15)

(1.3.5)(1.3.5)

(1.2.11)(1.2.11)

(1.2.19)(1.2.19)

(1.3.16)(1.3.16)

(1.1.1)(1.1.1)

(1.3.4)(1.3.4)

What have achieved so far? We have derived the Hamiltonian function for a particle in the beam-
following Frenet-serret coordinate system. The potential AQ2 encodes the forces that act on the 
particle in this system and which govern the (transverse) beam dynamics. This potential will in 
general be a function of s so this Hamiltonian can in principle describe the strong of magnets 
making up a beam line. Typically, however, Hamiltonian mechanics is used to describe the apparent 
transverse motion of a particle in phase space at a certain point s in order to analyse the phase space 
topology and the behaviour of beam particles in the transverse dimensions, in other words the 
betatron oscillations but in presence of no nlinear forces. A well functioning machine needs to have 
well controlled transverse motion; strong resonances lead to phase-space distortions and potentially 
unstable phase-space trajectories that can lead to particle loss. Nonlinear motion implies that the 
dynamic become amplitude dependent; the amplitude at which point particles no longer execute 
controlled and bounded betatron oscillations is also known as the dynamic aperture. Every machine 
has such a limit; beyond this amplitude, particles get lost irrespective of the size of the beam pipe as 
the betatron oscillations tend to grow unbounded. Dynamic aperture is closely related to the 
presence of machine or betatron resonances; certain values of the betatron tunes where (naively 
said) a small disturbance like a field error will add up coherently turn-after-turn, leading to ever 
larger oscillations and eventual loss of some of the beam particles. As we will see below, betatron 
resonances lead to characteristic deformations of the phase space picture of the motion.

The power of the hamiltonian formalism lies in the ability to isolate, by a series of canonical 
transformations, constants of the motion (also called "cyclic" variables). This allows insight into the 
dynamics of the system without explicit solution of the equations of motion. For example, the 
existence of bounded or unbounded motion under certain conditions allows assessment of beam 
stability and dynamic aperture with our worrying about details of the motion that are usually of little 
interest.

We now clear H as it is used below anew:
H 'H '

H H

Linear Motion and Action-Angle variables

We will restrict ourselves here to one-dimensional motion so we set pz in the Hamiltonian 
(1.2.31) to zero. We first need to analyze the linear motion—essentially recasting the Hill's 
equation for an accelerator in the Hamiltonian formalism. The linear oscillator potential has 
quadratic dependence on the particle's coordinates so our ansatz for the 1-dimensional linear 
Hamiltonian is as follows:
H = px^2 / 2 k s * x^2 / 2;

H =
px2

2
k s  x2

2
The first canonical transformation we will do is into a system where one of the variables is 
constant, the transverse "action", i.e. the amplitude of the particle oscillation. For a beam this 
would be the emittance. To do this we use the known form of the solution:
x = a J * sqrt beta * cos Psi
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(1.2.23)(1.2.23)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.12)(1.3.12)

(1.2.27)(1.2.27)

(1.3.3)(1.3.3)

(1.3.7)(1.3.7)

(1.3.11)(1.3.11)

(1.3.17)(1.3.17)

(1.3.14)(1.3.14)

(1.3.2)(1.3.2)

(1.3.6)(1.3.6)

(1.3.13)(1.3.13)

(1.3.9)(1.3.9)

(1.3.15)(1.3.15)

(1.3.5)(1.3.5)

(1.2.11)(1.2.11)

(1.2.19)(1.2.19)

(1.3.16)(1.3.16)

(1.1.1)(1.1.1)

(1.3.4)(1.3.4)

x = a J   cos
px = a J / sqrt beta * sin Psi 1 / 2 * betap * cos Psi

px =
a J  sin

betap cos
2

The particular transformation we want is derived from a generating function of the first kind, 
which is

F1 =

betap
4

tan
2

 x2

F1 =

betap
4

tan
2

 x2

as in this case can be found by integration of p (after getting rid of a(J) using (1.3.2)). We find 
one new variable as function of the old one, and one old one as function of the new one by 
differentiating F1:

p =
x

rhs (1.3.4)

p =
2 

betap
4

tan
2

 x

and

J = rhs (1.3.4)

J =

1
2

tan
2

2
 x2

We then solve for the new variables as function of the old ones
solve (1.3.5), (1.3.6) , J,

J =
4 

2
 p2 4  betap p x betap2 x2 4 x2

8 
, = arctan

2 p x betap
2 x

collect 2 (1.3.7)1, x, p

2 J =
betap2 4  x2

4 
betap p x  p2

collect subs betap = 2 , (1.3.8) , x, p , simplify

2 J =
2

1  x2
2  p x  p2

This is just the Courant-Snyder invariant we already encountered before. 
The new Hamiltonian is
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(1.2.23)(1.2.23)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.12)(1.3.12)

(1.2.27)(1.2.27)

(1.3.3)(1.3.3)

(1.3.7)(1.3.7)

(1.3.11)(1.3.11)

(1.3.17)(1.3.17)

(1.3.14)(1.3.14)

(1.3.2)(1.3.2)

(1.3.6)(1.3.6)

(1.3.13)(1.3.13)

(1.3.9)(1.3.9)

(1.3.15)(1.3.15)

(1.3.5)(1.3.5)

(1.2.11)(1.2.11)

(1.2.19)(1.2.19)

(1.3.16)(1.3.16)

(1.1.1)(1.1.1)

(1.3.4)(1.3.4)

H1 = H Diff F1, s

H1 = H
s

F1

H1 =
J

beta

H1 =
J

Note that proving (1.3.11) is not trivial but ultimately not instructive so we skip this step.

H1 is not quite a constant of motion because β=β(s). Also the phase advance is not uniform wrt.
s. We can use another canonical transformation to linearize the phase advance and also get rid of 
the 1/β dependence of the Hamiltonian using a generating function of the 2nd kind:
F2 = J1 * 2 * Pi * Q * s / C  Int 1 / beta sigma , sigma = 0 ..s J1 * Psi

F2 = J1 
2  Q s

C
0

s
1

d J1 

1 =
J1

rhs (1.3.12)

1 =
2  Q s

C
0

s
1

d

J1 = rhs (1.3.12)

J1 = J1
The integral for s=2*π*R is

op 2, rhs (1.3.13) = 2  Q

0

s
1

d = 2  Q

and the new Hamiltonian is

H2 = H1 s
rhs (1.3.12)

H2 = H1 J1 
2  Q

C
1
s

simplify subs (1.3.11), beta s = beta, (1.3.16) , J = J1

H2 =
2 J1  Q

C
We are now in a system with H2 and J1 a constant of motion and the phase Ψ1 advancing 
linearly. It should be noted that this last transformation is not strictly necessary for the following, 
but it simplifies the equations.
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(1.2.23)(1.2.23)

(1.4.3)(1.4.3)

(1.4.6)(1.4.6)

(1.4.4)(1.4.4)

(1.2.27)(1.2.27)

(1.4.8)(1.4.8)

(1.4.12)(1.4.12)

(1.4.1)(1.4.1)

(1.4.11)(1.4.11)

(1.4.5)(1.4.5)

(1.4.10)(1.4.10)

(1.4.7)(1.4.7)

(1.2.11)(1.2.11)

(1.2.19)(1.2.19)

(1.4.9)(1.4.9)

(1.4.2)(1.4.2)

(1.1.1)(1.1.1)

Perturbation Theory
The above method of subsequent canonical transformations until H is a constant of motion does not 
work directly in case of nonlinear fields. However, in case of relatively small nonlinearities we can 
use a perturbative ansatz to approximate a constant Hamiltonian and in that way gain insight in the 
motion of particles in the presence of non linear fields.

To do this we use another canonical transformation using a generating function of the 2nd kind:
F2  J2, Psi1, s   J2 * Psi1 chi J2, Psi1, s

F2 J2, 1, s J2 1 J2, 1, s
where χ causes a small deviation from the identity transformation (Ψ*J2).
We have
J1 = diff F2 J2, Psi1, s , Psi1

J1 = J2
1

J2, 1, s

 and
Psi2 = diff F2 J2, Psi1, s , J2

2 = 1
J2

J2, 1, s

and
H3 = H2 diff F2 J2, Psi1, s , s

H3 = H2 s
J2, 1, s

Up to now H2 for us was a constant of motion. However, if we include a nonlinear term in the B-
field, H2 will not be a constant of motion if we do the same transformations as before. There will 
be a more-or-less strong modulation (perturbation) of H1, that we will cancel by the differential of
the function χ.
To carry this out, we split H2 into a constant part H20 (which is (1.3.17)) plus the perturbation
U(J1,Ψ1,s):
subs H2 = H20 J1 U J1, Psi1, s , (1.4.4)

H3 = H20 J1 U J1, 1, s
s

J2, 1, s

We can replace the dependence on J1 using (1.4.2):
subs (1.4.2), (1.4.5)

H3 = H20 J2
1

J2, 1, s U J2
1

J2, 1, s , 1, s
s

J2, 1, s
and now replace the chi dependence in H20 and U by their first-order approximations:

H3 = convert thaw convert series subs
1

J2, 1, s = freeze
1

J2, 1,

s , rhs (1.4.6) , freeze
1

J2, 1, s , 2 , polynom , diff

H3 = H20 J2 U J2, 1, s
s

J2, 1, s
d

dJ2
H20 J2

J2
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(1.5.1)(1.5.1)

(1.2.23)(1.2.23)

(1.5.17)(1.5.17)

(1.4.3)(1.4.3)

(1.5.20)(1.5.20)

(1.5.31)(1.5.31)

(1.5.13)(1.5.13)

(1.4.12)(1.4.12)

(1.5.32)(1.5.32)

(1.5.5)(1.5.5)

(1.5.11)(1.5.11)

(1.4.1)(1.4.1)

(1.4.11)(1.4.11)

(1.5.4)(1.5.4)

(1.5.2)(1.5.2)

(1.4.10)(1.4.10)

(1.5.9)(1.5.9)

(1.2.19)(1.2.19)

(1.5.22)(1.5.22)

(1.5.27)(1.5.27)

(1.5.30)(1.5.30)

(1.4.9)(1.4.9)

(1.5.25)(1.5.25)

(1.5.15)(1.5.15)

(1.5.8)(1.5.8)

(1.5.26)(1.5.26)

(1.5.14)(1.5.14)

(1.5.10)(1.5.10)

(1.4.6)(1.4.6)

(1.4.4)(1.4.4)

(1.5.19)(1.5.19)

(1.5.21)(1.5.21)

(1.2.27)(1.2.27)

(1.4.8)(1.4.8)

(1.5.29)(1.5.29)

(1.5.18)(1.5.18)

(1.5.6)(1.5.6)

(1.4.5)(1.4.5)

(1.5.24)(1.5.24)

(1.4.7)(1.4.7)

(1.2.11)(1.2.11)

(1.5.3)(1.5.3)

(1.4.2)(1.4.2)

(1.1.1)(1.1.1)

(1.5.23)(1.5.23)

(1.5.7)(1.5.7)

(1.5.16)(1.5.16)

(1.5.12)(1.5.12)

U J2, 1, s  
1

J2, 1, s

Analogous to 1.1.17, H20 is Q/R*J2:

expand subs H20 J2 =
Q
R

J2, (1.4.7)

H3 =
Q J2

R
U J2, 1, s

s
J2, 1, s

1
J2, 1, s  Q

R

1
J2, 1, s  

J2
U J2, 1, s

and since U is of order χ, we omit the last term involving the product of χ and U:

lhs (1.4.8) = subs
1

J2, 1, s  
J2

U J2, 1, s = 0, rhs (1.4.8)

H3 =
Q J2

R
U J2, 1, s

s
J2, 1, s

1
J2, 1, s  Q

R
In many cases it is more convenient to change from s to the periodic azimuthal variable Θ (which 
goes from 0 to 2*Pi):
simplify PDEtools : dchange s =  R, (1.4.9), , params = R R

R H3 = Q J2 U , J2, 1  R
1

, J2, 1  Q , J2, 1

H4 = rhs (1.4.10)

H4 = Q J2 U , J2, 1  R
1

, J2, 1  Q , J2, 1

To make H4 independent of s, we impose the condition
0 = op 2, rhs (1.4.11) op 3, rhs (1.4.11) op 4, rhs (1.4.11)

0 = U , J2, 1  R
1

, J2, 1  Q , J2, 1

which is a differential equation for χ. This we can potentially solve if we know the perturbation U.

Betatron Resonances

We can make an ansatz for the perturbation U that is periodic in the azimuth Θ as well as the 
phase variable Ψ1:
U Theta, J2, Psi1 = Unm J2 exp I n Psi1 m Theta

U , J2, 1 = Unm J2  eI n 1 m 

where we just state one harmonic out of the whole spectrum (sum over n and m). Here m is the 
harmonic (around the ring) of the resonance, whereas n is the order (in terms of betatron motion) 
If we use a function χ

chi Theta, J2, Psi1 = I
R Unm J2

n Q m
exp I n Psi1 m Theta
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(1.5.1)(1.5.1)

(1.2.23)(1.2.23)

(1.5.17)(1.5.17)

(1.5.20)(1.5.20)

(1.5.31)(1.5.31)

(1.5.13)(1.5.13)

(1.5.32)(1.5.32)

(1.5.5)(1.5.5)

(1.5.11)(1.5.11)

(1.5.4)(1.5.4)

(1.5.2)(1.5.2)

(1.5.9)(1.5.9)

(1.2.19)(1.2.19)

(1.5.22)(1.5.22)

(1.5.27)(1.5.27)

(1.5.30)(1.5.30)

(1.5.25)(1.5.25)

(1.5.15)(1.5.15)

(1.5.8)(1.5.8)

(1.5.26)(1.5.26)

(1.5.14)(1.5.14)

(1.5.10)(1.5.10)

(1.5.19)(1.5.19)

(1.5.21)(1.5.21)

(1.2.27)(1.2.27)

(1.5.29)(1.5.29)

(1.5.18)(1.5.18)

(1.5.6)(1.5.6)

(1.5.24)(1.5.24)

(1.2.11)(1.2.11)

(1.5.3)(1.5.3)

(1.1.1)(1.1.1)

(1.5.23)(1.5.23)

(1.5.7)(1.5.7)

(1.5.16)(1.5.16)

(1.5.12)(1.5.12)

, J2, 1 =
I R Unm J2  eI n 1 m 

n Q m
we can put this into (1.4.12):
subs (1.5.1), (1.5.2), (1.4.12)

0 = Unm J2  eI n 1 m  R
1

I R Unm J2  eI n 1 m 

n Q m
 Q

I R Unm J2  eI n 1 m 

n Q m
simplify value (1.5.3)

0 = 0
and verify that the choice of χ is correct.
Since we have only kept one harmonic of the perturbation (presumably the one with the strongest 
effect on particle motion), we can apply one last canonical transformation to transform into a 
"resonance system" that rotates with the resonant frequency and thus freezes the resonance we are
investigating in phase space. The generating funcion is

F2 Theta, J3, Psi2 Psi2 J3
m
n

Theta J3

F2 , J3, 2 2 J3
m  J3

n
diff F2 Theta, J3, Psi2 , J3

2
m 

n
J4 = diff F2 Theta, J3, Psi2 , Psi2

J4 = J3
H5 = collect subs J3 = J2, rhs (1.4.11) diff F2 Theta, J2, Psi2 , Theta , J2

H5 = Q
m
n

 J2 U , J2, 1  R
1

, J2, 1  Q ,

J2, 1
and substituting χ back in
collect subs (1.5.2), (1.5.8) , R, Umn J2

H5 = Q
m
n

 J2 U , J2, 1  R
1

I R Unm J2  eI n 1 m 

n Q m
 Q

I R Unm J2  eI n 1 m 

n Q m

map value, (1.5.9)

H5 = Q
m
n

 J2 U , J2, 1  R
R Unm J2  n eI n 1 m  Q

n Q m

R Unm J2  m eI n 1 m 

n Q m
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(1.5.1)(1.5.1)

(1.2.23)(1.2.23)

(1.5.17)(1.5.17)

(1.5.20)(1.5.20)

(1.5.31)(1.5.31)

(1.5.13)(1.5.13)

(1.5.32)(1.5.32)

(1.5.5)(1.5.5)

(1.5.11)(1.5.11)

(1.5.4)(1.5.4)

(1.5.2)(1.5.2)

(1.5.9)(1.5.9)

(1.2.19)(1.2.19)

(1.5.22)(1.5.22)

(1.5.27)(1.5.27)

(1.5.30)(1.5.30)

(1.5.25)(1.5.25)

(1.5.15)(1.5.15)

(1.5.8)(1.5.8)

(1.5.26)(1.5.26)

(1.5.14)(1.5.14)

(1.5.10)(1.5.10)

(1.5.19)(1.5.19)

(1.5.21)(1.5.21)

(1.2.27)(1.2.27)

(1.5.29)(1.5.29)

(1.5.18)(1.5.18)

(1.5.6)(1.5.6)

(1.5.24)(1.5.24)

(1.2.11)(1.2.11)

(1.5.3)(1.5.3)

(1.1.1)(1.1.1)

(1.5.23)(1.5.23)

(1.5.7)(1.5.7)

(1.5.16)(1.5.16)

(1.5.12)(1.5.12)

collect (1.5.10), R, Unm J2 , exp , simplify

H5 = Unm J2  eI n 1 m U , J2, 1  R
n Q m  J2

n
(The U(Θ,J2,Ψ1) term will be nonzero if there are any 0 harmonics contributions; 
We can now apply this to the case of a third-integer resonance in the presence of a sextupole field.
to this end we add a sextupolar field component to the Hamiltonian (1.3.1)
lhs (1.3.1) = rhs (1.3.1) k2 s x3

H =
px2

2
k s  x2

2
k2 s  x3

We transform into Action-Angle variables J and Ψ to get

H1 = subs a J = sqrt 2 J , subs (1.3.2),
J

beta
k2 s x3

H1 =
J

2 k2 s  2  J3 2 
3 2

 cos
3

and then into the J1,Ψ1 coordinate system where H1 would be a constant of motion in the linear 
case:
expand simplify subs (1.5.13), (1.3.16) , J = J1, beta = beta s , Psi = Psi1

H2 = 2 s
3 2

 k2 s  2  J13 2 cos 1
3 2 J1  Q

C
with Ψ1 given by (1.3.13).
We can expand the cosine term:
combine (1.5.14), trig

H2 =
1

2 C
3 s

3 2
 k2 s  2  J13 2 cos 1  C

s
3 2

 k2 s  2  J13 2 cos 3 1  C 4 J1  Q
and omit the cos(Ψ1) term as we are not near an integer resonance:
subs cos 1 = 0, (1.5.15)

H2 =
s

3 2
 k2 s  2  J13 2 cos 3 1  C 4 J1  Q

2 C
The cosine term is the perturbation U(Θ,J1,Ψ1) so we can rewrite (1.4.12):

subs U , J2, 1 =
s

3 2
 k2 s  2  J23 2 cos 3 1

2
, (1.4.12)

0 =
s

3 2
 k2 s  2  J23 2 cos 3 1  R

2 1
, J2, 1  Q

, J2, 1
and solve for χ
pdsolve (1.5.17), , J2, 1 , explicit

, J2, 1 =
s

3 2
 k2 s  2  J23 2 R sin 3 1

6 Q
_F1 J2, Q 1

We can now insert this into H4:
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(1.5.1)(1.5.1)

(1.2.23)(1.2.23)

(1.5.17)(1.5.17)

(1.5.20)(1.5.20)

(1.5.31)(1.5.31)

(1.5.13)(1.5.13)

(1.5.32)(1.5.32)

(1.5.5)(1.5.5)

(1.5.11)(1.5.11)

(1.5.4)(1.5.4)

(1.5.2)(1.5.2)

(1.5.9)(1.5.9)

(1.2.19)(1.2.19)

(1.5.22)(1.5.22)

(1.5.27)(1.5.27)

(1.5.30)(1.5.30)

(1.5.25)(1.5.25)

(1.5.15)(1.5.15)

(1.5.8)(1.5.8)

(1.5.26)(1.5.26)

(1.5.14)(1.5.14)

(1.5.10)(1.5.10)

(1.5.19)(1.5.19)

(1.5.21)(1.5.21)

(1.2.27)(1.2.27)

(1.5.29)(1.5.29)

(1.5.18)(1.5.18)

(1.5.6)(1.5.6)

(1.5.24)(1.5.24)

(1.2.11)(1.2.11)

(1.5.3)(1.5.3)

(1.1.1)(1.1.1)

(1.5.23)(1.5.23)

(1.5.7)(1.5.7)

(1.5.16)(1.5.16)

(1.5.12)(1.5.12)

subs (1.5.18), (1.4.11)

H4 = Q J2 U , J2, 1  R
1

s
3 2

 k2 s  2  J23 2 R sin 3 1
6 Q

_F1 J2, Q 1  Q

s
3 2

 k2 s  2  J23 2 R sin 3 1
6 Q

_F1 J2, Q 1

simplify (1.5.19)

H4 =
s

3 2
 k2 s  2  J23 2 cos 3 1  R

2
Q J2 U , J2, 1  R

and apply the transformation into the resonance system:
F2 Theta, J2, 2

2 J2
m  J2

n
H5 = collect rhs (1.5.20) diff F2 Theta, J2, Psi2 , Theta , J2

H5 =
s

3 2
 k2 s  2  J23 2 cos 3 1  R

2
Q

m
n

 J2 U , J2,

1  R
In this case there is no zero harmonic in U so the last term vanishes and we get our final result
subs U , J2, 1 = 0, J2 = J2 s , Psi1 = Psi1 s , (1.5.22)

H5 =
s

3 2
 k2 s  2  J2 s 3 2 cos 3 1 s  R

2
Q

m
n

 J2 s

We can now state the Hamiltonian equations of motion:
diff J2 s , s = thaw diff subs Psi1 s = freeze Psi1 s , rhs (1.5.23) ,

freeze Psi1 s

d
ds

J2 s =
3 s

3 2
 k2 s  2  J2 s 3 2 sin 3 1 s  R

2
diff Psi1 s , s = thaw diff subs J2 s = freeze J2 s , rhs (1.5.23) , freeze J2 s

d
ds

1 s =
3 s

3 2
 k2 s  2  J2 s  cos 3 1 s  R

4
Q

m
n

To be able to plot this we will collect some of the constants into two parameters:
lhs (1.5.24) = algsubs s

3 2
 k2 s  2 R = epsilon, rhs (1.5.24)

d
ds

J2 s =
3 J2 s 3 2 sin 3 1 s  

2

lhs (1.5.25) = algsubs s
3 2

 k2 s  2 R = epsilon, subs Q =
m
n

, rhs (1.5.25)
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(1.5.1)(1.5.1)

(1.2.23)(1.2.23)

(1.5.17)(1.5.17)

(1.5.20)(1.5.20)

(1.5.31)(1.5.31)

(1.5.13)(1.5.13)

(1.5.32)(1.5.32)

(1.5.5)(1.5.5)

(1.5.11)(1.5.11)

(1.5.4)(1.5.4)

(1.5.2)(1.5.2)

(1.5.9)(1.5.9)

(1.2.19)(1.2.19)

(1.5.22)(1.5.22)

(1.5.27)(1.5.27)

(1.5.30)(1.5.30)

(1.5.25)(1.5.25)

(1.5.15)(1.5.15)

(1.5.8)(1.5.8)

(1.5.26)(1.5.26)

(1.5.14)(1.5.14)

(1.5.10)(1.5.10)

(1.5.19)(1.5.19)

(1.5.21)(1.5.21)

(1.2.27)(1.2.27)

(1.5.29)(1.5.29)

(1.5.18)(1.5.18)

(1.5.6)(1.5.6)

(1.5.24)(1.5.24)

(1.2.11)(1.2.11)

(1.5.3)(1.5.3)

(1.1.1)(1.1.1)

(1.5.23)(1.5.23)

(1.5.7)(1.5.7)

(1.5.16)(1.5.16)

(1.5.12)(1.5.12)

d
ds

1 s =
3 J2 s  cos 3 1 s  

4
It is possible that both of these become zero at Ψ1 0 or n*Pi (where n is even or odd depending 
on the sign of delta) and solve subs cos 3 Psi1 s = 1, rhs (1.5.27) , J2 s

J2 s =
16 

2

9 2

This is an unstable fixed point in (Ψ1-J2) space and indicates the presence of stable and unstable 
motion. 
We can plot the phase space portrait of this system by numerical itegration:

Range 0 ..40000 :
 eps 8 10 4 :
 del 0.0005 :

J20 = evalf
 16 del2

9 eps2 ;

 J0 0.065;

J20 = 0.694444444444445

J0 0.065
desys subs delta = del, epsilon = eps, (1.5.26) , subs delta = del, epsilon = eps, (1.5.27)

desys
d
ds

J2 s =
3 J2 s 3 2 sin 3 1 s

2500
,

d
ds

1 s =

3 J2 s  cos 3 1 s
5000

0.0005

sol1 dsolve desys, Psi1 0 = 0, J2 0 = J0 , J2 s , Psi1 s , numeric,  range = Range,
output = listprocedure

sol1 s = proc s ... end proc, J2 s = proc s ... end proc, 1 s = proc s
...

end proc
plot op 2, sol1 2 , op 2, sol1 3 , Range ,
     style = point, symbol = point, coords = polar, coordinateview = 4 * J0 ..4 * J0, 4 * J0 ..4

* J0 ,
     scaling = constrained
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(1.5.1)(1.5.1)

(1.2.23)(1.2.23)

(1.5.17)(1.5.17)

(1.5.20)(1.5.20)

(1.5.31)(1.5.31)

(1.5.13)(1.5.13)

(1.5.32)(1.5.32)

(1.5.5)(1.5.5)

(1.5.11)(1.5.11)

(1.5.4)(1.5.4)

(1.5.2)(1.5.2)

(1.5.9)(1.5.9)

(1.2.19)(1.2.19)

(1.5.22)(1.5.22)

(1.5.27)(1.5.27)

(1.5.30)(1.5.30)

(1.5.25)(1.5.25)

(1.5.15)(1.5.15)

(1.5.8)(1.5.8)

(1.5.26)(1.5.26)

(1.5.14)(1.5.14)

(1.5.10)(1.5.10)

(1.5.19)(1.5.19)

(1.5.21)(1.5.21)

(1.2.27)(1.2.27)

(1.5.29)(1.5.29)

(1.5.18)(1.5.18)

(1.5.6)(1.5.6)

(1.5.24)(1.5.24)

(1.2.11)(1.2.11)

(1.5.3)(1.5.3)

(1.1.1)(1.1.1)

(1.5.23)(1.5.23)

(1.5.7)(1.5.7)

(1.5.16)(1.5.16)

(1.5.12)(1.5.12)

0.2 0.1 0 0.1 0.2

0.2

0.1

0

0.1

0.2

The figure exhibits the typical topology of a 1/3 iteger betatron resonance. Note that the shape is 
distorted compared to the clean triangle that is often shown, this is a consquence of the 
approximations we made in getting to the system of differential equations we can work with. Note
also that the figure is stroboscopically frozen so particles on an unstable path will stream out only 
on one branch. 
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Introduction
Nowadays designing an accelerator requires of modern tools. Matrix optics are quite useful for 
designing the "first order machine", however to reach their best performance more powerful tools are 
required.
There exist two approaches to exactly describe the motion of a charged particle travelling throughout an
accelerator; Hamiltonian (Classical) and Maps (Modern).

Hamiltonian approach allows to write down the equation of motion of a particle, thus we can 
determine its motion at all times. 

  This is the natural approach for objects moving in smooth potential. However an    
  accelerator is anything but a smooth potential. It combines drift spaces, magnets, 
  accelerating cavities...

Figure.1: Overview of the Final Focus System at KEK (Japan).

Is anyone willing to find the Hamiltonian that describes the accelerator chain for the Large Hadron 
Collider?
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Figure.2: The full complex of accelerators that dumps protons into the LHC and other CERN 
experiments (Switzerland).

Map is a better suited approach for describing non-continuos systems. The map is a mathematical 
modelisation of a single or group of elements. In essence, the map transports the coordinates of a 
particles throughout the element or sequence of elements. Therefore the map only provides 
information at the exit of the element. Actually, we do not need to know the position of particles at 
all times. what we want is to understand and analyse the properties of the motion of an ensemble of 
particles at some point of interest, e.g. colission point of a particle collider. 
Now the question is how we can obtained the map? 
It must be derived from the physics, i.e. equation of motion. 
Maps are better suited for computers contrary to equation of motions.

Our reference system is the Frenet-Serret coordinate system introduced in Chapter 1. 
Each particle is then described by a vector of the following form, 
X Vector x 0 , px 0 , y 0 , py 0 , z 0 , ;
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(1.1)(1.1)

x0

px0

y0

py0

z0

x0 , y0,and  z0 refers to the horizontal, vertical and longitudinal position with respect to reference 
particle (closed orbit). px0 and py0 refers to the horizontal and vertical momentum.  is the relative 

energy deviation 
p

p
 with respect the ideal particle.

We intend to describe the accelerator by a map. To this end, each accelerator component can be 
described by its own map, which transports the vector coordinate (X) from the upstream face of the 
element to the downstream face of it. The accelerator global map (MG) is obtained by concatenating the 
individual maps. The motion of the particle throughout the accelerator can be described by the global 
map (MG). 
(Note: Remember the order of the maps is written in reverse!)

                   Xi    MD        MQ       MD           MA             MD       MB        MD   Xf

Quadrupole Accelerating
Cavity

Bending

MG =MD* MB * MD* MA* MD* MQ* MD

Xf =   MG  Xi
MQ,D,A,B are mathematical representation of the accelerator components. Once the global map is known 
we can evaluate the particle coordinates only at the exit of the map, once the initial coordinates are 
given. 
Mi can represent a linear transformation (matrix) or a non-linear transformation (Taylor serie, Lie form,
integration algorithm...). But in any case, it is derived from the physics describing it.

Matrices
Linear elements as drift spaces and quadrupole magnets can be represented by linear transformations.

Drift Space of length (L):
M D Matrix 1, L, 0, 0, 0, 0 , 0, 1, 0, 0, 0, 0 , 0, 0, 1, L, 0, 0 , 0, 0, 0, 1, 0, 0 , 0, 0, 0, 0,

1, 0 , 0, 0, 0, 0, 0, 1 ;
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(1.4)(1.4)

(1.1)(1.1)

(1.2)(1.2)

(1.5)(1.5)

(1.3)(1.3)

1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Quadrupole magnet of length (l) and strength (k) can be represented by,

M Q Matrix cos k l ,
1

k
sin k l , 0, 0, 0, 0 , k sin k l , cos k l , 0, 0, 0,

0 , 0, 0, cosh k l ,
1

k
sinh k l , 0, 0 , 0, 0, k sinh k l , cosh k l , 0, 0 , 0, 0,

0, 0, 1, 0 , 0, 0, 0, 0, 0, 1

cos k  l
sin k  l

k
0 0 0 0

k  sin k  l cos k  l 0 0 0 0

0 0 cosh k  l
sinh k  l

k
0 0

0 0 k  sinh k  l cosh k  l 0 0

0 0 0 0 1 0

0 0 0 0 0 1

M[Q] := Matrix([[1,0, 0, 0, 0, 0], [-k*l, 1, 0, 0, 0, 0], [0, 0, 1,0, 0, 0], [0, 0, k*l, 1, 0, 0], [0, 0, 0, 0, 
1, 0], [0, 0, 0, 0, 0, 1]]);

1 0 0 0 0 0

k l 1 0 0 0 0

0 0 1 0 0 0

0 0 k l 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Non-linear elements: Sextupoles and higher order magnets cannot be represented by matrices if 
vector position is described as (1.1).

  For example a thin lens sextupole of strength k2 and length l transforms X0 into X1 as;
X_0 Vector x 0 , px 0 , y 0 , py 0 , z 0 , 0 :
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(1.8)(1.8)

(1.7)(1.7)

(1.2)(1.2)

(1.9)(1.9)

(1.6)(1.6)

(1.1)(1.1)

X_1 X_0 Vector 0,  k 2 l x 0 y 0 , 0, 
k 2 l x 0 2 y 0 2

2
, 0, 0 ;

x0

l k2 x0 y0 px0

y0

py0
1
2

 k2 l x0
2 y0

2

z0

0

One way to overcome this issue is to expand (1.1) to include all second order terms.

with LinearAlgebra :
with ArrayTools :
X Vector 6, symbol = x :
X_exp Concatenate 2, convert X, Vector row , convert OuterProductMatrix X, X , vector :
interface rtablesize = 42 :
print X_exp ; 
interface rtablesize = 10  :
x1, x2, x3, x4, x5, x6, x1

2, x1 x2, x1 x3, x1 x4, x1 x5, x1 x6, x1 x2, x2
2, x2 x3, x2 x4, x2 x5, x2 x6, x1 x3, 

x2 x3, x3
2, x3 x4, x3 x5, x3 x6, x1 x4, x2 x4, x3 x4, x4

2, x4 x5, x4 x6, x1 x5, x2 x5, x3 x5, x4 x5, x5
2, 

x5 x6, x1 x6, x2 x6, x3 x6, x4 x6, x5 x6, x6
2

The matrix (Mext ) that can represent a non-linear element would be extended as follows;
M ext Matrix 'R 6, 6 ' 'T 6, 36 ' , 'O 36, 6 ' 'RxR 36, 36 ' ;

R 6, 6 T 6, 36

O 36, 6 RxR 36, 36

       R is the already known 1st order transport matrix and T is the 2nd order transport    
       matrix (first introduced by K. Brown in 1965, see Ref[3]) implemented in the   
       TRANSPORT code). The second order matrix relate the final coordinates as a product          of 2 intial
coordinates. For instance, we all know that R12 relates x1(sf) = R12 x2(si). In          a similar way, the 
second order matrix T122 relates  x1(sf) = T122 x2(si) x2(si). An 
       alternative to this approach are the high order maps.

High Order Maps
The High Order Maps are an equivalent formalism, but more elegant (in my opinion), since we replace the 
big matrices by summations, ehich makeis it easily extendable to higher orders. The particle vector is the 
original one (1.1). The particle coordinates after an accelerator component are described as;
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(2)(2)

(1.2)(1.2)

(1)(1)

(1.1)(1.1)

(3)(3)

x j
k = 1

6

R jk x k
l = 1

6

m = 1

6

T jlm x l x m
n = 1

6

p = 1

6

q = 1

6

U jnpq x n x p x q " x4

":
R, T, U and subsequent maps, are refer to the linear, second, third and higher order maps of the accelerator 
component. The global map representing the entire machine is constructed by concatenating the individual 
maps. But here comes an issue: Truncation. Let's assume that we have 2 consecutive non-linear elements 
described by Ra, Ta and Rb, Tb respectively.

x1 p : x1
q = 1

6

RA pq x0 q
r = 1

6

s = 1

6

TA prs x0 r  x0 s ;

q = 1

6

RA pq x0 q
r = 1

6

s = 1

6

TA prs x0 r x0 s ;

x1
q = 1

6

RApq x0q
r = 1

6

s = 1

6

TAprs x0r x0s

TAprs x01
2 2 TAprs x01 x02 2 TAprs x01 x03 2 TAprs x01 x04 2 TAprs x01 x05

2 TAprs x01 x06 TAprs x02
2 2 TAprs x02 x03 2 TAprs x02 x04 2 TAprs x02 x05

2 TAprs x02 x06 TAprs x03
2 2 TAprs x03 x04 2 TAprs x03 x05 2 TAprs x03 x06

TAprs x04
2 2 TAprs x04 x05 2 TAprs x04 x06 TAprs x05

2 2 TAprs x05 x06 TAprs 

x06
2 RApq x01 RApq x02 RApq x03 RApq x04 RApq x05 RApq x06

x2 j : x2
k = 0

6

RB jk x1 k
l = 1

6

m = 1

6

TB jlm x1 l  x1 m ; 

x2
k = 0

6

RBjk x1k
l = 1

6

m = 1

6

TBjlm x1l x1m

subs x1 = (1), (2) ;

x2
k = 0

6

RBjk TAprs x01
2 2 TAprs x01 x02 2 TAprs x01 x03 2 TAprs x01 x04

2 TAprs x01 x05 2 TAprs x01 x06 TAprs x02
2 2 TAprs x02 x03 2 TAprs x02 x04

2 TAprs x02 x05 2 TAprs x02 x06 TAprs x03
2 2 TAprs x03 x04 2 TAprs x03 x05

2 TAprs x03 x06 TAprs x04
2 2 TAprs x04 x05 2 TAprs x04 x06 TAprs x05

2

2 TAprs x05 x06 TAprs x06
2 RApq x01 RApq x02 RApq x03 RApq x04 RApq x05

RApq x06 k l = 1

6

m = 1

6

TBjlm TAprs x01
2 2 TAprs x01 x02 2 TAprs x01 x03
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(1.2)(1.2)

(4)(4)

(1.1)(1.1)

• • 

(3)(3)

2 TAprs x01 x04 2 TAprs x01 x05 2 TAprs x01 x06 TAprs x02
2 2 TAprs x02 x03

2 TAprs x02 x04 2 TAprs x02 x05 2 TAprs x02 x06 TAprs x03
2 2 TAprs x03 x04

2 TAprs x03 x05 2 TAprs x03 x06 TAprs x04
2 2 TAprs x04 x05 2 TAprs x04 x06

TAprs x05
2 2 TAprs x05 x06 TAprs x06

2 RApq x01 RApq x02 RApq x03 RApq x04

RApq x05 RApq x06 l
 TAprs x01

2 2 TAprs x01 x02 2 TAprs x01 x03

2 TAprs x01 x04 2 TAprs x01 x05 2 TAprs x01 x06 TAprs x02
2 2 TAprs x02 x03

2 TAprs x02 x04 2 TAprs x02 x05 2 TAprs x02 x06 TAprs x03
2 2 TAprs x03 x04

2 TAprs x03 x05 2 TAprs x03 x06 TAprs x04
2 2 TAprs x04 x05 2 TAprs x04 x06

TAprs x05
2 2 TAprs x05 x06 TAprs x06

2 RApq x01 RApq x02 RApq x03 RApq x04

RApq x05 RApq x06 m

The linear and second order maps of the combined maps (R12,T12) read as;

RAB pk : RAB
q = 1

6

RA pq RB qk ;

 TAB qrs : TAB
q = 1

6

RA qk TB krs
l = 1

6

m = 1

6

TB qlm  RA lr RA ms ;

RAB
q = 1

6

RApq RBqk

TAB
q = 1

6

RAqk TBkrs
l = 1

6

m = 1

6

TBqlm RAlr RAms

     Notice the truncation of the 3rd and 4th order terms, in other words, we are loosing 
     accuracy.

High Order Maps Motivation
High order maps are of extremely interest when studying the performance of a machine. Nowadays, 
non-linear effects are the limiting factors for improving accelerators. A few examples of non-linear 
sources are:

Non-linear elements deliberately introduced in the machine (e.g. sextupole magnets for correcting 
chromaticity)
Unwanted non-linear elements as field error magnets
Collective effects (e.g. wake-fields, beam-beam,...)

High order maps permit to study the impact of these non-linearities, bringing a physical insight on their 
effect on the beam.
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(1.2)(1.2)

• • 
• • 

(1.1)(1.1)

• • 

(3)(3)

How to obtain the MAPS
We want to model a beamline element by a map. This map has to be sufficiently accurate while keeping 
its features, for instance preservation of the phase space area for conservative systems. These two 
aspects are not independent and need to be taken into account when obtaining the map. 
Accuracy depends on the order of the map. Generally speaking, the map is truncated at the minimum 
order where the remaining higher orders do not have a significant impact on the beam. However 
symplecticity is usually compromised when truncating the map.

There exist different mathematical tools to get high order maps up to the desired order, but note that not 
all of them respect symplecticity (are symplectic methods);

Taylor series
Lie maps
Symplectic integrator
Differential algebra or Truncated Power Series Algebra (TPSA)

Symplecticity
All Hamiltonian systems are symplectic, which means that they obey Liouville's theorem;

 phase space volume is preserved as the system evolves in time. 
A non symplectic map leads to a wrong interpretation of the system (in case of conservative systems), 
specially when considering the long term evolution. 
For a 1-dimensional systems, the evolution of the system is specified by a 2x2 matrix (M). 
Simplecticity imposes that 

det(M)=1
For a linear n-dimensional system, the system is described by a 2n x 2n matrix (M). In this case the 
symplectic condition reads as:

MT S M = S,
where S is a 2n x 2n matrix of the form,

S = 0   1 , 1  0 :
For a non-linear n-dimensional system we can identify the Jacobian matrix J of the map as the first-
order partial derivatives of a vector function X=(x,px,y,py,δ);

J =

x s2
x s1

x s2
px s1

x s2
y s1

x s2
py s1

x s2
s1

px s2
x s1

px s2
px s1

px s2
y s1

px s2
py s1

px s2
s1

y s2
x s1

y s2
px s1

y s2
y s1

y s2
py s1

y s2
s1

py s2
x s1

py s2
px s1

py s2
y s1

py s2
py s1

py s2
s1

s2
x s1

s2
px s1

s2
y s1

s2
py s1

s2
s1

:
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(4.1.2)(4.1.2)

(4.1.3)(4.1.3)

(4.1.1)(4.1.1)

(1.2)(1.2)

(1.1)(1.1)

(3)(3)

Simplecticity is satisfied when JT S J = S for all initial coordinates.

Truncated maps are usually not symplectic, thus the volume in phase space is not conserved. The value 
of det(M) has the physical meaning of the magnification factor of the phase space volume.
However the good news is that the truncated map can be "symplectified". Let's see an example;

Symplectification of a Quadrupole
Recall the matrix of a thick ((1.3)) and thin quadrupole (1.4). Both matrices are symplectic,
simplify Determinant (1.3) ;
simplify Determinant (1.4) ;

1

1

The transfer matrix of a slice of a quadrupole (assume only horizontal plane) would be;
Qx (1.3) 1 ..2, 1 ..2 :
Qx  subs l = ds, Qx ;
nord 2 : # remember it would expand up to nord-1
Qx 1, 1  mtaylor Qx 1, 1 , ds , nord :
Qx 1, 2  mtaylor Qx 1, 2 , ds , nord :
Qx 2, 1  mtaylor Qx 2, 1 , ds , nord :
Qx 2, 2  mtaylor Qx 2, 2 , ds , nord : Qx;
print 1  Determinant Qx ;  

cos k  ds
sin k  ds

k

k  sin k  ds cos k  ds

1 ds

k ds 1

k ds2

Truncating at higher orders only improves accuracy but it does not provide symplecticity!
The first order map of a slice of a quadrupole can be symplectified by adding a second order term -k
ds2 to the Qx[2,2] coefficient,
Qx 2, 2 Qx 2, 2 k ds2 : Qx;
print Determinant Qx ;  

1 ds

k ds ds2 k 1

1
the map is accurate up to (ds).
Actually this additional term is equivalent to represent the slice of a quadrupole as a drift space of 
length (ds) plus a thin lens quadrupole of strength (-k ds).
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(4.1.4)(4.1.4)

(1.2)(1.2)

(4.1.5)(4.1.5)

(1.1)(1.1)

(3)(3)

Dx (1.2) 1 ..2, 1 ..2 :
Dx  subs L = ds, Dx ;
tq (1.4) 1 ..2, 1 ..2 :
 tq  subs l = ds, tq ;
Multiply  tq, Dx

1 ds

0 1

1 0

k ds 1

1 ds

k ds ds2 k 1

We have just constructed a first order symplectic integrator! However the map is still inaccurate to
(ds2). We can improve accuracy by placing the kick at the center of our map quadrupole.

Dx (1.2) 1 ..2, 1 ..2 :

Dx  subs L =
ds
2

, Dx ;

tq (1.4) 1 ..2, 1 ..2 :
 tq  subs l = ds, tq ;
 simplify Multiply Dx, Multiply  tq, Dx ;
Determinant Multiply Dx, Multiply  tq, Dx ;

1
1
2

 ds

0 1

1 0

k ds 1

1
2

 k ds2 1 ds
1
4

 k ds3

k ds
1
2

 k ds2 1

1

So the map is symplectic and accurate up to (ds2).
Alternatively, we could construct a map accurate to 2 order and symplectic map by using 2 kicks 
placed at the center and at the end.
Dx (1.2) 1 ..2, 1 ..2 :

Dx  subs L =
ds
2

, Dx :

tq (1.4) 1 ..2, 1 ..2 :

 tq  subs l =
ds
4

, tq :
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(1.2)(1.2)

(1.1)(1.1)

(3)(3)

Determinant Multiply tq, Multiply Dx, Multiply  tq, Dx ;
1

But in terms of computation time the previous map is faster.
This can be extended to high order integrators

Higher order of symplectic integration can be achieved simply by dividing the magnet into more 
pieces and solving much more complicated set of equations. 

Truncated Power Series Algebra (TPSA)
The Truncated Power series Algebra is a purely calculation technique to relate ouput coordinates to 
input coordinates given by an arbitrary algorithm. It was first introduced in 1989 by M. Berz. It has 
been applied in different fields, being the accelerator physics one of the most popular, since it allows
to obtain the high order map which represents the accelerator. The obtained map is usually non-
symplectic (but it can be simplectified!). This technique can be applied to any well-defined algorithm
and is limited nowadays by the computer memory space. 

The algorithm can be for instance a 10000 lines computing code (each line can represent an 
accelerator element). Certainly the computing time for tracking 104 particles over the 10000 lines 
can be pretty consuming. Whereas a map that connects the initial with the final coordinates is much 
faster, it is a single calculation for each particle. The goal is to obtain a map to reduce the 
computation time while preserving precision.

X1=(x1,x2,x3,x4,x5,x6)s1                    M                  X2==(x1,x2,x3,x4,x5,x6)s2
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(4.2.2)(4.2.2)

(1.1)(1.1)

(4.2.1)(4.2.1)

(3)(3)

Map

A1 A3A2 An-2 AnAn-1

X2 = M⋅X1= C(j) X1
(j)  = R X1 + T(j) X1

(2) + U X1
(3) + V X1

(4)+ (X1
(n≥4))

TPSA is a powerful calculation technique to obtain the C(j) coefficients up to the required order of a 
well defined algorithm.
Once the required C(j) coefficients are obtained, tracking a particle from s1 to s2 is done by one 
single calculation instead of  (number of  elements) x calculations. This reduces the computational 
time dramatically.

TPSA permits to evaluate the derivatives of any given function g(x) at a certain location (x=a) up to 
the desired order (n) if g(x) is well-defined.
The Taylor expansion of g(x) reads as:
GTaylor taylor g x , x = a, 4 :
Gpoly convert GTaylor, polynom ;

g a D g a  x a
1
2

 D 2 g a  x a 2 1
6

 D 3 g a  x a 3

The function can be represented by the so-called vector form of f(x), which is;
G0 subs a = 0, Gpoly ;
VectorForm CoefficientVector G0, x ;

g 0 D g 0  x
1
2

 D 2 g 0  x2 1
6

 D 3 g 0  x3

g 0

D g 0

1
2

 D 2 g 0

1
6

 D 3 g 0

The vector form is also called the TPSA representation of the function f(x) at x=a
The virtue of TPSA exists in its calculation technique. In essence it converts an analytical 
computation into a algebraic one. 
Let's see a simple example;

f
1

x
1
x

:
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(4.2.4)(4.2.4)

(4.2.3)(4.2.3)

(4.2.7)(4.2.7)

(4.2.6)(4.2.6)

(1.2)(1.2)

(1.1)(1.1)

(3)(3)

(4.2.5)(4.2.5)

eval  f, x = 2 ;
2
5

We can evaluate f'(x=2) by 4 different methods, Maple, explicit analytical, numerical and TPSA:
Maple:
eval f', x = 2 ;

3
25

Explicit Analytical:
fder f';
eval fder, x = 2 ;

1
1
x2

x
1
x

2

3
25

Numerically:

fderaprox eval f, x = 2 d eval f, x = 2 1
d

;

1

2 d
1

2 d

2
5

d
 eval fderaprox, d = 0.1 ;
 limit fderaprox, d = 0 ;

0.1182994450

3
25

TPSA:
To calculate that first we need to construct what we call the TPSA vector (v). Since we are interested
in the first derivative then v will have 2 components. The first one corresponds to the value at which
the derivative is going to be calculated, and the second one is always 1.
v Vector 2, 2, 1 ;

2

1

To calculate the first derivative we just need to apply the function f(x) to the TPSA vector v. Now 
TPSA has its own rules for manipulating TPSA vectors.

TPSArules module
  description "TPSA tools for 1 order derivative";
  option package;
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(1.2)(1.2)

(4.2.12)(4.2.12)

(4.2.11)(4.2.11)

(1.1)(1.1)

(3)(3)

  export invec, prodvec , sumvec,  cprod;

    invec proc v Vector

    Vector 2,
1

v 1
,

v 2
v 1 2

    end proc;

    prodvec proc u Vector, v Vector
    Vector 2,  u 1 v 1 , u 1 v 2 u 2 v 1
    end proc;

    sumvec proc u Vector, v Vector
    Vector 2, u 1 v 1 , u 2 v 2
    end proc;

    cprod proc c algebraic, v Vector
    Vector 2, c v 1 , c v 2
    end proc;

end module;
module

option package;
export invec, prodvec, sumvec, cprod;
description "TPSA tools for 1 order derivative";

end module

with TPSArules  ;
cprod, invec, prodvec, sumvec

 fvec  subs x = v, f ;
1

2

1
1
2

1

According to the manipulation rules  we have to first inv(v)
invec v ;

1
2

1
4

After, sum (v) and (invec)
sumvec v, invec v ; 
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(1.2)(1.2)

(4.2.14)(4.2.14)

(1.1)(1.1)

(3)(3)

5
2

3
4

Finally invert the obtained vector,
fv = invec sumvec v, invec v ;

fv =

2
5

3
25

We can identify v(1) as f(x=2) and v(2) as f'(x=2)!

The secret of the calculation relies on
how the TPSA vector (v) is constructed
manipulation rules of TPSA vectors

Construction of TPSA vector
Now, we can better understand how the TPSA vector needs to be constructed and how the 
manipulation rules are established by considering the identity function f(x)=x.
How do we have to construct the vector of 2 components in order to obtain the value of the function
at x and f'(a) as the first and second components respectively when applying the function to the 
TPSA vector v?

v=[a,b]
f(v)=f([a,b])≡[f(a),f'(a)]≡[a,1]→v(1)=a=f(x), v(2)=1=f'(x)

First component v(1) is the value where the derivative is to be taken.
Second component v(2) must be equal to 1.
The TPSA vector that represents a constant function f(x)=c is of the form [c,0].

TPSA Multiplication rules
The definition of the prodct between 2 TPSA vectors is the following;
" a_1, a_2 b_1, b_2  =  a_1 b_1 , a_1 b_2 a_2 b_1 "

"[a_1,a_2]*[b_1,b_2] = [ a_1*b_1 , a_1*b_2 a_2*b_1 ]"
Demonstration
given the TPSA vector v=[a,1] and f(x) and g(x) functions which satisfy,

f(v)=[f(a),f'(a)]
g(v)=[g(a),g'(a)]

The product of the functions is,
 h(v)=f(v)⋅g(v)=[h(a),h'(a)]

LHS:
h(v)=f(v)⋅g(v)=[ [f(a),f'(a)] ⋅ [g(a),g'(a)]] 
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(1.2)(1.2)
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(4.2.18)(4.2.18)

(1.1)(1.1)

(3)(3)

RHS:
[h(a),h'(a)] = [ f(a)⋅g(a) , f'(a)⋅g(a)+f(a)⋅g'(a)  ]

Left and Right sides are equal if (4.2.15) applies.

For the particular case where f(x)=g(x)=x
h(x) satisfies h(v)=[h(a) , h'(a)], indeed any integer power function h(x)=xn satisfies multiplication 
rule, therefore we can evaluate the TPSA of any function which is expandable in a Taylor series.

Higher Order Derivatives
In order to evaluate higher order derivatives we simply need to modify the TPSA vector by adding 
zeros. As many as derivates of order greater than one are desired. For instance the 1st, 2nd and 3rd 
order derivatives of f(x) would be obtained by applying f(x) to the following TPSA vector,
Vector 4, a, 1, 0, 0 ;

a

1

0

0

Example: Calculate the first 3 derivatives for f(x)=x at x=a
v Vector 4, a, 1, 0, 0 :
 f x :
 eval f, x = a ; eval f ', x = a ; eval f '', x = a ; eval f ''', x = a ;

a

1

0

0

Vector Manipulation rules for high order derivatives
Constant Product :

c [a0,a1,a2,...,an]  [ca0,ca1,ca2,...,can]
[a0,a1,a2,...,an] + [b0,b1,b2,...,bn]  [ a0b0 , a1b1 , a2b2 ,..., an+bn ] 

 [a0,a1,a2,...,an] ⋅ [b0,b1,b2,...,bn] ≡ [c0,c1,c2,...,cn] being,

c i = sum
i!

k! i k !
 a k b k 1 , k = 0 ..i

ci =
k = 0

i i! ak bk 1

k! i k !

Multiple Variables
Given the function of 2 variables z(x,y). The Taylor series (4th order) is ;
mTaylor  mtaylor z x, y , x = 0, y = 0 , 3 ;

z 0, 0 D1 z 0, 0  x D2 z 0, 0  y
1
2

 D1, 1 z 0, 0  x2 D1, 2 z 0, 0  x y
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(3)(3)

1
2

 D2, 2 z 0, 0  y2

VectorForm coeffs collect mTaylor, x, y ,'distributed ' , x, y ;

z 0, 0 , D1, 2 z 0, 0 ,
1
2

 D1, 1 z 0, 0 ,
1
2

 D2, 2 z 0, 0 , D1 z 0, 0 , D2 z 0,

0
The TPSA vectors v1 and v2 should be constructed in such a way that z(v1,v2 )=(4.2.20), hence
[a00,a10,a01,a20,a11,a02,...,a0n ] + [b00,b10,b01,b20,b11,b02,...,b0n ]  [ a00+b00 , a10+b10 , a01+b01 ,
a20+b20 ,..., a0n+b0n ] 
[a00,a10,a01,a20,a11,a02,...,a0n ] ⋅ [b00,b10,b01,b20,b11,b02,...,b0n ]  [ c00, c10, c01, c20, c11, c02 ,..., 
c0n ] , where

c sum sum
i! j!

k! l! i k ! j l !
 a k, l b i k, j l , l = 0 ..j , k = 0 ..i ;

k = 0

i

l = 0

j i! j! ak, l bi k, j l

k! l! i k ! j l !
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Optics matching
In this section we will investigate the concepts of matching as it applies to beam lines (which includes 
linacs) and to circular machines. We will distinguish between two different cases of matching:

Matching of a beam to the beam functions of a circular machine. Once designed, a circular machine 
has a given set of beta functions which (together with the emittance) determines the shape of a beam.
The matching problem occurs at the beam transfer: how do we ensure that a beam being injected has 
the correct shape in all 6 dimensions? What happens if not??
Matching of a section with specific properties into a ring. The most obvious example of this is 
insertion of an interaction region for a collider into an otherwise regular magnet lattice.

In this section we will deal with the latter, to keep the former problem for next week when we discuss 
beam injection and extraction.

Insertion matching 
We consider a general ring lattice, which is described by its matrix
R ring Matrix 4, 4, 1, 1  = sin mu L * alpha 0 cos mu L , 1, 2  = beta 0

* sin mu L , 1, 3  = Disp s , 1, 4  = dLdx s , 2, 1  = alpha 0 ^2 / beta 0 1
/ beta 0 * sin mu L , 2, 2  = sin mu L * alpha 0 cos mu L , 2, 3  
= diff Disp s , s , 2, 4 = dLdxp s , 3, 1 = 0, 3, 2 = 0, 3, 3 = 1, 3, 4
= dLddelta s , 4, 4 = 1 ;

Rring sin L  0 cos L , 0  sin L , Disp s , dLdx s , 

0
2

0
1
0

 sin L , sin L  0 cos L , 
d
ds

Disp s , dLdxp s , 

0, 0, 1, dLddelta s , 

0, 0, 0, 1

Here β(s), α(s) are the lattice functions at location s, and µ(L) is the phase advance around the 
ring, i.e. 2πQ. We do want to express the dispersion Disp(s) by the close solution η(s), which is

Disp s = R ring 1, 1  s R ring 1, 2  etap s s , diff Disp s , s =
R ring 2, 2  etap s R ring 2, 1  s etap s

Disp s = sin L  0 cos L  s 0  sin L  etap s
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(1.1.11)(1.1.11)

s ,
d
ds

Disp s = sin L  0 cos L  etap s

0
2

0
1
0

 sin L  s etap s

R ring collect subs (1.1.2), R ring , eta s , etap s
Rring sin L  0 cos L , 0  sin L , sin L  0

cos L 1  s 0  sin L  etap s , dLdx s , 

0
2

0
1
0

 sin L , sin L  0 cos L , 

0
2

0
1
0

 sin L  s sin L  0 cos L

1  etap s , dLdxp s , 

0, 0, 1, dLddelta s , 

0, 0, 0, 1

This description is naturally extended to the full 6x6 case resulting in the first-order 
TRANSPORT matrix.
LinearAlgebra:-Determinant R ring

sin L
2

cos L
2

The most straightforward way to insert something into this ring is to make that "something" have 
a unit matrix. Assuming that the inserted piece can be described by the same form as (1.1.1) we 
can see that making µ(L) an integer times 2π gets us close:
subs mu L = 2 Pi, R ring

sin 2  0 cos 2 , 0  sin 2 , sin 2  0 cos 2 

1  s 0  sin 2  etap s , dLdx s , 

0
2

0
1
0

 sin 2 , sin 2  0 cos 2 , 
0

2

0

1
0

 sin 2  s sin 2  0 cos 2 1  etap s , 

dLdxp s , 
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0, 0, 1, dLddelta s , 

0, 0, 0, 1

eval~ (1.1.5)
1 0 0 dLdx s

0 1 0 dLdxp s

0 0 1 dLddelta s

0 0 0 1

Note that the dispersive terms have vanished as well. To get there fully, we have to impose that 
the the path-length terms are 0 as well. If the piece to be matched is a straight piece this is 
automatically fulfilled. We will treat the case where this is not so soon.

It turns out this is not a good path because the β functions become undefined when µ(L) is 2π. 
Intuitively this is clear: for an identity matrix, all β are equal. So practically speaking, the insertion 
needs to be described by the element matrices as we discussed them earlier. Having said this; if 
we have a matrix description in terms of the magnet parameters we can, in principle, solve the 
matching problem by finding the magnet parameters that make the overall matrix an identity. This 
can be done analytically in relatively simple cases, numerically in others. Lattice codes like MAD 
will do this.

While this approach is perfectly valid and used in a number of cases, the restriction to a 2π phase 
advance is a rather stringent one. The question is then whether there is a way to relax this. As it 
turns out, there is. Heuristically, it can be argued that what is to be matched are the lattice 
functions, so if we have a section that has matched lattice functions at its ends that match those of 
the ring at the insertion point, we can expect a good match, even if the overall tune changes. We 
can write this scenario as follows:
Let R1 describe a ring with tune µ1/(2π)
R1 subs mu L = mu1, R ring
R1 sin 1  0 cos 1 , 0  sin 1 , sin 1  0 cos 1

1  s 0  sin 1  etap s , dLdx s , 

0
2

0
1
0

 sin 1 , sin 1  0 cos 1 , 
0

2

0

1
0

 sin 1  s sin 1  0 cos 1 1  etap s , dLdxp s

, 

0, 0, 1, dLddelta s , 
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(1.1.10)(1.1.10)

(1.1.3)(1.1.3)

(1.1.8)(1.1.8)

(1.1.6)(1.1.6)

(1.1.1)(1.1.1)

(1.1.9)(1.1.9)

(1.1.16)(1.1.16)

(1.1.15)(1.1.15)

(1.1.5)(1.1.5)

(1.1.7)(1.1.7)

(1.1.4)(1.1.4)

(1.1.11)(1.1.11)

0, 0, 0, 1

Let R2 describe a straight section with the same matched β and α functions but a different phase 
advance µ2:
R2 subs mu L = mu2, eta s = 0, etap s = 0, dLdx s = 0, dLdxp s = 0, dLddelta s

= 0, R ring ;

R2

sin 2  0 cos 2 0  sin 2 0 0

0
2

0
1
0

 sin 2 sin 2  0 cos 2 0 0

0 0 1 0

0 0 0 1

We put these together:
collect subs mu1 mu2 = mu3, combine~ R2.R1, trig , sin, cos

0  sin 3 cos 3 , 0  sin 3 , 0  s etap s  0  sin 2

0  s etap s  0  sin 3 s  cos 3 cos 2  s , 

dLdx s  0 dLdxp s  0  sin 2 dLdx s  cos 2 , 

0
2

1  sin 3
0

, cos 3 0  sin 3 , 

0
2
 s 0  etap s  0 s  sin 2

0

0
2
 s 0  etap s  0 s  sin 3

0
etap s  cos 2

etap s  cos 3 , 

dLdx s  0
2

dLdxp s  0  0 dLdx s  sin 2
0

dLdxp s  cos 2 , 

0, 0, 1, dLddelta s , 

0, 0, 0, 1

collect collect simplify (1.1.9) 1, 3 , alpha 0 , eta s , eta s , etap s , beta 0
sin 3 sin 2  0 cos 3 cos 2  s sin 3

sin 2  0  etap s
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(1.1.10)(1.1.10)

(1.1.3)(1.1.3)

(1.1.8)(1.1.8)

(1.1.6)(1.1.6)

(1.1.1)(1.1.1)

(1.1.9)(1.1.9)

(1.1.16)(1.1.16)

(1.1.15)(1.1.15)

(1.1.5)(1.1.5)

(1.1.7)(1.1.7)

(1.1.4)(1.1.4)

(1.1.11)(1.1.11)
R ring 1, 3

sin L  0 cos L 1  s 0  sin L  etap s
What we now see is that the match works perfectly well for the transverse coordinates, but not for
the dispersion unless µ2 is 2π. So for the case of matching of a straight section with no 
dispersion, we do need to maintain the +I transformation if we want dispersion match (usually we
do). If we have a curved section to match, with a certain dispersion at the ends we can postulate 
that the dispersions are matched as well and get (R3 is a curved insert).
R3 subs mu L = mu2, etap s = etap2, eta s = eta2, R ring
R3 sin 2  0 cos 2 , 0  sin 2 , sin 2  0 cos 2

1  2 0  sin 2  etap2, dLdx s , 

0
2

0
1
0

 sin 2 , sin 2  0 cos 2 , 
0

2

0

1
0

 sin 2  2 sin 2  0 cos 2 1  etap2, dLdxp s , 

0, 0, 1, dLddelta s , 

0, 0, 0, 1

combine simplify R1.R3 , trig
0  sin 1 2 cos 1 2 , 0  sin 1 2 , 0  2 sin 1

2 etap2 0  sin 1 2 2 cos 1 2 sin 1  0  s

sin 1  0  2 0  sin 1  etap s sin 1  0  etap2

cos 1  s cos 1  2 s , dLddelta s  sin 1  0  s

dLddelta s  sin 1  etap s  0 dLddelta s  cos 1  s

dLdx s  sin 1  0 0  sin 1  dLdxp s dLddelta s  s

dLdx s  cos 1 dLdx s , 

0
2
 sin 1 2 sin 1 2

0
, cos 1 2 0  sin 1

2 , 
1
0

sin 1  0  etap s  0 0
2
 2 sin 1 2

etap2 0  cos 1 2 cos 1  0  etap2 0  0  etap2 sin 1

2 sin 1  0  0  etap2 2 sin 1 2 sin 1  2

sin 1  0
2
 2 etap s  0 sin 1  s cos 1  etap s  0
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(1.2.1)(1.2.1)

(1.1.10)(1.1.10)

(1.2.4)(1.2.4)

(1.1.3)(1.1.3)

(1.1.8)(1.1.8)

(1.1.6)(1.1.6)

(1.2.5)(1.2.5)

(1.1.1)(1.1.1)

(1.1.9)(1.1.9)

(1.1.16)(1.1.16)

(1.1.15)(1.1.15)

(1.1.5)(1.1.5)

(1.1.7)(1.1.7)

(1.2.2)(1.2.2)

(1.2.3)(1.2.3)

(1.1.4)(1.1.4)

(1.1.11)(1.1.11)

sin 1  0
2
 s , 

1
0

dLddelta s  sin 1  0
2
 s

dLddelta s  sin 1  0  etap s  0

dLddelta s  cos 1  etap s  0 dLdx s  sin 1  0
2

dLdxp s  sin 1  0  0 dLddelta s  sin 1  s

dLddelta s  etap s  0 dLdxp s  cos 1  0 sin 1  dLdx s

dLdxp s  0 , 

0, 0, 1, 2 dLddelta s , 

0, 0, 0, 1

collect subs eta s = eta2, etap s = etap2, (1.1.13) 1, 3 , eta2
0  sin 1 2 cos 1 2 1  2 etap2 0  sin 1 2

R ring 1, 3
sin L  0 cos L 1  s 0  sin L  etap s

Comparing the coefficients shows that indeed the dispersion η(s) remains the same (η2=η(s) by 
our stipulation, and µ(L) becomes µ1+µ2).

So we have found the matching conditions in general to be 6 in total (β(x,z), α(x,z),ηx,etapx) for a 
flat ring. This then is the minimum number of variable elements (usually quadrupoles) we need. 
Sometimes we can employ symmetry to reduce the number of conditions, and if we match in a 
dispersion-less section we may get away with only two elements to match the β.

Dispersion suppressor
Dispersion suppressors are some of the most common insertions. They are usually needed to match 
zero dispersion in a straight section to the finite dispersion in the arc sections of a ring.

We consider the ring lattice with dispersion as given before
R ring

sin L  0 cos L , 0  sin L , sin L  0

cos L 1  s 0  sin L  etap s , dLdx s , 

0
2

0
1
0

 sin L , sin L  0 cos L , 

0
2

0
1
0

 sin L  s sin L  0 cos L
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(1.2.1)(1.2.1)

(1.2.2)(1.2.2)

(1.2.3)(1.2.3)

(1.2.4)(1.2.4)

(1.2.5)(1.2.5)

1  etap s , dLdxp s , 

0, 0, 1, dLddelta s , 

0, 0, 0, 1

The task is now to find a section that matches on one side to the dispersion above and on the other
side to a dispersion of zero. In order to keep this manageable we will assume the matching 
happens at an α(s)=0 place as is frequently done in practice. This will also make etap(s) =0.
With these conditions we want to find a section that transforms 0 dispersion to a finite dispersion 
with vanishing dispersion slope (etap) in which case we can hope to make the finite dispersion 
match to the ring by judicious choice of the dipole strength (which does not much affect the 
focusing).
section subs alpha 0 = 0, etap s = 0, (1.2.1)

section

cos L 0  sin L 1 cos L  s dLdx s

sin L
0

cos L
sin L  s

0
dLdxp s

0 0 1 dLddelta s

0 0 0 1

We can further assume that the β match will be done right also, which leaves us with matching to 
the dispersive terms. We can write then:
simplify section. 0, 0, 1, 0

1 cos L  s

sin L  s
0

1

0

We need etap to be 0
solve (1.2.3) 2 = 0, mu L , allsolutions

 _Z1~

(L)=0 does not work as then the first term is zero as well and we cannot match to a finite η, so 
try µ(L) = π
eval~ (1.2.3), L =

2 s

0

1

0
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(1.2.1)(1.2.1)

(1.2.4)(1.2.4)

(1.3.3)(1.3.3)

(1.2.5)(1.2.5)

(1.3.1)(1.3.1)

(1.3.4)(1.3.4)

(1.3.2)(1.3.2)

(1.2.2)(1.2.2)

(1.2.3)(1.2.3)

(1.3.5)(1.3.5)

What this says is that a section with (2n+1)π phase advance and a closed-solution η function of η
(s)/2 will match η(s) to zero, thus having suppressed dispersion. If the phase advance per cell is 
the same as for the regular arc section, this requires us to lower the dipole strength by a factor 2. 
Practically speaking, we can also leave out every second dipole and thus build a missing-dipole 
dispersion suppressor. Because of the required π phase advance this requires at least two cells. 
The advantage is that we automatically maintain the β match (more-or-less).

Simple interaction-region design
Colliding-beam machines, circular or linear, need to achieve a high particle density at the interaction 
point to be able to achieve a respectable luminosity. This is achieved by a combination of high beam 
intensity, small beam emittance, and strong focusing to a small beam spot at the interaction point. 
We will outline the basic scheme how this is achieved.

Focusing the beam down to a small spot requires an optical arrangement not unlike that of a 
microscope. We need a lens relatively near to the focal point, with a relatively short focal length, 
and we need a second lens at some distance away to match the beta function into that of the ring 
lattice. The schematic arrangement is shown in the figure:

Fig. 1: Simplest IR schematic
Deviating from the previous sections we will write the transfer matrix in terms of the magnet 
locations and strengths:

R 1 0 ,
1

f o
1 . 1 L D , 0 1 . 1 0 ,

1
f i

1 . 1 L IP , 0 1

R

1
LD

fi
1

LD

fi
 LIP LD

1
fo

LD

fo
1

fi

1
fo

LD

fo
1

fi
 LIP

LD

fo
1

We can guarantee a match into any accelerator lattice by requiring the section to have a -I transfer 
matrix; in that case the whole section will be the identity matrix and be matched without further 
ado. This means R[1,2]=R[2,1] = 0.
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(1.3.1)(1.3.1)

(1.3.4)(1.3.4)

(1.3.3)(1.3.3)

(1.3.2)(1.3.2)

(1.3.5)(1.3.5)

solve R 1, 2 , R 2, 1 , f i , f o

fi =
LIP LD

LIP LD
, fo =

LD
2

LIP LD

and
simplify subs (1.3.2), (1.3.1)

LD

LIP
0

0
LIP

LD

Inserting this in a ring lattice at a symmetry point (α(s)=0) the beta function at that point transfers 
as follows
solve beta s = (1.3.3) 1, 1 2 beta IP , beta IP

IP =
s  LIP

2

LD
2

This shows that the demagnification depends on the positioning of the lenses, with the focal 
lengths then given by the phase advance. LD has to be >> LIP. The focal length of the inner lens 
scales with LIP, i.e. the inner lens becomes very strong for short LIP. The outer lens becomes 
weaker with increasing LD.

A not so obvious feature of this IR design is a large beam size in the inner lens. For a given value 
of β(IP), the β function at the inner lens is

beta Qi = beta IP 1
L IP 2

beta IP 2

Qi = IP 1
LIP

2

IP
2

If βIP << LIP, βQi becomes substantial (potentially km size in large rings with small βIP). This leads
to large-aperture quadrupoles with high power demand as well as tight field tolerances.
To get from this simplified example to a practical IR, two features need to be added: First, it has to
work in both planes. This is done by replacing the lenses in the example with doublets that have 
net focusing in either plane. Secondly the matching condition of π phase advance across the half-
IR is too restrictive. It is rather straightforward to relax this condition and obtain matches by 
fitting the element strength, at least over a limited parameter range. 
If βIP is to be very small, chromaticity of the IR quadrupoles becomes prohibitively large and has 
to be corrected close to the IR quadrupoles in order to preserve the focusing across the needed 
band in energy. This requires very specific IR design strategies manipulating the dispersion in a 
way to allow this correction to happen locally. 
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(1.1.20)(1.1.20)

(1.1.17)(1.1.17)

(1.1.23)(1.1.23)

(1.1.29)(1.1.29)

(1.1.7)(1.1.7)

(1.1.10)(1.1.10)

(1.1.24)(1.1.24)

(1.1.21)(1.1.21)

(1.1.9)(1.1.9)

(1.1.25)(1.1.25)

(1.1.4)(1.1.4)

(1.1.2)(1.1.2)

(1.1.27)(1.1.27)

(1.1.8)(1.1.8)

(1.1.6)(1.1.6)

(1.1.28)(1.1.28)

(1.1.5)(1.1.5)

(1.1.14)(1.1.14)

(1.1.26)(1.1.26)

(1.1.11)(1.1.11)

(1.1.30)(1.1.30)

(1.1.16)(1.1.16)

(1.1.19)(1.1.19)

(1.1.32)(1.1.32)

(1.1.15)(1.1.15)

(1.1.22)(1.1.22)

(1.1.12)(1.1.12)

(1.1.31)(1.1.31)

(1.1.3)(1.1.3)

(1.1.13)(1.1.13)

(1.1.1)(1.1.1)

(1.1.18)(1.1.18)

Longitudinal Beam Dynamics
We will now investigate what happens to the beam in the longitudinal direction. For practical 
acceleration using rf systems we have already seen that the beam particles have to remain in sync with 
the rf voltage; in a circular machine this ensures that they gain energy on each pass through the rf field. 
Besides getting a handle on the parameters necessary for the rf system it needs to be shown that 
sufficiently small deviations from the nominal energy do not cause particles to go out of sync and fall 
behind in energy. Here the term sufficiently small needs to be quantified. In fact, it is this situation we 
will deal with first.

Phase stability and acceleration

A particle or a group of particles—called a bunch—on the reference orbit with the reference 
energy and momentum go around the ring with a circular frequency

r =
2 Pi beta c

L

r =
2   c

L
The total differential of the revolution frequency is then
domegar = Diff r, beta dbeta  Diff r, L dL

domegar = r dbeta
L r dL

and therefore
lhs (1.1.2)

r

= expand value subs (1.1.1), rhs
(1.1.2)

r

domegar

r

=
dbeta dL

L

and

thaw collect subs
dbeta
beta

=
1
2 freeze

dp
p

,
dL
L

= p freeze
dp
p

, (1.1.3) ,

freeze
dp
p

domegar

r

=

1
2 p  dp

p

where

p =
Diff L, p p

L
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(1.1.20)(1.1.20)

(1.1.17)(1.1.17)

(1.1.23)(1.1.23)

(1.1.29)(1.1.29)

(1.1.7)(1.1.7)

(1.1.10)(1.1.10)

(1.1.24)(1.1.24)

(1.1.21)(1.1.21)

(1.1.9)(1.1.9)

(1.1.25)(1.1.25)

(1.1.4)(1.1.4)

(1.1.2)(1.1.2)

(1.1.27)(1.1.27)

(1.1.8)(1.1.8)

(1.1.6)(1.1.6)

(1.1.28)(1.1.28)

(1.1.5)(1.1.5)

(1.1.14)(1.1.14)

(1.1.26)(1.1.26)

(1.1.11)(1.1.11)

(1.1.30)(1.1.30)

(1.1.16)(1.1.16)

(1.1.19)(1.1.19)

(1.1.32)(1.1.32)

(1.1.15)(1.1.15)

(1.1.22)(1.1.22)

(1.1.12)(1.1.12)

(1.1.31)(1.1.31)

(1.1.3)(1.1.3)

(1.1.13)(1.1.13)

(1.1.1)(1.1.1)

(1.1.18)(1.1.18)

p =
p

L p

L
is the so-called momentum compaction. It follows from  that dωr/dp can go through zero and 
change sign depending on the beam energy (γ) and on the momentum compaction, which is a 
property of the lattice and closely related to the machine tune. The beam energy where dωr 
becomes 0 is called the transition energy, γt.

t = solve rhs (1.1.4) = 0, 1

t =
1

p

The expression in () in  is referred to the slip factor η. It is proportional to the phase slip a particle 
at energy gamma suffers against the rf period for a given deviation in momentum.
eta = op 1, rhs (1.1.4)

=
1
2 p

We can now describe what happens in a ring accelerator with one rf system at a particular location
in the ring. Particles will be accelerated once per turn as they pass through the rf field. 
During the remainder of the turn the energy remains constant, but the B-field is ramping up 
therefore it actually appears the particle energy is drifting downwards wrt. the reference energy. 
Furthermore we need to keep track of the phases of the particles relatively to the rf waveform. We
introduce the concept of the synchronous particle, which is that particle that takes just the correct 
time for one turn to exactly maintain its phase relationship w.r.t. the rf wave. Its properties carry 
the subscript s. It has a certain phase angle relative to the rf wave that gives it exactly the energy 
gain on one turn it needs to keep up with the acceleration rate:
PDEtools:-declare Phi t

t  will now be displayed as 

Delta Es = q V sin s

 Es = q V sin s

Other particles are at potentially different phases Φ and therefore get a (slightly) different energy 
gain:
Delta E = q V sin t

 E = q V sin
Where we use Δ to denote the change in one turn, in particular Δ E is the energy gain per turn. 
We now need to find out what happens to non-synchronous particles. For multi-turn acceleration 
to be possible they need to stay close to the synchronous particle in both energy and time. In fact, 
as we will see in a moment they will oscillate in energy and time about the synchronous particle, 
these energy oscillations are called synchrotron oscillations.
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Figure: Phase-Energy diagram (below transition)

Just before the rf field we then have for the energy difference between an arbitrary and the 
synchronous particle:
delta E  = E Delta E Es Delta Es

E =  E  Es E Es

and the change in δ E over one turn is (note the double deltas):
Delta delta E = Delta E  Delta Es

E =  E  Es

factor subs (1.1.9), (1.1.10), (1.1.12)
E = q V sin sin s

or

lhs (1.1.13)

s

=
rhs (1.1.13) s

2 Pi

E

s

=
q V sin sin s  s

2 

introducing the synchronous time τs which is 2*π/ωs, and ωs is exactly the same as ωr above. 
Clearly, the rf frequency has to be an integer multiple of ωs:

rf = h s
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rf = h s

with h being the harmonic number of the machine, counting the number of rf periods around the 
ring. h is the maximum number of bunches that can exist in a ring.
We introduce a new quantity W and write
PDEtools:-declare W t

W t  will now be displayed as W

W t =
delta E

rf

W =
E

rf

rhs (1.1.17) rf = lhs (1.1.17) rf

E = rf W

subs (1.1.15), subs rhs (1.1.17) rf = lhs (1.1.17) rf , (1.1.13)

h s W = q V sin sin s

This difference equation we can approximate by a differential equation if the changes in energy 
per turn are small on a relative scale (which in fact they usually are). 
Note that to make this work in Maple we need to declare W and V as functions of t

simplify Diff  
op 1 , lhs (1.1.19)

h s

, t = subs s = 2 Pi,
rhs (1.1.19)

h s

 

t
W =

q V sin sin s

2 h 
We now need a relation for the phase Φ as f(t). From path-length considerations we can make the
ansatz (again using the differential form rather than the one-turn difference for Φ):

Diff Phi t , t = rf

ts
Delta delta t

t
= rf  t

ts
We remember (1.1.4) which of course is directly related to Φ-dot

Delta delta t = subs (1.1.4),
domegar

r

t

 t =

1
2 p  dp t

p

and therefore

subs
1
2 p = eta, subs (1.1.22), (1.1.21)
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(1.1.6)(1.1.6)

(1.1.28)(1.1.28)

(1.1.5)(1.1.5)

(1.1.14)(1.1.14)

(1.1.26)(1.1.26)

(1.1.11)(1.1.11)

(1.1.30)(1.1.30)

(1.1.16)(1.1.16)

(1.1.19)(1.1.19)

(1.1.32)(1.1.32)

(1.1.15)(1.1.15)

(1.1.22)(1.1.22)

(1.1.12)(1.1.12)

(1.1.31)(1.1.31)

(1.1.3)(1.1.3)

(1.1.13)(1.1.13)

(1.1.1)(1.1.1)

(1.1.18)(1.1.18)

t
= rf  dp t

ts p

We need to convert dp/p to an energy relationship:

algsubs
dp
p

=
1
2

delta E
E

, (1.1.23)

t
= rf  t E

ts 
2
 E

use (1.1.17)Error, `;` unexpected

subs solve (1.1.17), delta E , (1.1.24)

t
= rf

2
  t W

ts 
2
 E

and as it turns out we can replace E and t with their synchronous variants
subs ts = t, E = Es, (1.1.25)

t
= rf

2
  W
2
 Es

PDEtools:-undeclare all
t  will now be displayed *as is*

W t  will now be displayed *as is*
(1.1.26)

d
dt

t = rf
2

  W t
2
 Es

(1.1.20)

d
dt

W t =
q V sin t sin s

2 h 
Now we can try to solve the system of de, but Maple cannot do this (yet):
dsolve (1.1.20), (1.1.26) , Phi t
Let's put this into one 2nd-order diff equation:
Diff lhs (1.1.28) , t = diff rhs (1.1.28) , t # Note: W_t is diff(W(t),t) here!

d2

dt2
t = rf

2
  Wt
2
 Es

subs diff W t , t = rhs (1.1.29) , (1.1.30)
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(1.1.20)(1.1.20)

(1.1.17)(1.1.17)

(1.1.23)(1.1.23)

(1.2.2)(1.2.2)

(1.1.29)(1.1.29)

(1.1.7)(1.1.7)

(1.1.10)(1.1.10)

(1.1.24)(1.1.24)

(1.2.4)(1.2.4)

(1.1.21)(1.1.21)

(1.1.9)(1.1.9)

(1.1.25)(1.1.25)

(1.1.4)(1.1.4)

(1.1.2)(1.1.2)

(1.1.27)(1.1.27)

(1.1.8)(1.1.8)

(1.2.1)(1.2.1)

(1.1.6)(1.1.6)

(1.1.28)(1.1.28)

(1.1.5)(1.1.5)

(1.1.14)(1.1.14)

(1.1.26)(1.1.26)

(1.1.11)(1.1.11)

(1.1.30)(1.1.30)

(1.1.16)(1.1.16)

(1.1.19)(1.1.19)

(1.2.3)(1.2.3)

(1.1.32)(1.1.32)

(1.1.15)(1.1.15)

(1.1.22)(1.1.22)

(1.1.12)(1.1.12)

(1.1.31)(1.1.31)

(1.1.3)(1.1.3)

(1.1.13)(1.1.13)

(1.1.1)(1.1.1)

(1.1.18)(1.1.18)

d2

dt2
t = rf

2
  q V sin t sin s

2 
2
 h  Es

dsolve (1.1.31)
t

h  Es 

h  Es rf
2

  q V sin s  _a _C1 
2
 h  Es V cos _a   rf

2
 q

d_a

t _C2 = 0,

t

h  Es 

h  Es rf
2

  q V sin s  _a _C1 
2
 h  Es V cos _a   rf

2
 q

d_a

t _C2 = 0
As expected, we are not getting a solution we can do much with.

Small-amplitude oscillations

We can linearize this system by limiting ourselves to small-angle oscillations:
subs Phi t = s phi t , (1.1.31)

2

t2 s t = rf
2

  q V sin s t sin s

2 
2
 h  Es

To make the series expansion we temporarily replace ϕ(t) with ϕ. We could have used freeze/thaw
as well.
lhs (1.2.1) = subs phi = phi t , convert series subs phi t = phi, rhs (1.2.1) , phi, 2 ,

polynom

2

t2 s t = rf
2

  q V cos s  t

2 
2
 h  Es

dsolve (1.2.2)

t = _C1 sin
2  rf  q  V  cos s  t

2  h   Es

_C2 cos
2  rf  q  V  cos s  t

2  h   Es
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(1.3.21)(1.3.21)

(1.3.19)(1.3.19)

(1.3.9)(1.3.9)

(1.2.2)(1.2.2)

(1.3.7)(1.3.7)

(1.3.16)(1.3.16)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.2.4)(1.2.4)

(1.3.15)(1.3.15)

(1.3.20)(1.3.20)

(1.3.23)(1.3.23)

(1.3.5)(1.3.5)

(1.2.1)(1.2.1)

(1.3.25)(1.3.25)

(1.3.6)(1.3.6)

(1.3.22)(1.3.22)

(1.3.17)(1.3.17)

(1.3.14)(1.3.14)

(1.3.8)(1.3.8)

(1.3.10)(1.3.10)

(1.2.3)(1.2.3)

(1.3.3)(1.3.3)

(1.3.13)(1.3.13)

(1.3.2)(1.3.2)

(1.3.1)(1.3.1)

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

These are just sinusoidal oscillations with a frequency

s = subs (1.1.15), sqrt coeff rhs (1.2.2) , phi t

s =

2  
h s

2
  q V cos s

2
  Es

2
Looks a little clumsy but is correct.

Large-amplitude oscillations

We need to return to the large-amplitude case as it has practical relevance. To get a feel for what 
the salient effects ae we can numerically integrate the full equation.
We have defined a test case to plug in numbers:
testcase
q = 1, V = 1. 106, Es = 1. 109, rf = 6.28318530717958 108, = 1, h = 1000,

= 0.00010

soln dsolve subs Phi s = 0.1 2 Pi, subs testcase, (1.1.20) , subs Phi s = 0.1 2
Pi, subs testcase, (1.1.26) , W 0 = 0.11, Phi 0 = 0.1 2 Pi , numeric, maxfun
= 500000 ;

soln proc x_rkf45 ... end proc
soln2 dsolve subs Phi s = 0.1 2 Pi, subs testcase, (1.1.20) , subs Phi s = 0.1 2

Pi, subs testcase, (1.1.26) , W 0 = 0.12, Phi 0 = 0.1 2 Pi , numeric, maxfun
= 500000

soln2 proc x_rkf45 ... end proc
We will now produce a phase-space plot of the motion (note that W is –δ(E) so we plot -W here to
give the correct visual impression)
plots:-display plots:-odeplot soln, Phi t , W t , 0 ..0.04, style = point, symbol = point, view

= 9 ..3.5, 0.2 ..0.2 , color = green ,
                      plots:-odeplot soln2, Phi t , W t , 0 ..0.04, style = point, symbol = point, view

= 9 ..3.5, 0.2 ..0.2
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(1.3.5)(1.3.5)

(1.3.21)(1.3.21)

(1.3.19)(1.3.19)

(1.3.25)(1.3.25)

(1.3.9)(1.3.9)

(1.3.6)(1.3.6)

(1.3.22)(1.3.22)

(1.3.17)(1.3.17)

(1.3.14)(1.3.14)

(1.3.8)(1.3.8)

(1.3.10)(1.3.10)

(1.3.7)(1.3.7)

(1.3.3)(1.3.3)

(1.3.16)(1.3.16)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.13)(1.3.13)

(1.3.15)(1.3.15)

(1.3.2)(1.3.2)

(1.3.20)(1.3.20)

(1.3.1)(1.3.1)

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.23)(1.3.23)

8 6 4 2 0 2

-W

0.2

0.1

0

0.1

0.2

We find ellipses at small amplitudes; the characteristic of stable oscillations. At large amplitude the
phase space figure becomes distorted and finally the ellipse disappears and the phase angle grows 
unbounded.
For Φs = 0 this happens at Φmax=π, for φs finite this happens at smaller values of Φ. But finite 
Φs is needed to accelerate particles. It then appears that there is a limited range of stability in phase
and in energy outside of which acceleration is not possible and particles fall out of sync with the 
rf frequency and fall behind in energy, until lost. Because of its phase-space appearance the stable 
area is usually referred to as rf bucket. It is a direct consequence of the sinusoidal and limited rf 
voltage.

The unstable fixed point can be found by finding the values of Φ for dW/dt=0:
 solve subs Phi t = Phi, rhs (1.1.29) = 0, Phi 2 Pi , Phi , allsolutions = true, explicit

= 2  _Z2~ s , = 2  _Z2~ s , = 2  _Z1~ s ,

= 2  _Z1~ s

subs _Z1 = 0, _Z2 = 0, (1.3.4)
= 2  _Z2~ s , = 2  _Z2~ s , = 2  _Z1~ s ,

= 2  _Z1~ s
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(1.3.5)(1.3.5)

(1.3.21)(1.3.21)

(1.3.19)(1.3.19)

(1.3.25)(1.3.25)

(1.3.9)(1.3.9)

(1.3.6)(1.3.6)

(1.3.22)(1.3.22)

(1.3.17)(1.3.17)

(1.3.14)(1.3.14)

(1.3.8)(1.3.8)

(1.3.10)(1.3.10)

(1.3.7)(1.3.7)

(1.3.3)(1.3.3)

(1.3.16)(1.3.16)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.13)(1.3.13)

(1.3.15)(1.3.15)

(1.3.2)(1.3.2)

(1.3.20)(1.3.20)

(1.3.1)(1.3.1)

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.23)(1.3.23)

#Phi ufp = rhs (1.3.5) 2 # Nasty Maple 2015 bug prevents this from working!
Phi ufp = Pi Phi s

ufp = s

The amplitude of the oscillation represents a certain amount of energy in the system (relative to the
reference position). We can use this to get an idea about the range in energy, or the bucket height.
This is best done using the Hamiltonian formalism. We will at this time only quote the results.
The Hamiltonian for conservative systems is the total energy, i.e. the sum of kinetic and potential 
energy, which should be invariant. The Hamiltonian satisfied Hamilton's equations of motion, 
which for our system are
Diff H, phi = Diff W t , t

H =
d
dt

W t

and
Diff H, W = Diff Phi t , t

W
H =

d
dt

t

We can substitute from above:
subs (1.1.29), (1.3.7)

H =
q V sin t sin s

2 h 

subs (1.1.26), (1.3.8)

W
H = rf

2
  W t

2
 Es

We replace Φ(t) by Φs+φ(t) and can integrate the equations:
int lhs (1.3.9) , phi = subs phi = phi t , int subs Phi t = s phi, rhs (1.3.9) , phi

H =
q V cos s t sin s  t

2 h 
and
int lhs (1.3.10) , W = int subs W t = W, rhs (1.3.10) , W

H = rf
2

  W2

2 
2
 Es

Maple omits the integration constants which in this case is a bad thing as the two expressions for
H can be the integration constants of each other, in other words, the expression for H that fulfills 
the equations of motion is the sum of the two:
H = rhs (1.3.11) rhs (1.3.12)
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(1.3.5)(1.3.5)

(1.3.21)(1.3.21)

(1.3.19)(1.3.19)

(1.3.25)(1.3.25)

(1.3.9)(1.3.9)

(1.3.6)(1.3.6)

(1.3.22)(1.3.22)

(1.3.17)(1.3.17)

(1.3.14)(1.3.14)

(1.3.8)(1.3.8)

(1.3.10)(1.3.10)

(1.3.7)(1.3.7)

(1.3.3)(1.3.3)

(1.3.16)(1.3.16)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.13)(1.3.13)

(1.3.15)(1.3.15)

(1.3.2)(1.3.2)

(1.3.20)(1.3.20)

(1.3.1)(1.3.1)

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.23)(1.3.23)

H =
q V cos s t sin s  t

2 h 
rf
2

  W2

2 
2
 Es

Since H is a constant of the motion we can insert any point in the above and, if we can solve the 
resulting expression for W(t) and φ(t) we get the locus for a specific value of the total energy. 
Since we are interested in the boundary between stable and unstable motion, we can use the fixed 
point:
 subs (1.3.6), subs phi t = ufp s, W = 0, subs s phi t = ufp, (1.3.13)

H =
q V cos s sin s  2 s

2 h 
where W=0 as it is the extreme excursion in phase Φ. We now have the value for H for the phase-
space curve passing through the fix point and can try to solve (1.3.13) for any value of φ(t)=0, 
which will be the extreme extent in energy and therefore the maximum energy deviation accepted:
solve subs phi t = 0, rhs (1.3.13) = rhs (1.3.14) , W

W =
  h V q Es sin s  2 sin s  s 2 cos s  

  h rf

, W =

  h V q Es sin s  2 sin s  s 2 cos s  

  h rf

map collect, (1.3.15) 2 , sin ;# not pretty but correct.

W =
  h V q Es sin s  2 sin s  s 2 cos s  

  h rf

from (1.1.17) it follows this is δ E/ωrf .
solve subs subs W t = W, (1.1.17) , (1.3.16) , delta E

Es

E
Es

=
  h V q Es sin s  2 sin s  s 2 cos s  

Es   h

For a stationary bucket this becomes
simplify subs s = 0, (1.3.17)

E
Es

=
2  h Es  q V  

 Es  h

The ratio of the bucket height for a moving bucket over that of a stationary bucket is then

simplify
rhs (1.3.17)
rhs (1.3.18)

, symbolic

sin s  2 sin s  s 2 cos s  2

2
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(1.3.5)(1.3.5)

(1.3.21)(1.3.21)

(1.3.19)(1.3.19)

(1.3.25)(1.3.25)

(1.3.9)(1.3.9)

(1.3.6)(1.3.6)

(1.3.22)(1.3.22)

(1.3.17)(1.3.17)

(1.3.14)(1.3.14)

(1.3.8)(1.3.8)

(1.3.10)(1.3.10)

(1.3.7)(1.3.7)

(1.3.3)(1.3.3)

(1.3.16)(1.3.16)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.13)(1.3.13)

(1.3.15)(1.3.15)

(1.3.2)(1.3.2)

(1.3.20)(1.3.20)

(1.3.1)(1.3.1)

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.23)(1.3.23)

In the accelerator literature it is common to work with the overvoltage, which is defined as

o =
1

sin s

o =
1

sin s

simplify subs solve (1.3.20), s , (1.3.19) , trig

o

2 arcsin
1
o

o
2 1

1
o2  2

2

plot (1.3.19), s = 0 ..Pi # relative bucket height

s

8 4
3 
8 2

5 
8

7 
8

0

0.2

0.4

0.6

0.8

1

We see that for Φs=π/2, there is no bucket area left; for multi-turn acceleration there needs to be 
overvoltage available to run at Φs ≠ π/2 and provide for sufficient bucket height. Note that this 
differs from a linac (esp. an electron linac) where sitting on the crest is (within limits) a perfectly 
fine working point. In accelerator jargon the term overvoltage is in common use; it is defined as 
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(1.3.5)(1.3.5)

(1.3.21)(1.3.21)

(1.3.19)(1.3.19)

(1.3.25)(1.3.25)

(1.3.9)(1.3.9)

(1.3.6)(1.3.6)

(1.3.22)(1.3.22)

(1.3.17)(1.3.17)

(1.3.14)(1.3.14)

(1.3.8)(1.3.8)

(1.3.10)(1.3.10)

(1.3.7)(1.3.7)

(1.3.3)(1.3.3)

(1.3.16)(1.3.16)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.13)(1.3.13)

(1.3.15)(1.3.15)

(1.3.2)(1.3.2)

(1.3.20)(1.3.20)

(1.3.1)(1.3.1)

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.23)(1.3.23)

o =
1

sin s

o =
1

sin s

and is therefore the ratio of actual peak voltage over the minimum needed at sin(Φs)=1. (Note that 
in the literature it is unfortunately commonly called q, which we cannot use here). We can express
the ratio of accelerating to stationary bucket in terms of o:
simplify subs solve (1.3.20), s , (1.3.19) , trig

o

2 arcsin
1
o

o
2 1

1
o2  2

2

plot (1.3.23), o = 0 ..10, labels = typeset 'o ' , typeset
'h b '
h b0

o
0 2 4 6 8 10

h b
h b0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

We can now define an overvoltage function F:
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(1.3.21)(1.3.21)

(1.3.19)(1.3.19)

(1.3.9)(1.3.9)

(1.3.7)(1.3.7)

(1.3.16)(1.3.16)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.15)(1.3.15)

(1.3.20)(1.3.20)

(1.3.23)(1.3.23)

(1.3.5)(1.3.5)

(1.3.25)(1.3.25)

(1.3.6)(1.3.6)

(1.3.22)(1.3.22)

(1.3.17)(1.3.17)

(1.3.14)(1.3.14)

(1.3.8)(1.3.8)

(1.3.10)(1.3.10)

(1.3.3)(1.3.3)

(1.3.13)(1.3.13)

(1.3.2)(1.3.2)

(1.3.1)(1.3.1)

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

F = simplify applyrule arcsin a algebraic =
2

arccos a , simplify (1.3.23)2 2 o ,

symbolic

F = 2 o2 1 2 arccos
1
o

and leave it up to the students to show that our bucket ratio then becomes

sqrt
F

2 o

2  
F
o

2

Acceleration
A number of effects are connected specifically with the process of acceleration, as opposed to keep 
a beam bunched at fixed energy.

Energy Ramp

In an actual accelerator (as opposed to a storage ring), the rf parameters change as the beam 
energy is ramped up. The strong variations happen at the beginning and end of the energy 
ramp, when the synchronous phase has to shift from 0 to a finite value providing the 
necessary energy gain/turn. Bucket area and synchrotron tune change rapidly and possibly in a
non-adiabatic way. To avoid beam loss, the rf parameters are varied in a programmed fashion 
using an rf program. The energy profile is usually dictated by the magnet circuit (why?), and it
is the function of the rf program to provide sufficient rf voltage at any given time in the cycle 
to provide not only the acceleration necessary but also sufficient bucket area to avoid spillage 
of beam particles. In addition, changes in the shape of the rf bucket should be sufficiently slow
to prevent the longitudinal beam emittance to be increased (the condition of adiabaticity). There
are usually matching conditions to observe at the beginning and end of the acceleration cycle 
which put further restrictions on the value of the rf voltage, and possibly the slip factor η. An 
example of an rf program is given in the following figure.
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Fig: SSC MEB Rf Program
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(1.4.3.3)(1.4.3.3)

(1.4.3.1)(1.4.3.1)

(1.4.3.2)(1.4.3.2)

(1.4.3.4)(1.4.3.4)

Transition

In the above we have carried about the slip factor η, knowledge of which is important in 
solving actual design problems. We recall its definition
(1.1.7)

=
1
2 p (1.4.2.1)

 to see that it depends on energy of the beam and also the momentum compaction of the lattice.
We have seen earlier the dependence of the pathlength on the beam momentum; in the matrix 
description of beam optics it follows from the matrix elements:
ds = Diff ds, delta Diff ds, x Diff x, delta   Diff ds, xp Diff xp, delta

ds = ds
x

ds x
xp

ds xp (1.4.2.2)

This equation indicates how machine lattice design can affect the transition energy: the 
differentials are just the R-matrix parameters of the lattice so that we can calculate the 
pathlength change with beam energy from the lattice and its R matrix coefficients. It is then the
task of the lattice designer to achieve a value for transition that is suitable for a specific 
machine, while not unduly compromising other performance parameters.

Adiabatic damping

In a previous lesson we worked out the concept of beam emittance and showed that it is a 
constant of motion around a ring. What we, however, did not consider then was acceleration, 
which is not conservative as far as the transverse energy is concerned.
The angle of a particle against the reference orbit is the ratio of transverse over longitudinal 
momentum:

xp =
pt

p

xp =
pt

p
After gaining a momentum increment δ in an accelerating cavity we have

xp2 =
pt

p delta

xp2 =
pt

p
and to first order
xp2 = series rhs (1.4.3.2) , delta, 2
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(1.4.3.3)(1.4.3.3)

(1.4.3.1)(1.4.3.1)

(1.4.3.2)(1.4.3.2)

(1.4.3.4)(1.4.3.4)

xp2 =
pt

p

pt

p2  O
2

which reduces the emittance as x is not changed during this process. In a more general way 
one can get the same result using the Poincare invariant which leads to the invariant emittance 
(or normalized emittance)

n = beta gamma epsilon

n =   
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(1.1.3)(1.1.3)

(1.1.5)(1.1.5)

(1.1.8)(1.1.8)

(1.1.7)(1.1.7)

(1.1.6)(1.1.6)

(1.1.10)(1.1.10)

(1.1.12)(1.1.12)

(1.1.13)(1.1.13)

(1.1.2)(1.1.2)

(1.1.4)(1.1.4)

(1.1.9)(1.1.9)

(1.1.11)(1.1.11)

(1.1.1)(1.1.1)

Beam Loading
The beam couples to the rf fields in the rf cavity, which goes both ways, i.e. the beam will induce a 
voltage in the cavity which gets added to the voltage applied by the rf generator. For large beam current 
this is substantial and needs to be compensated to maintain longitudinal stability and the correct 
operating conditions for the rf system. 

Fourier spectrum of beam
To analyze the effect of beam loading in circular machines it is useful to understand the Fourier 
spectrum of the beam. 
Let a bunch have Gaussian intensity distribution:

ibunch phi, phi0, i   

i exp
phi phi0 2

2  
2

sigma sqrt 2  Pi

ibunch , 0, i
i e

0 2

2 2

 2 
A beam in a ring is made up of Nh these, at one or more rf periods apart, normalized to keep the 
average beam current (we are ignoring the synchronous phase here):

ibeam ibeam0  sum ibunch phi, 2 * Pi * n * nb,
1

Nh
, nb = 0 ..Nh

ibeam ibeam0 
nb = 0

Nh
e

2  n nb 2

2 2
 2

2 Nh  
Example:
plot subs Nh = 100, n = 10, i beam0 = 1, sigma = 5, (1.1.2) , phi = 0 ..40 2 Pi, ;

8 24 40 56 80 
0

0.0003

0.0007

The average beam current is given by (for n=1)

beamavg
int  ibunch x, Pi,

1
Nh

, x = 0 ..2 Pi

2 Pi
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(1.1.3)(1.1.3)

(1.1.5)(1.1.5)

(1.1.8)(1.1.8)

(1.1.7)(1.1.7)

(1.1.6)(1.1.6)

(1.1.10)(1.1.10)

(1.1.12)(1.1.12)

(1.1.13)(1.1.13)

(1.1.2)(1.1.2)

(1.1.4)(1.1.4)

(1.1.9)(1.1.9)

(1.1.11)(1.1.11)

(1.1.1)(1.1.1)

beamavg
erf

 2
2 

2 Nh 
evalf subs ibeam0 = 1, Nh = 1000, n = 1, sigma = 0.2, (1.1.3)

0.000159154943091896
Note: This is not the bunch current! It is the current/radian if the bunches were completely spread 
out. The bunch current is 2π times this:
evalf (1.1.4) 2 Pi

0.00100000000000000
Maple can calculate the Fourier coefficients for this beam:

inttrans fourier ibeam, phi, h  assuming sigma real, phi0 real, sigma  0

ibeam0 e
I
2

 h I h 2 4  n Nh
e

h 4 I  n h 2

2

Nh e2 I  n h 1
inttrans[fourier] transforms a function from a time of spacial domain into the frequency domain 
(in our case from the rf phase to harmonics of the rf frequency). Following the known Fourier 
transformation rules, the prescription is
F omega = convert inttrans fourier f t , t, omega , Int ; 

# note the use of convert to get Maple to print the formula

F = f t  e I t dt

plot subs ibeam0 = 1, Nh = 1000, n = 1, = 0.4, (1.1.6) , h = 0 ..20, numpoints = 6000, view

= default, 0 ..1

h
5 10 15 200

0.6
1

We have a series of spectral lines at integer multiples of the rf frequency, the intensity of which 
follows an overall shape which is given by the Fourier transform of the bunch (exercise) and the 
spacing of which depends on the number of bunches in the machine.

We can also transform back into the time domain, but need to use unapply to convert the spectrum
into a function for Maple to do this:
spf unapply (1.1.6),
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(1.1.3)(1.1.3)

(1.1.5)(1.1.5)

(1.1.8)(1.1.8)

(1.1.7)(1.1.7)

(1.1.6)(1.1.6)

(1.1.10)(1.1.10)

(1.1.12)(1.1.12)

(1.1.13)(1.1.13)

(1.1.2)(1.1.2)

(1.1.4)(1.1.4)

(1.1.9)(1.1.9)

(1.1.11)(1.1.11)

(1.1.1)(1.1.1)

spf
ibeam0 e

I
2

 h I h 2 4  n Nh
e

h 4 I  n h 2

2

Nh e2 I  n h 1

inttrans invfourier spf h  h h0 , h, t

ibeam0 e
I h0 t

2 h02

2  e 2 I  n Nh h0 e2 I  n h0

2 Nh  e2 I  n h0 1
Here δ() is the Dirac function, which Maple conveniently defines by means of its Fourier 
transform:
FunctionAdvisor definition, Dirac x

a

b
x x0  f x dx =

f x0 a x0 b

f x0

2
x0 = a Or x0 = b And a b

0 otherwise

We can evaluate (1.1.9) for one or more harmonics, although we need to use the limit operation to
get results at integer values of h0:

harms sum limit subs Nh = 1000, n = 1, sigma = 0.2,
(1.1.9)

Nh
, h = h0 , h0 = 0 ..20 :

harms1 sum limit subs Nh = 1000, n = 1, sigma = 0.2,
(1.1.9)

Nh
, h = h0 , h0 = 0 ..1

harms1 0.000159314098034987 ibeam0 0.000156159467532957 ibeam0 eI t

The 0 harmonic is just be the average current:

iavg limit subs ibeam0 = 1, Nh = 1000, n = 1, sigma = 0.2,
(1.1.9)

Nh
, h0 = 0

iavg 0.000159314098034987

plot subs ibeam0 = 1, Nh = 1000, harms 2
iavg

1
, Re harms1 2 i avg , t = 0

..10 Pi
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(1.1.3)(1.1.3)

(1.1.8)(1.1.8)

(1.2.15)(1.2.15)

(1.2.10)(1.2.10)

(1.2.4)(1.2.4)

• • 

(1.1.7)(1.1.7)

(1.2.19)(1.2.19)

(1.1.10)(1.1.10)

• • 

• • 

(1.1.12)(1.1.12)

(1.2.11)(1.2.11)

(1.2.5)(1.2.5)

(1.1.13)(1.1.13)

(1.1.2)(1.1.2)

(1.2.12)(1.2.12)

(1.2.1)(1.2.1)

(1.2.17)(1.2.17)

(1.1.1)(1.1.1)

• • 

(1.1.5)(1.1.5)

(1.1.6)(1.1.6)

(1.2.3)(1.2.3)

(1.2.13)(1.2.13)

(1.2.8)(1.2.8)

• • 

(1.2.6)(1.2.6)

(1.1.4)(1.1.4)

(1.2.18)(1.2.18)

(1.2.16)(1.2.16)

(1.1.9)(1.1.9)

(1.1.11)(1.1.11)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.2.9)(1.2.9)

• • 

t
2 4 6 8 10 

0
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018

The fundamental harmonic of the beam current is

limit subs Nh = 1000, n = 1, sigma = 0.2,
(1.1.9)

Nh
, h0 = 1

0.000156159467532957 ibeam0 eI t

Equivalent circuit of an rf cavity
The analysis of beam loading is best done using an equivalent circuit picture. We will use the 
diagram from Wiedemann II, p. 184[2], but modified to call out the coupling factor β:



USPAS 2016 at UT Austin Accelerator Physics with Maple Beam Loading

153

(1.2.15)(1.2.15)

(1.2.10)(1.2.10)

(1.2.4)(1.2.4)

• • 

(1.2.19)(1.2.19)

• • 

• • 

(1.2.11)(1.2.11)

(1.2.5)(1.2.5)

(1.2.12)(1.2.12)

(1.2.1)(1.2.1)

(1.2.17)(1.2.17)

• • 

(1.2.3)(1.2.3)

(1.2.13)(1.2.13)

(1.2.8)(1.2.8)

• • 

(1.2.6)(1.2.6)

(1.2.18)(1.2.18)

(1.2.16)(1.2.16)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.2.9)(1.2.9)

• • 

Fig: Circuit model of an rf cavity with generator and beam current[2]

The generator is described by a current source ig and its internal resistance Rg. The cavity itself is 
a parallel LC resonator with a resistive loss given by the shunt impedance Rs, driven by both the 
generator and the beam current. 

The general expression for the impedance of such a resonator is

Zc =
1

1
Rs

I omega C
1

I omega L

Zc =
1

1
Rs

I  C
I
 L

Rs is called the shunt impedance; it is the resistance seen by a driving current exactly on 
resonance, with no other device drawing power from or feeding power to the cavity.
 We can now use Thomson's equation for the resonant frequency,

r =
1

sqrt L C

r =
1

L C
and define the quality factor Q
Q0 = Rs r C

Q0 = Rs r C

simplify subs (1.2.2), (1.2.3) , symbolic



USPAS 2016 at UT Austin Accelerator Physics with Maple Beam Loading

154

(1.2.15)(1.2.15)

(1.2.10)(1.2.10)

(1.2.4)(1.2.4)

• • 

(1.2.19)(1.2.19)

• • 

• • 

(1.2.11)(1.2.11)

(1.2.5)(1.2.5)

(1.2.12)(1.2.12)

(1.2.1)(1.2.1)

(1.2.17)(1.2.17)

• • 

(1.2.3)(1.2.3)

(1.2.13)(1.2.13)

(1.2.8)(1.2.8)

• • 

(1.2.6)(1.2.6)

(1.2.18)(1.2.18)

(1.2.16)(1.2.16)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.2.9)(1.2.9)

• • 

Q0 =
Rs C

L
R s
Q 0

=
solve (1.2.3), R s

Q 0
Rs

Q0
=

1
C r

or
simplify subs (1.2.2), (1.2.5)  assuming positive;

Rs

Q0
=

L

C
Note: R/Q is not dependent on Rs, just on L/C. For a cavity it purely depends on the geometry of 
the cavity but not on the material. It is often referred to as the "geometric factor".

To express Zc in terms of resonant frequency and Q factor:
collect simplify subs solve (1.2.3), C , subs solve (1.2.2), L , (1.2.1) , Q0,

Rs

Zc =
Rs r 

I 
2

I r
2

 Q0 r 

abs Z c = factor evalc abs rhs (1.2.7)

Zc =
Rs

2 r
2
 

2

4
 Q0

2 2 
2
 Q0

2 r
2

Q0
2 r

4
r
2
 

2

tan Psi = collect tan evalc argument rhs (1.2.7) , Q 0

tan =

2
r
2

 Q0

r 

 being called the (de)tuning angle.
Before we get into the nitty-gritty of beam loading, here is an overview of the components of the 
analysis:

Any rf generator has an internal impedance. To ensure full flow of the rf power form the 
generator to the rf cavity, the impedance the generator "sees" has to be matched to the 
generator's internal impedance.

The impedance seen by the generator has to be resistive to avoid having "blind energy" 
sloshing back & forth between generator and rf cavity. For a cavity with no beam, this means 
the cavity has to be on resonance.

On the other hand, the beam current is not in phase with the cavity rf voltage. This implies an 
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(1.2.15)(1.2.15)

(1.2.10)(1.2.10)

(1.2.4)(1.2.4)

• • 

(1.2.19)(1.2.19)

• • 

• • 

(1.2.11)(1.2.11)

(1.2.5)(1.2.5)

(1.2.12)(1.2.12)

(1.2.1)(1.2.1)

(1.2.17)(1.2.17)

• • 

(1.2.3)(1.2.3)

(1.2.13)(1.2.13)

(1.2.8)(1.2.8)

• • 

(1.2.6)(1.2.6)

(1.2.18)(1.2.18)

(1.2.16)(1.2.16)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.2.9)(1.2.9)

• • 

out-of-phase component of current seen by the generator. To correct for this, the cavity has to 
be detuned by a certain amount to make the overall impedance resistive.

The complication is that upon detuning the cavity voltage changes, which implies the 
synchronous angle changes, which implies the beam-induced voltage now changes, which 
implies the detuning is no longer correct...

In addition, the coupling network between cavity and generator has a free parameter (β) that 
needs to be set to an optimal value to ensure optimal use of the rf generator power. 

In what follows, voltages are typically peak values. This implies that the power is P=V2/2 *
R 1. 

A current impressed on the cavity by either generator or beam will elicit a voltage drop
Vc = rhs (1.2.7) ic

Vc =
Rs r  ic

I 
2

I r
2

 Q0 r 

We can plot this for the case of Q0=32000, a not unrealistic case for an unloaded Cu cavity at 
room temperature, and for ωr=1 (meaning we plot against ω/ωr):

`if` MapleVersion 16, plot subs ic = 1, r = 1, Q0 = 32000, Rs = 1 106, abs rhs

(1.2.10) , omega = 0.999 ..1.001, labels =
omega

r

,
Vc

i c
, smartview = false ,

plot subs ic = 1, r = 1, Q0 = 32000, Rs = 1 106, abs rhs (1.2.10) , omega = 0.999

..1.001, labels =
omega

r

,
Vc

i c

r

0.9995 1 1.0010

V c i c

100000
1000000

(where the Maple construction using the `if` operator is only necessary to preserve backward 
compatibility to Maple 15, which does not know the "smartview" option. "smartview" is not a 
helpful option here and should be off for these plots).
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(1.2.15)(1.2.15)

(1.2.10)(1.2.10)

(1.2.4)(1.2.4)

• • 

(1.2.19)(1.2.19)

• • 

• • 

(1.2.11)(1.2.11)

(1.2.5)(1.2.5)

(1.2.12)(1.2.12)

(1.2.1)(1.2.1)

(1.2.17)(1.2.17)

• • 

(1.2.3)(1.2.3)

(1.2.13)(1.2.13)

(1.2.8)(1.2.8)

• • 

(1.2.6)(1.2.6)

(1.2.18)(1.2.18)

(1.2.16)(1.2.16)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.2.9)(1.2.9)

• • 

plot subs ic = 1, r = 1, Q0 = 32000, Rs = 1 106, argument rhs (1.2.10) , omega = 0.999

..1.001, labels =
omega

r

, Psi

r

0.9995 1 1.0005 1.0010
1

The above applies to the unloaded cavity. With the generator connected and at resonance, the 
matched generator resistance is 

Rg = 
Rs

beta

Rg =
Rs

to ensure all power flows into the cavity with no reflection back. β is the coupling factor and is 
given by the ratio of power from the generator actually getting into the cavity, which will depend 
in part on the fields excited in the cavity. Technically, its value is realized by the details of the 
coupling loop or slot for a given cavity. A slide by Alesini depicts more details:
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(1.2.15)(1.2.15)

(1.2.10)(1.2.10)

(1.2.4)(1.2.4)

• • 

(1.2.19)(1.2.19)

• • 

• • 

(1.2.11)(1.2.11)

(1.2.5)(1.2.5)

(1.2.12)(1.2.12)

(1.2.1)(1.2.1)

(1.2.17)(1.2.17)

• • 

(1.2.3)(1.2.3)

(1.2.13)(1.2.13)

(1.2.8)(1.2.8)

• • 

(1.2.6)(1.2.6)

(1.2.18)(1.2.18)

(1.2.16)(1.2.16)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.2.9)(1.2.9)

• • 

#system "open alesini_couplers.pdf"

The cavity is now loaded by the generator and Rs becomes Rs/(1+β) (Rg Rs) and therefore

Ql =
Q0

1 beta

Ql =
Q0

1
and

Zl = subs Q0 = rhs (1.2.12) , Rs =
Rs

1 beta
, rhs (1.2.7)

Zl =
Rs r 

1  
I 

2
I r

2
 Q0

1 r 

At resonance we have
subs r = omega, (1.2.13)

Zl =
Rs

1
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(1.2.15)(1.2.15)

(1.2.10)(1.2.10)

(1.2.4)(1.2.4)

• • 

(1.2.19)(1.2.19)

• • 

• • 

(1.2.11)(1.2.11)

(1.2.5)(1.2.5)

(1.2.12)(1.2.12)

(1.2.1)(1.2.1)

(1.2.17)(1.2.17)

• • 

(1.2.3)(1.2.3)

(1.2.13)(1.2.13)

(1.2.8)(1.2.8)

• • 

(1.2.6)(1.2.6)

(1.2.18)(1.2.18)

(1.2.16)(1.2.16)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.2.9)(1.2.9)

• • 

      The total power available is then calculated from the power and Ohm's laws :

Pg =
Vgr

2

8 Rs beta

1  beta 2

Pg =
Vgr

2  1
2

8 Rs 

These equations were derived at resonance, where the cavity impedance is just Rs/β. In the general
case the relationship between generator current and voltage is:

ig = subs (1.2.13), solve (1.2.12), Q0 ,
Vg

Zl

ig =
Vg 1  I 

2
I r

2
 Ql r 

Rs r 

In a resonant circuit, the phase between current and voltage is given by the tuning angle 

tan Psi =
Q

2
r
2

omega r

tan =
Q 

2
r
2

 r

which we can use to re-express the generator current (also replacing Zl using (1.2.13)):
simplify subs Ql = solve (1.2.17), Q , (1.2.13), (1.2.16)

ig =
I tan 1  1  Vg

Rs

To get a feel for what is happening, let's plot amplitude and phase of Vg/ig. We use a Q factor of 
32000 as an example and set Rb = ωr = 1:

subs Q = 32000, r = 1, beta = 1, Rs = 1000000, abs rhs (1.2.16) 1

500000 

Vg I 
2

I  32000l

plot subs Ql = 32000, r = 1, Rs = 1000000, beta = 3, Vg = 1, abs rhs (1.2.16) 1 , omega

= 0.999 ..1.001, labels =
omega

r

,
Vg

i g
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(1.2.15)(1.2.15)

(1.2.10)(1.2.10)

(1.2.4)(1.2.4)

• • 

(1.2.19)(1.2.19)

• • 

• • 

(1.2.11)(1.2.11)

(1.2.5)(1.2.5)

(1.2.12)(1.2.12)

(1.2.1)(1.2.1)

(1.2.17)(1.2.17)

• • 

(1.2.3)(1.2.3)

(1.2.13)(1.2.13)

(1.2.8)(1.2.8)

• • 

(1.2.6)(1.2.6)

(1.2.18)(1.2.18)

(1.2.16)(1.2.16)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.2.9)(1.2.9)

• • 

r

0.9990 1 1.0010

V g i g

50000

100000

150000

200000

250000

plot subs Ql = 32000, r = 1, Rs = 1000000, beta = 3, Vg = 1, argument rhs (1.2.16) 1 ,

omega = 0.999 ..1.001, labels =
omega

r

, Psi
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(1.2.15)(1.2.15)

(1.2.10)(1.2.10)

(1.2.4)(1.2.4)

• • 

(1.2.19)(1.2.19)

• • 

• • 

(1.2.11)(1.2.11)

(1.2.5)(1.2.5)

(1.2.12)(1.2.12)

(1.2.1)(1.2.1)

(1.2.17)(1.2.17)

• • 

(1.2.3)(1.2.3)

(1.2.13)(1.2.13)

(1.2.8)(1.2.8)

• • 

(1.2.6)(1.2.6)

(1.2.18)(1.2.18)

(1.2.16)(1.2.16)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.2.9)(1.2.9)

• • 

r

0.9995 1 1.00051.0010
1.5

1

0.5

0

0.5

1

1.5

So in this particular case the loaded Q is 1/4 of the unloaded Q and the impedance seen by the 
beam is a quarter of Rs.
We can also plot this as a vector:

plots:-animate plots:-arrow, subs Ql =
32000

4
, r = 1, Rs = 1000000, beta = 3, Vg = 1,

Re rhs (1.2.16) 1 , Im rhs (1.2.16) 1 , omega = 0.999 ..1.001, frames = 101,

labels = "Re(Z)", "Im(Z)"
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(1.3.44)(1.3.44)
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(1.3.42)(1.3.42)

(1.3.17)(1.3.17)

(1.3.15)(1.3.15)

• • 

• • 

(1.3.20)(1.3.20)

(1.3.34)(1.3.34)

(1.2.12)(1.2.12)

(1.3.23)(1.3.23)

(1.3.48)(1.3.48)

(1.2.17)(1.2.17)

• • 

(1.3.39)(1.3.39)

(1.3.2)(1.3.2)

(1.3.31)(1.3.31)

(1.3.14)(1.3.14)

(1.3.37)(1.3.37)

(1.3.30)(1.3.30)

(1.2.13)(1.2.13)

(1.3.46)(1.3.46)

(1.3.26)(1.3.26)

(1.3.55)(1.3.55)

(1.3.22)(1.3.22)

(1.3.54)(1.3.54)

(1.3.52)(1.3.52)

(1.3.9)(1.3.9)

(1.3.51)(1.3.51)

(1.2.2)(1.2.2)

(1.3.5)(1.3.5)

(1.2.14)(1.2.14)

• • 

(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.2.10)(1.2.10)

(1.3.13)(1.3.13)

• • 

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)

(1.2.11)(1.2.11)

(1.3.32)(1.3.32)

(1.2.5)(1.2.5)

(1.3.40)(1.3.40)

(1.3.56)(1.3.56)

(1.3.10)(1.3.10)

(1.2.1)(1.2.1)

(1.3.24)(1.3.24)

(1.3.19)(1.3.19)

(1.3.57)(1.3.57)

(1.2.3)(1.2.3)

(1.3.29)(1.3.29)

(1.2.8)(1.2.8)

(1.3.45)(1.3.45)

• • 

(1.3.3)(1.3.3)

(1.3.21)(1.3.21)

(1.2.6)(1.2.6)

(1.3.11)(1.3.11)

(1.3.49)(1.3.49)

(1.3.12)(1.3.12)

(1.2.18)(1.2.18)

(1.3.6)(1.3.6)

(1.2.16)(1.2.16)

(1.3.38)(1.3.38)

(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

(1.2.9)(1.2.9)

Re(Z)
0 100000 200000

Im
(Z

)

100000

50000

0

50000

100000

= 0.999

This is called a phasor diagram. The length of the phasor gives the amplitude of the (sinusoidal) 
wave while the angle gives its phase wrt. a given reference.
Note that the phase (which increases counterclockwise) is > 0 at ω < ωr. This means that the 
current builds up after the voltage (or lags) and is an indication that the circuit behaves like an 
inductor. At ω > ωr, the phase is negative meaning that the voltage builds up after current starts 
flowing, which indicates capacitive behavior. Another way of looking at this is that below 
resonance the impedance increases with frequency (inductor) and above resonance it decreases 
with frequency (capacitor).

The Cavity driven by the beam
 The cavity will respond to the beam current just as it does to the generator current, so we can 
write
V b = solve subs V g = V b , i g = i b , (1.2.18) , V b

Vb =
ib Rs

I tan  I tan 1
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(1.3.35)(1.3.35)

(1.3.42)(1.3.42)

(1.3.17)(1.3.17)

(1.3.15)(1.3.15)

(1.3.20)(1.3.20)

(1.3.34)(1.3.34)

(1.3.23)(1.3.23)

(1.3.48)(1.3.48)

(1.3.39)(1.3.39)

(1.3.2)(1.3.2)

(1.3.31)(1.3.31)

(1.3.14)(1.3.14)

(1.3.37)(1.3.37)

(1.3.30)(1.3.30)

(1.3.46)(1.3.46)

(1.3.26)(1.3.26)

(1.3.55)(1.3.55)

(1.3.22)(1.3.22)

(1.3.54)(1.3.54)

(1.3.52)(1.3.52)

(1.3.9)(1.3.9)

(1.3.51)(1.3.51)

(1.3.5)(1.3.5)

(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.3.13)(1.3.13)

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)

(1.3.32)(1.3.32)

(1.3.40)(1.3.40)

(1.3.56)(1.3.56)

(1.3.10)(1.3.10)

(1.3.24)(1.3.24)

(1.3.19)(1.3.19)

(1.3.57)(1.3.57)

(1.3.29)(1.3.29)

(1.3.45)(1.3.45)

(1.3.3)(1.3.3)

(1.3.21)(1.3.21)

(1.3.11)(1.3.11)

(1.3.49)(1.3.49)

(1.3.12)(1.3.12)

(1.3.6)(1.3.6)

(1.3.38)(1.3.38)

(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

and in terms of the amplitude

abs V b = simplify evalc abs rhs (1.3.1) assuming real, positive,
2

Pi
2

# restriction on Psi necessary to avoid abs value of cos(Psi)

Vb =
ib Rs cos

1
There is a subtlety here in that above transition, when the slip factor η<0, Vb has to be negative as 
can be seen when the phasor diagram is drawn.
We then replace ib with the harmonic at the rf frequency analog to (1.1.10), noting that we needed 
a factor 2 to make sure the fourier transformed harmonics added up to the right beam current 
above,

# subs i b = 2  i b exp I
2 s Psi , (1.3.2)

simplify convert subs i b = 2 i b exp I
Pi
2

Phi s , (1.3.1) , exp

Vb =
2 ib Rs cos  e

I
2

 2 
s

2 

1
To get the total voltage on the cavity we neeed to add the generator voltage (from above) making 
sure we maintain the correct phase relationship:
solve (1.2.18), Vg

Vg =
ig Rs

I tan  I tan 1
simplify convert (1.3.4), exp

Vg =
ig Rs cos  eI 

1
Note that the generator current ig is taken to be real here; it is the reference for all the phasors we 
will show here.
We plot the phasor of Vg for different tuning angles:

plots:-animate plots:-arrow, subs~ Rs = 100000, beta = 1, ig = 1, Re rhs (1.3.5) ,
Im rhs (1.3.5) , , Psi = 0 ..Pi,

                            labels = typeset Re 'V g ' , typeset Im 'V g '
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(1.3.46)(1.3.46)

(1.3.26)(1.3.26)

(1.3.55)(1.3.55)

(1.3.22)(1.3.22)

(1.3.54)(1.3.54)

(1.3.52)(1.3.52)

(1.3.9)(1.3.9)

(1.3.51)(1.3.51)

(1.3.5)(1.3.5)

(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.3.13)(1.3.13)

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)

(1.3.32)(1.3.32)

(1.3.40)(1.3.40)

(1.3.56)(1.3.56)

(1.3.10)(1.3.10)

(1.3.24)(1.3.24)

(1.3.19)(1.3.19)

(1.3.57)(1.3.57)

(1.3.29)(1.3.29)

(1.3.45)(1.3.45)

(1.3.3)(1.3.3)

(1.3.21)(1.3.21)

(1.3.11)(1.3.11)

(1.3.49)(1.3.49)

(1.3.12)(1.3.12)

(1.3.6)(1.3.6)

(1.3.38)(1.3.38)

(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

V
g

0 10000 30000 50000

V g

20000

10000

0

10000

20000

= 0.

The total voltage on the cavity is the sum of the generator and the beam-induced voltage, 
Vcav = rhs (1.3.3) rhs (1.3.5)

Vcav =
2 ib Rs cos  e

I
2

 2 
s

2 

1

ig Rs cos  eI 

1
Trying to plot these three phasors we define a test case:
testCase i b = 1, i g = 10, Phi s = 0.0, beta = 1, R s = 100000, Psi = 0.2

testCase ib = 1, ig = 10, s = 0., = 1, Rs = 100000, = 0.2

The beam voltage:
Phas_b PhasorPlot subs testCase, rhs (1.3.3) , V b , shape = arrow :
The generator voltage:
Ph_g subs testCase, rhs (1.3.5)

Ph_g 500000 cos 0.2  e0.2 I

Phas_g PhasorPlot Ph_g, V g , shape = arrow :
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(1.3.55)(1.3.55)

(1.3.22)(1.3.22)

(1.3.54)(1.3.54)

(1.3.52)(1.3.52)

(1.3.9)(1.3.9)

(1.3.51)(1.3.51)

(1.3.5)(1.3.5)

(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.3.13)(1.3.13)

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)

(1.3.32)(1.3.32)

(1.3.40)(1.3.40)

(1.3.56)(1.3.56)

(1.3.10)(1.3.10)

(1.3.24)(1.3.24)

(1.3.19)(1.3.19)

(1.3.57)(1.3.57)

(1.3.29)(1.3.29)

(1.3.45)(1.3.45)

(1.3.3)(1.3.3)

(1.3.21)(1.3.21)

(1.3.11)(1.3.11)

(1.3.49)(1.3.49)

(1.3.12)(1.3.12)

(1.3.6)(1.3.6)

(1.3.38)(1.3.38)

(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

The cavity voltage:
Ph_c subs testCase, rhs (1.3.6)

Ph_c 100000 cos 0.2  e1.77079632679490 I 500000 cos 0.2  e0.2 I

Phas_c PhasorPlot subs testCase, Ph_c , V cav , shape = arrow :
plots:-display Phas_g, Phas_b, Phas_c, scaling = constrained

Vg

Vb

Vcav

0 100000 400000
60000

0

100000

Note the minus sign introduced in the above, it is there to ensure we get the correct subtraction of
Vb from Vg; its presence depends again on the sign of the slip factor η.
The cavity voltage is the generator voltage reduced by the beam-induced voltage and the detuning 
angle makes up for the phase shift to make the whole system appear resistive to the rf generator.

The matching condition for the cavity voltage to be in phase with the generator current implies that
Im(Vcav) is zero:
normal evalc Im convert rhs (1.3.6) , trig  assuming real

cos  Rs 2 cos s  ib sin  ig
1
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(1.3.47)(1.3.47)

(1.3.41)(1.3.41)

(1.3.44)(1.3.44)

(1.3.35)(1.3.35)

(1.3.42)(1.3.42)

(1.3.17)(1.3.17)

(1.3.15)(1.3.15)

(1.3.20)(1.3.20)

(1.3.34)(1.3.34)

(1.3.23)(1.3.23)

(1.3.48)(1.3.48)

(1.3.39)(1.3.39)

(1.3.2)(1.3.2)

(1.3.31)(1.3.31)

(1.3.14)(1.3.14)

(1.3.37)(1.3.37)

(1.3.30)(1.3.30)

(1.3.46)(1.3.46)

(1.3.26)(1.3.26)

(1.3.55)(1.3.55)

(1.3.22)(1.3.22)

(1.3.54)(1.3.54)

(1.3.52)(1.3.52)

(1.3.9)(1.3.9)

(1.3.51)(1.3.51)

(1.3.5)(1.3.5)

(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.3.13)(1.3.13)

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)

(1.3.32)(1.3.32)

(1.3.40)(1.3.40)

(1.3.56)(1.3.56)

(1.3.10)(1.3.10)

(1.3.24)(1.3.24)

(1.3.19)(1.3.19)

(1.3.57)(1.3.57)

(1.3.29)(1.3.29)

(1.3.45)(1.3.45)

(1.3.3)(1.3.3)

(1.3.21)(1.3.21)

(1.3.11)(1.3.11)

(1.3.49)(1.3.49)

(1.3.12)(1.3.12)

(1.3.6)(1.3.6)

(1.3.38)(1.3.38)

(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

expand (1.3.10), trig

2 cos
2
 Rs ib cos s

1

2 cos  Rs ib sin s  sin

1

cos  Rs sin  ig
1

solve (1.3.11) = 0, Psi # [] needed for whichop to work

arctan
2 cos s  ib

2 sin s  ib ig
,

2

Note: The following combination of whichop and op is necessary to pick out correct term from 
the solution above (the arctan term) and ensure the sign is carried through properly (which 
requires to use only the first entry of the operand list as the second one excludes the – sign). 
(whichop is defined in USPAS.mla)
whichop (1.3.12), arctan

1, 2

tan Psi = simplify tan op (1.3.13) 1 , (1.3.12)
# need to use whichop to avoid Maple version incompatibilities.

tan =
2 cos s  ib

2 sin s  ib ig

This connects the optimum detuning angle to the currents involved and the synchronous angle. 
However, in this form the solution is not yet the one we need as we need to know the generator 
power rather than the generator current, which means we need to know the voltages also. It turns 
out this conversion is a bit tedious.

If we look at the phasor diagram, we can find the following relation (applying the law of sines to
Vb and Vcav and their opposing angles):

Vb

sin Psi
=

Vcav

cos s

 # note the unevaluation quotes used

Vb

sin
=

Vcav

cos s

or
Vbr cos

sin Psi
=

Vcav

cos s

Vbr cos

sin
=

Vcav

cos s
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(1.3.55)(1.3.55)

(1.3.22)(1.3.22)

(1.3.54)(1.3.54)

(1.3.52)(1.3.52)

(1.3.9)(1.3.9)

(1.3.51)(1.3.51)

(1.3.5)(1.3.5)

(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.3.13)(1.3.13)

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)
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(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

where Vbr is the (complex) beam-induced voltage at resonance.
subs tan Psi = tan m , solve convert lhs (1.3.16) , tan = rhs (1.3.16) , tan Psi

tan m =
Vbr cos s

Vcav

Here the subscript "m" denotes the matched value of the detuning angle Ψ.
The diagram also allows us to find the generator power needed to control a certain beam intensity.
To find this, we express the cavity voltage available in phase with the beam and also its 
orthogonal component:

Vcav sin s = Vg cos
Pi
2 s m Vb cos m  # in phase with beam

Vcav sin s = Vg sin s m Vb cos m

and

Vcav cos s = Vg sin
Pi
2 s m Vb sin m

Vcav cos s = Vg cos s m Vb sin m

Move the beam-induced term to the left side
lhs (1.3.18) V b cos m = rhs (1.3.18) V b cos m

Vcav sin s Vb cos m = Vg sin s m

lhs (1.3.19) V b sin Psi m = rhs (1.3.19) V b sin Psi m
Vcav cos s Vb sin m = Vg cos s m

and take the sum of the square values, which is the squared generator voltage:
lhs (1.3.20) 2 lhs (1.3.21) 2 = simplify rhs (1.3.20) 2 rhs (1.3.21) 2

Vcav sin s Vb cos m
2

Vcav cos s Vb sin m
2

= Vg
2

rhs (1.3.22) = simplify lhs (1.3.22)
Vg

2 = 2 cos s  sin m  Vb Vcav 2 sin s  cos m  Vb Vcav Vb
2 Vcav

2

We now replace Vb with Vbrcos(Ψm) and Vg with Vgrcos(Ψm) and divide by cos(Ψm)2

expand
subs Vb = Vbr cos m , Vg = Vgr cos m , (1.3.23)

cos m
2  

Vgr
2 =

2 cos s  sin m  Vbr Vcav

cos m

2 sin s  Vbr Vcav Vbr
2

Vcav
2

cos m
2

Now convert to power
subs Vgr

2 = solve (1.2.15), Vgr
2 , (1.3.24)

Warning, solving for expressions other than names or 
functions is not recommended.
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(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.3.13)(1.3.13)

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)

(1.3.32)(1.3.32)

(1.3.40)(1.3.40)

(1.3.56)(1.3.56)

(1.3.10)(1.3.10)

(1.3.24)(1.3.24)

(1.3.19)(1.3.19)

(1.3.57)(1.3.57)

(1.3.29)(1.3.29)

(1.3.45)(1.3.45)

(1.3.3)(1.3.3)

(1.3.21)(1.3.21)

(1.3.11)(1.3.11)

(1.3.49)(1.3.49)

(1.3.12)(1.3.12)

(1.3.6)(1.3.6)

(1.3.38)(1.3.38)

(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

8 Pg Rs 

1
2 =

2 cos s  sin m  Vbr Vcav

cos m

2 sin s  Vbr Vcav Vbr
2

Vcav
2

cos m
2

Rearrange the terms and find a dependence on tan(Ψm):
solve (1.3.25), Pg

Pg =
1

8 cos m
2
 Rs 

2 cos s  sin m  Vbr cos m  Vcav

2 sin s  cos m
2
 Vbr Vcav Vbr

2  cos m
2

Vcav
2  1

2

expand (1.3.26)

Pg =
 cos s  sin m  Vbr Vcav

4 cos m  Rs

cos s  sin m  Vbr Vcav

2 cos m  Rs

cos s  sin m  Vbr Vcav

4 cos m  Rs 

 sin s  Vbr Vcav

4 Rs

sin s  Vbr Vcav

2 Rs

sin s  Vbr Vcav

4 Rs 

 Vbr
2

8 Rs

Vbr
2

4 Rs

Vbr
2

8 Rs 

 Vcav
2

8 cos m
2
 Rs

Vcav
2

4 cos m
2
 Rs

Vcav
2

8 cos m
2
 Rs 

collect (1.3.27), sin, cos

Pg =
 Vbr Vcav

4 Rs

Vbr Vcav

2 Rs

Vbr Vcav

4 Rs 
 sin s

 Vbr Vcav

4 Rs

Vbr Vcav

2 Rs

Vbr Vcav

4 Rs 
 cos s  sin m

cos m

 Vbr
2

8 Rs

Vbr
2

4 Rs

Vbr
2

8 Rs 

 Vcav
2

8 Rs

Vcav
2

4 Rs

Vcav
2

8 Rs 

cos m
2

collect algsubs
sin m

cos m

= tan m , (1.3.28) , sin, tan, Vcy
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(1.3.18)(1.3.18)

(1.3.47)(1.3.47)

(1.3.41)(1.3.41)

(1.3.44)(1.3.44)

(1.3.35)(1.3.35)

(1.3.42)(1.3.42)

(1.3.17)(1.3.17)

(1.3.15)(1.3.15)

(1.3.20)(1.3.20)

(1.3.34)(1.3.34)

(1.3.23)(1.3.23)

(1.3.48)(1.3.48)

(1.3.39)(1.3.39)

(1.3.2)(1.3.2)

(1.3.31)(1.3.31)

(1.3.14)(1.3.14)

(1.3.37)(1.3.37)

(1.3.30)(1.3.30)

(1.3.46)(1.3.46)

(1.3.26)(1.3.26)

(1.3.55)(1.3.55)

(1.3.22)(1.3.22)

(1.3.54)(1.3.54)

(1.3.52)(1.3.52)

(1.3.9)(1.3.9)

(1.3.51)(1.3.51)

(1.3.5)(1.3.5)

(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.3.13)(1.3.13)

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)

(1.3.32)(1.3.32)

(1.3.40)(1.3.40)

(1.3.56)(1.3.56)

(1.3.10)(1.3.10)

(1.3.24)(1.3.24)

(1.3.19)(1.3.19)

(1.3.57)(1.3.57)

(1.3.29)(1.3.29)

(1.3.45)(1.3.45)

(1.3.3)(1.3.3)

(1.3.21)(1.3.21)

(1.3.11)(1.3.11)

(1.3.49)(1.3.49)

(1.3.12)(1.3.12)

(1.3.6)(1.3.6)

(1.3.38)(1.3.38)

(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

Pg =
Vbr 2 

2
 Vcav 4  Vcav 2 Vcav  sin s

8 Rs 

Vbr 2 cos s  
2
 Vcav 4 cos s   Vcav 2 Vcav cos s  tan m

8 Rs 

Vbr 
2
 Vbr 2  Vbr Vbr

8 Rs 

Vcav
2  

2
2 1

8 Rs  cos m
2

This an expression for the generator power needed, albeit unwieldly. We also have the coupling 
factor β which is still free to be chosen. Maple can show us easily that the equation for Pg 
diverges for β towards 0 and towards ∞, so we would expect there to be a minimum to exist 
somewhere in between. That turns out to be indeed the case. But before we can find the optimum 
condition for β we need to find all the dependencies on beta explicitly.

We simplify the equation for the generator power:
collect normal (1.3.29) , cos

Pg =

2
2 1  tan m  Vbr Vcav cos s

4 Rs 
2

2 1  2 sin s  Vbr Vcav Vbr
2

8 Rs 

Vcav
2  

2
2 1

8 Rs  cos m
2

and replace cos(Φs) using (1.3.17). 
solve (1.3.17) , cos s

cos s =
tan m  Vcav

Vbr

It turns out we want to keep one of the cos(Φs) terms, so we use the following substitution:

subs cos s =
rhs (1.3.31)

2

cos s

2
, (1.3.30)

Pg =

2
2 1  tan m  Vbr Vcav 

tan m  Vcav

2 Vbr

cos s

2

4 Rs 
2

2 1  2 sin s  Vbr Vcav Vbr
2

8 Rs 

Vcav
2  

2
2 1

8 Rs  cos m
2

collect (1.3.32), Vcav
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(1.3.18)(1.3.18)

(1.3.47)(1.3.47)

(1.3.41)(1.3.41)

(1.3.44)(1.3.44)

(1.3.35)(1.3.35)

(1.3.42)(1.3.42)

(1.3.17)(1.3.17)

(1.3.15)(1.3.15)

(1.3.20)(1.3.20)

(1.3.34)(1.3.34)

(1.3.23)(1.3.23)

(1.3.48)(1.3.48)

(1.3.39)(1.3.39)

(1.3.2)(1.3.2)

(1.3.31)(1.3.31)

(1.3.14)(1.3.14)

(1.3.37)(1.3.37)

(1.3.30)(1.3.30)

(1.3.46)(1.3.46)

(1.3.26)(1.3.26)

(1.3.55)(1.3.55)

(1.3.22)(1.3.22)

(1.3.54)(1.3.54)

(1.3.52)(1.3.52)

(1.3.9)(1.3.9)

(1.3.51)(1.3.51)

(1.3.5)(1.3.5)

(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.3.13)(1.3.13)

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)

(1.3.32)(1.3.32)

(1.3.40)(1.3.40)

(1.3.56)(1.3.56)

(1.3.10)(1.3.10)

(1.3.24)(1.3.24)

(1.3.19)(1.3.19)

(1.3.57)(1.3.57)

(1.3.29)(1.3.29)

(1.3.45)(1.3.45)

(1.3.3)(1.3.3)

(1.3.21)(1.3.21)

(1.3.11)(1.3.11)

(1.3.49)(1.3.49)

(1.3.12)(1.3.12)

(1.3.6)(1.3.6)

(1.3.38)(1.3.38)

(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

Pg =

2
2 1  tan m

2

8 Rs 

2
2 1

8 Rs  cos m
2  Vcav

2

2
2 1  tan m  Vbr cos s

8 Rs 

2
2 1  sin s  Vbr

4 Rs 

 Vcav

Vbr
2  

2
2 1

8 Rs 

applyop simplify, 1, rhs (1.3.33)

Vcav
2  

2
2 1

8 Rs 

2
2 1  tan m  Vbr cos s

8 Rs 
2

2 1  sin s  Vbr

4 Rs 
 Vcav

Vbr
2  

2
2 1

8 Rs 

applyop collect, 2, (1.3.34), Vbr

Vcav
2  

2
2 1

8 Rs 

2
2 1  tan m  cos s

8 Rs 
2

2 1  sin s

4 Rs 
 Vcav Vbr

Vbr
2  

2
2 1

8 Rs 

Now we replace the remaining tan(Ψm):
(1.3.17)

tan m =
Vbr cos s

Vcav

applyop simplify, 1, 2 , collect applyop simplify, 2, subs (1.3.36), (1.3.35) , cos s
2

= 1

sin s
2 , Vbr

2
2 1  sin s

2
 Vbr

2

8 Rs 

Vcav 
2

2 1  sin s  Vbr

4 Rs 

Vcav
2  

2
2 1

8 Rs 

lhs (1.3.33) = factor (1.3.37)

Pg =
1

2
 sin s  Vbr Vcav

2

8 Rs 
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(1.3.18)(1.3.18)

(1.3.47)(1.3.47)

(1.3.41)(1.3.41)

(1.3.44)(1.3.44)

(1.3.35)(1.3.35)

(1.3.42)(1.3.42)

(1.3.17)(1.3.17)

(1.3.15)(1.3.15)

(1.3.20)(1.3.20)

(1.3.34)(1.3.34)

(1.3.23)(1.3.23)

(1.3.48)(1.3.48)

(1.3.39)(1.3.39)

(1.3.2)(1.3.2)

(1.3.31)(1.3.31)

(1.3.14)(1.3.14)

(1.3.37)(1.3.37)

(1.3.30)(1.3.30)

(1.3.46)(1.3.46)

(1.3.26)(1.3.26)

(1.3.55)(1.3.55)

(1.3.22)(1.3.22)

(1.3.54)(1.3.54)

(1.3.52)(1.3.52)

(1.3.9)(1.3.9)

(1.3.51)(1.3.51)

(1.3.5)(1.3.5)

(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.3.13)(1.3.13)

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)

(1.3.32)(1.3.32)

(1.3.40)(1.3.40)

(1.3.56)(1.3.56)

(1.3.10)(1.3.10)

(1.3.24)(1.3.24)

(1.3.19)(1.3.19)

(1.3.57)(1.3.57)

(1.3.29)(1.3.29)

(1.3.45)(1.3.45)

(1.3.3)(1.3.3)

(1.3.21)(1.3.21)

(1.3.11)(1.3.11)

(1.3.49)(1.3.49)

(1.3.12)(1.3.12)

(1.3.6)(1.3.6)

(1.3.38)(1.3.38)

(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

This is the generator power needed under optimum matching  (which is the meaning of (1.3.17)). 
We cannot yet solve for β as Vbr also depends on β.
To proceed we replace Vbr using (1.3.3) at zero detuning angle and omitting the phase factor:

V br = subs e
I
2

 2 
s = 1, eval rhs (1.3.3) , Psi = 0

Vbr =
2 ib Rs

1
and replace the beam current with the power to the beam:
Pb = ib Vcav sin s

Pb = ib Vcav sin s

subs solve (1.3.40), i b , (1.3.39)

Vbr =
2 Pb Rs

sin s  Vcav 1

Putting this back into the equation for the generator power we get
simplify subs (1.3.41), (1.3.38) , size

Pg =
2 Pb Rs Vcav

2  1
2

8 Vcav
2  Rs 

Now we are ready to find the optimum for β:

(1.3.42)

0 =
2 Pb Rs Vcav

2  1

4 Rs 

2 Pb Rs Vcav
2  1

2

8 Vcav
2  Rs 

2

solve (1.3.43), beta, useassumptions = true  assuming positive;

=
2 Pb Rs Vcav

2

Vcav
2

Vcav2 is directly related to the power dissipated in the cavity:
V cav = sqrt P cav 2 R s

Vcav = 2  Pcav Rs

and therefore 
beta opt = simplify subs (1.3.45), rhs (1.3.44)

opt =
Pb Pcav

Pcav

This is an important relationship as Pcav and Pb are usually known and we can decide on the 
optimum coupling β. Since the beam current usually varies from 0 to a specific maximum, the 
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(1.3.18)(1.3.18)

(1.3.47)(1.3.47)

(1.3.41)(1.3.41)

(1.3.44)(1.3.44)

(1.3.35)(1.3.35)

(1.3.42)(1.3.42)

(1.3.17)(1.3.17)

(1.3.15)(1.3.15)

(1.3.20)(1.3.20)

(1.3.34)(1.3.34)

(1.3.23)(1.3.23)

(1.3.48)(1.3.48)

(1.3.39)(1.3.39)

(1.3.2)(1.3.2)

(1.3.31)(1.3.31)

(1.3.14)(1.3.14)

(1.3.37)(1.3.37)

(1.3.30)(1.3.30)

(1.3.46)(1.3.46)

(1.3.26)(1.3.26)

(1.3.55)(1.3.55)

(1.3.22)(1.3.22)

(1.3.54)(1.3.54)

(1.3.52)(1.3.52)

(1.3.9)(1.3.9)

(1.3.51)(1.3.51)

(1.3.5)(1.3.5)

(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.3.13)(1.3.13)

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)

(1.3.32)(1.3.32)

(1.3.40)(1.3.40)

(1.3.56)(1.3.56)

(1.3.10)(1.3.10)

(1.3.24)(1.3.24)

(1.3.19)(1.3.19)

(1.3.57)(1.3.57)

(1.3.29)(1.3.29)

(1.3.45)(1.3.45)

(1.3.3)(1.3.3)

(1.3.21)(1.3.21)

(1.3.11)(1.3.11)

(1.3.49)(1.3.49)

(1.3.12)(1.3.12)

(1.3.6)(1.3.6)

(1.3.38)(1.3.38)

(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

coupling factor is in practice only optimal at one beam current, usually the highest anticipated 
current. At lower beam current one either has to tolerate that coupling is sub-optimal, meaning 
more power is dissipated than strictly necessary, or the coupling factor is made variable by a 
mechanical variation of the coupler. To some extent it may be possible to vary the rf voltage to 
keep βopt constant but usually other considerations (like having enough overvoltage or keeping 
the bunch length at a specified value) restrict the range of such adjustment.

We can simplify the expression for Pg somewhat more by substituting back into (1.3.42):
simplify subs (1.3.44), (1.3.42)

Pg =
2 Pb Rs Vcav

2

2 Rs

simplify subs (1.3.45), (1.3.47)
Pg = Pb Pcav

which is of course as it has to be as energy is conserved.

The last relationship we need is the relationship between detuning angle and βopt. We get that 
from 
(1.3.31)

cos s =
tan m  Vcav

Vbr

by replacing the beam-induced voltage Vbr:
subs beta = opt, subs (1.3.41), (1.3.49)

cos s =
tan m  sin s  Vcav

2  1 opt

2 Pb Rs

and back to cavity power

subs (1.3.45),
(1.3.50)
sin s

cos s

sin s

=
tan m  Pcav 1 opt

Pb

and finally, using the equation for βopt:
subs Pb = solve (1.3.46), Pb , (1.3.52)

cos s

sin s

=
tan m  1 opt

1 opt

This ties βopt, the synchronous phase and the detuning angle together and so we have all 
equations necessary to achieve a first design of the rf system under beam loading.
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(1.3.18)(1.3.18)

(1.3.47)(1.3.47)

(1.3.41)(1.3.41)

(1.3.44)(1.3.44)

(1.3.35)(1.3.35)

(1.3.42)(1.3.42)

(1.3.17)(1.3.17)

(1.3.15)(1.3.15)

(1.3.20)(1.3.20)

(1.3.34)(1.3.34)

(1.3.23)(1.3.23)

(1.3.48)(1.3.48)

(1.3.39)(1.3.39)

(1.3.2)(1.3.2)

(1.3.31)(1.3.31)

(1.3.14)(1.3.14)

(1.3.37)(1.3.37)

(1.3.30)(1.3.30)

(1.3.46)(1.3.46)

(1.3.26)(1.3.26)

(1.3.55)(1.3.55)

(1.3.22)(1.3.22)

(1.3.54)(1.3.54)

(1.3.52)(1.3.52)

(1.3.9)(1.3.9)

(1.3.51)(1.3.51)

(1.3.5)(1.3.5)

(1.3.7)(1.3.7)

(1.3.25)(1.3.25)

(1.3.33)(1.3.33)

(1.3.43)(1.3.43)

(1.3.13)(1.3.13)

(1.3.1)(1.3.1)

(1.3.28)(1.3.28)

(1.3.4)(1.3.4)

(1.3.53)(1.3.53)

(1.3.8)(1.3.8)

(1.3.16)(1.3.16)

(1.3.32)(1.3.32)

(1.3.40)(1.3.40)

(1.3.56)(1.3.56)

(1.3.10)(1.3.10)

(1.3.24)(1.3.24)

(1.3.19)(1.3.19)

(1.3.57)(1.3.57)

(1.3.29)(1.3.29)

(1.3.45)(1.3.45)

(1.3.3)(1.3.3)

(1.3.21)(1.3.21)

(1.3.11)(1.3.11)

(1.3.49)(1.3.49)

(1.3.12)(1.3.12)

(1.3.6)(1.3.6)

(1.3.38)(1.3.38)

(1.3.36)(1.3.36)

(1.3.27)(1.3.27)

To conclude we will restate the relevant relations derived here for coupling, matching and 
generator power:

Optimum coupling factor βopt:
(1.3.46)

opt =
Pb Pcav

Pcav

Matched detuning angle:
solve (1.3.53), tan Psi m

tan m =
cos s  1 opt

sin s  1 opt

Minimum generator power needed assuming optimum β and matched detuning angle:
(1.3.48)

Pg = Pb Pcav

The generator current is the solution of (1.3.14) for Ψ=Ψopt
subs Psi = Psi opt , solve (1.3.14), i g

ig =
2 ib sin s  tan opt cos s

tan opt
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(1.11)(1.11)

(1.10)(1.10)

(1.8)(1.8)

(1.30)(1.30)

(1.4)(1.4)

(1.1)(1.1)

(1.6)(1.6)

(1.31)(1.31)

(1.13)(1.13)

(1.21)(1.21)

(1.20)(1.20)

(1.5)(1.5)

(1.14)(1.14)

(1.23)(1.23)

(1.24)(1.24)

(1.25)(1.25)

(1.9)(1.9)

(1.12)(1.12)

(1.15)(1.15)

(1.18)(1.18)

(1.22)(1.22)

(1.27)(1.27)

(1.28)(1.28)

(1.3)(1.3)

(1.2)(1.2)

(1.7)(1.7)

(1.26)(1.26)

(1.17)(1.17)

(1.16)(1.16)

(1.29)(1.29)

(1.19)(1.19)

Power radiated by an accelerated charge
The total power radiated by an accelerated point charge was first derived by Liènhard and we quote it 
here:

Pgamma =
2
3

rrc m0

c
t 6 Diff beta_, t .Diff beta_, t beta_ &x Diff beta_, t . beta_ 

&x Diff beta_, t

P =
2 rrc m0 t

6
 

t

2

t t
3 c

rrc is just the classical radius of the particle. Using rc interferes with the internals of the Physics 
package so we have to use a different symbol. Also note that m0 conforms to the units used 

elsewhere in this course, i.e. m0=mc2

To apply this in an accelerator context, we need to calculate the power as a function of the machine 
and beam parameters, i.e. the bending radius as well as the rate of acceleration.

We start by expressing β in Cartesian coordinates:
expand subs beta_ = beta1 t * _i beta2 t * _j beta3 t * _k, (1.1)

P =
2 rrc m0 t

6
 

t
1 t  i 2 t  j 3 t  k

2

3 c

2 rrc m0 t
6
 1 t

2
 i

t
1 t  i 2 t  j 3 t  k

2

3 c
1

3 c
4 rrc m0 t

6
 1 t  2 t  j

t
1 t  i 2 t  j 3 t  k i

t
1 t  i 2 t  j 3 t  k

1
3 c

4 rrc m0 t
6
 1 t  3 t  k

t
1 t  i 2 t  j 3 t  k i

t
1 t  i 2 t  j 3 t  k

2 rrc m0 t
6
 2 t

2
 j

t
1 t  i 2 t  j 3 t  k

2

3 c
1

3 c
4 rrc m0 t

6
 2 t  3 t  k

t
1 t  i 2 t  j 3 t  k j

t
1 t  i 2 t  j 3 t  k
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(1.4)(1.4)

(1.1)(1.1)

(1.6)(1.6)

(1.31)(1.31)

(1.13)(1.13)

(1.21)(1.21)

(1.20)(1.20)

(1.5)(1.5)

(1.14)(1.14)

(1.23)(1.23)

(1.24)(1.24)

(1.25)(1.25)

(1.9)(1.9)

(1.12)(1.12)

(1.15)(1.15)

(1.18)(1.18)

(1.22)(1.22)

(1.27)(1.27)

(1.28)(1.28)

(1.3)(1.3)

(1.2)(1.2)

(1.7)(1.7)

(1.26)(1.26)

(1.17)(1.17)

(1.16)(1.16)

(1.29)(1.29)

(1.19)(1.19)

2 rrc m0 t
6
 3 t

2
 k

t
1 t  i 2 t  j 3 t  k

2

3 c

simplify value (1.2)

P =
1

3 c
2 rrc m0 t

6
 3 t

2
 1

.
t

2
3 t

2
 2

.
t

2
2 2 t  3 t  2

.
t  3

.
t

2 1 t  3 t  1
.

t  3
.

t 2 t
2
 1

.
t

2
2 t

2
 3

.
t

2
2 1 t  2 t  

1
.

t  2
.

t 1 t
2
 2

.
t

2
1 t

2
 3

.
t

2
1
.

t
2

2
.

t
2

3
.

t
2

and will separate the components arising from (longitudinal) acceleration and from transverse 
acceleration (i.e. bending). In this way we will identify which component produces the most 
radiation. To do this, we first pick out the radiation arising from the longitudinal component, i.e. from
the acceleration by setting the other differentials of β to 0:
P gamma, l = rhs collect subs diff beta1 t , t = 0, diff beta2 t , t = 0, diff phi t , t = 0,

(1.3) , diff beta3 t , t

P
, l

=
2 rrc m0 t

6
 2 t

2
1 t

2
1  3

.
t

2

3 c
Since β3 is about 1, we set β1 and β2=0 and we get:
subs beta1 t = 0, beta2 t = 0, (1.4)

P
, l

=
2 rrc m0 t

6
 3

.
t

2

3 c
Now we will treat the transverse component. Here we need to carry the ρ part but turn diff(β3,s) off. 
Again, β1 and β2=0 (the transverse velocities are always very small)
P gamma, tr = rhs simplify subs diff beta3 t , t = 0, diff phi t , t = 0, (1.3)

P
, tr

=
1

3 c
2 rrc m0 t

6
 3 t

2
 1

.
t

2
3 t

2
 2

.
t

2
2 t

2
 1

.
t

2

2 1 t  2 t  1
.

t  2
.

t 1 t
2
 2

.
t

2
1
.

t
2

2
.

t
2

subs beta1 0 = 0, beta2 0 = 0, eval (1.6), t = 0

P
, tr

=
1

3 c
2 rrc m0 0

6
 3 0

2
 1

.
t

t = 0

2
3 0

2
 2

.
t

t = 0

2
1
.

t

t = 0

2
2
.

t
t = 0

2

collect (1.7), beta3 0

P
, tr

=

2 rrc m0 0
6
 1

.
t

t = 0

2
2
.

t
t = 0

2
 3 0

2

3 c
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(1.6)(1.6)

(1.31)(1.31)

(1.13)(1.13)

(1.21)(1.21)

(1.20)(1.20)

(1.5)(1.5)

(1.14)(1.14)

(1.23)(1.23)

(1.24)(1.24)

(1.25)(1.25)

(1.9)(1.9)

(1.12)(1.12)

(1.15)(1.15)

(1.18)(1.18)

(1.22)(1.22)

(1.27)(1.27)

(1.28)(1.28)

(1.3)(1.3)

(1.2)(1.2)

(1.7)(1.7)

(1.26)(1.26)

(1.17)(1.17)

(1.16)(1.16)

(1.29)(1.29)

(1.19)(1.19)

2 rrc m0 0
6
 1

.
t

t = 0

2
2
.

t
t = 0

2

3 c
Now we collect the two transverse components into one (twice!):

subs eval diff beta1 t , t , t = 0 2 eval diff beta2 t , t , t = 0 2 =
t tr

2
, (1.8)

P
, tr

=
2 rrc m0 0

6
 

t tr

2
 3 0

2

3 c

2 rrc m0 0
6
 1

.
t

t = 0

2
2
.

t
t = 0

2

3 c

subs eval diff beta1 t , t , t = 0 2 eval diff beta2 t , t , t = 0 2 =
t tr

2
, (1.9)

P
, tr

=
2 rrc m0 0

6
 

t tr

2
 3 0

2

3 c

2 rrc m0 0
6
 

t tr

2

3 c
normal factor (1.10)

P
, tr

=
2 rrc m0 0

6
 

t tr

2
 3 0 1  3 0 1

3 c
and end up with the power from the transverse acceleration.

simplify subs beta3 0 = sqrt 1
1
0 2 , (1.11)

P
, tr

=
2 0

4
 rrc m0 

t tr

2

3 c
We cannot yet assess the relative importance of the transverse and the longitudinal components as we
do not know the magnitude of diff(β,t). To do this we use 

p_ =
m0 gamma beta_

c

p =
m0  

c
subs beta_ = beta1 t * _i beta2 t * _j beta3 t * _k, gamma = gamma t , (1.13)

p =
m0 t  1 t  i 2 t  j 3 t  k

c
The longitudinal acceleration remains when we turn the transverse acceleration components off:
Diff p_, t = subs 1

.
t = 0, 2

.
t = 0, 1 t = 0, 2 t = 0 , diff rhs (1.14) , t
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(1.6)(1.6)

(1.31)(1.31)

(1.13)(1.13)

(1.21)(1.21)

(1.20)(1.20)

(1.5)(1.5)

(1.14)(1.14)

(1.23)(1.23)

(1.24)(1.24)

(1.25)(1.25)

(1.9)(1.9)

(1.12)(1.12)

(1.15)(1.15)

(1.18)(1.18)

(1.22)(1.22)

(1.27)(1.27)

(1.28)(1.28)

(1.3)(1.3)

(1.2)(1.2)

(1.7)(1.7)

(1.26)(1.26)

(1.17)(1.17)

(1.16)(1.16)

(1.29)(1.29)

(1.19)(1.19)

t
p =

m0 
.

t  3 t  k

c

m0 t  3
.

t  k

c
and we can find an expression for diff(γ(t),t):

Diff gamma t , t = simplify subs 1 3 t 2 =
1
t 2 ,

d
dt

1

1 3 t 2
 

assuming gamma t   0
d
dt

t = t
3
 3 t  3

.
t

and p becomes
simplify subs

.
t = rhs (1.16) , (1.15)

t
p =

m0 t  3
.

t  k 3 t
2
 t

2
1

c
The expression in (),
whichop (1.17), t

2
 3 t

2
1

2, 5

op whichop rhs (1.17) , t
2
 3 t

2
1 , rhs (1.17)

3 t
2
 t

2
1

is just

simplify subs  beta3 t = sqrt 1
1
t 2 , (1.19)

t
2

as β1 and β2=0. We put that back into the expression for p and get
Diff p3, t = subsop 6 = (1.20), rhs (1.17)

t
p3 = m0 t

3
 3

.
t  k 3 t

2
 t

2
1

This is the change in the component of p parallel to the motion of the particle. We put this back into 
the expression for P ,l:
subs solve (1.21), 3

.
t , (1.5)

P
, l

=
2 rrc t

p3
2

3 m0 c k
2
 3 t

2
 t

2
1

2

and note again that p3 is the momentum along the direction of motion.

The transverse change is just

Diff p t , t =
m0 gamma t Diff tr, t

c
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(1.31)(1.31)
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(1.21)(1.21)

(1.20)(1.20)

(1.5)(1.5)

(1.14)(1.14)

(1.23)(1.23)

(1.24)(1.24)

(1.25)(1.25)

(1.9)(1.9)

(1.12)(1.12)

(1.15)(1.15)

(1.18)(1.18)

(1.22)(1.22)

(1.27)(1.27)

(1.28)(1.28)

(1.3)(1.3)

(1.2)(1.2)

(1.7)(1.7)

(1.26)(1.26)

(1.17)(1.17)

(1.16)(1.16)

(1.29)(1.29)

(1.19)(1.19)

t
pt =

m0 t  
t tr

c
and much easier being done by dead-reckoning than in Maple since in this case diff(γ,t) is 0.
We now put this back into the expressions for the s.r. power and get

subs solve (1.23),
t tr , gamma 0 = gamma t , (1.12)

P
, tr

=
2 t

2
 rrc t

pt

2
 c

3 m0

We now see that, for the same acceleration (=change in momentum) the transverse radiation power is 
stronger by a factor γ2. (What are the ramifications of this?)

To make this useful in an accelerator context, we bring in the bending radius ρ:

Diff p t , t =
m0 gamma beta 2

rho

t
pt =

m0  
2

and get
subs (1.25), subs gamma t = gamma, (1.24)

P
, tr

=
2 

4
 rrc m0 

4
 c

3 
2

We are mostly interested in the radiation at β≈1 (why?), so we use that, and it is customary to collect 
some of the constants into a new one:

Cgamma =
4 Pi

3

rrc

m0
3

C =
4  rrc

3 m0
3

evalf subs Constants, subs m 0 = m_e, rr c = r_e, (1.27)  #` `
C = 8.84627577501730 10 14

[m/MeV3]

lhs (1.26) = subs beta = 1, gamma =
E
m0

, rhs (1.26)

P
, tr

=
2 E4 rrc c

3 m0
3 

2
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(1.15)(1.15)
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(1.3)(1.3)
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(1.7)(1.7)

(2.3)(2.3)

(1.26)(1.26)

(1.17)(1.17)

(1.16)(1.16)

(1.29)(1.29)

(1.19)(1.19)
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subs solve (1.27), rrc , (1.29)

P
, tr

=
E4 C  c

2  
2

Eq. (1.30) is in units of GeV/s. Numerically, C  works out for electrons to 8.8463E-14 m/MeV3. 
Find it for protons and draw your conclusions.
In a ring we are interested in the energy loss per turn (why?), which is the trivial integration of the 
above over the length of the dipole field:

U gamma =
rhs (1.30) 2 Pi rho

c

U =
E4 C

where we also divide by c to convert to m before integrating.

Radiation spectrum
The relativistic Doppler effect collimates the synchrotron radiation into a narrow cone about the 
direction of the particle, which can be shown to be 

sr = 
1

gamma

sr =
1

 
Therefore the radiation emitted by a particle in a ring generates short pulses in a stationary detector, as
the cone sweeps by. By Fourier analysis short pulses have a relatively wide spectrum in frequency. 
We can get an estimate for this by considering the geometry as in Fig. 1.

Fig. 1: Synchrotron Radiation fan from a dipole magnet

The length of the light pulse is the difference between the arrival times of photons from P1 and P2.
Photons from P1 arrive at P2 after a time 
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(2.1)(2.1)

(2.8)(2.8)

(2.2)(2.2)

(2.6)(2.6)

tgamma, 1 =
sin

thetasr

1
2 rho

c

t
, 1

=
2 sin sr  

c
Electrons travel along the arc and need a time

telec, 1 =
2 rho

gamma beta c

telec, 1 =
2 
  c

to get to P2. The difference is then
delta t = subs (2.1), rhs (2.3) rhs (2.2)

t =
2 
  c

2 sin
1

 

c

We linearize this by a 1st-order expansion in 1/γ:

thaw convert series rhs subs
1

gamma
= freeze

1
gamma

, (2.4) , freeze
1

gamma
, 4 ,

polynom

2 
 c

2 
c

3 c 
3

max =
1

 simplify (2.5), beta = 1

max =
3 c 

3

As it turns out we can define a critical frequency

c = 
rhs (2.6)

2

c =
3 c 

3

2 
which is a common parameter used to describe the hardness of the synchrotron-radiation spectrum. 
The actual shape of the spectrum is a bit involved to derive so we are just quoting the result here:

S
9 sqrt 3

8 Pi
omega

c

Int BesselK
5
3

, x , x =
omega

c

..infinity
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(3.20)(3.20)
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S

9 3   

c

K 5
3

x dx

8  c

plot subs omega c = 1, S , omega = 1E 10 ..1E1

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

Note that it only depends on ωc and not any other parameter.

Radiation damping
We already learned about adiabatic damping upon acceleration in Chapter 3 on longitudinal dynamics.
To recap the result:

xp = xp0

pt

p delta p
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(3.16)(3.16)

(3.29)(3.29)

(3.12)(3.12)

(3.22)(3.22)

(3.30)(3.30)

(3.18)(3.18)

(3.8)(3.8)

(3.25)(3.25)

(3.27)(3.27)

(3.1)(3.1)

(3.9)(3.9)

(3.15)(3.15)

(3.2)(3.2)

(3.17)(3.17)

(3.28)(3.28)

(3.5)(3.5)

(3.19)(3.19)

(3.21)(3.21)

(3.32)(3.32)

(3.14)(3.14)

(3.23)(3.23)

(3.26)(3.26)

(3.7)(3.7)

(3.31)(3.31)

(3.20)(3.20)

xp =
xp0 pt

p p
To first order, this is
convert frontend series, rhs (3.1) , delta p , 2 , polynom

xp0 pt

p

xp0 pt p

p2

collect subs pt = p, (3.2) , xp0

1
p
p

 xp0

This process is at work under synchrotron radiation as well, on every turn, so we might suspect that 
the beam size under synchrotron radiation actually shrinks. The energy put back into the beam is just
U , the energy radiated off.
From our study of betatron oscillations we remember that
y = A sqrt beta cos phi

y = A  cos

 yp =
A

sqrt beta
sin phi alpha cos phi

yp =
A sin  cos

with A being √ε. We deliberately leave the s dependency out to make our work with Maple easier. 
We cannot use this directly to figure out the change in amplitude, though, as the phase terms can and 
do go through 0, leaving the change in A undetermined. Instead we use the Courant-Snyder invariant 
equation:
A2 = beta zp2 2 alpha z zp gamma z2

A2 = 2  z zp  zp2  z2

The difference in A2 over one turn (specifically, when crossing the cavity) is then
A Delta A 2 A2

A A
2

A2

simplify (3.7)

2 A A A
2

To get further, we take the total differential w.r.t. the coordinates and apply this to the invariant:
TDelta lhs (3.6) , A , 1 = collect TDelta rhs (3.6) , z, zp , 1 , alpha, beta, gamma

2 A A = 2 zp z 2 z zp  2  z z 2  zp zp
This is the first-order term which is all we need (why?). Δ(z) is zero since the cavity does not impose
a translation, therefore
subs Delta z = 0, (3.9)

2 A A = 2 zp   z 2  zp zp
The change Δ(zp) due to a cavity we have seen before:
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(3.22)(3.22)
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(3.18)(3.18)

(3.8)(3.8)

(3.25)(3.25)

(3.27)(3.27)

(3.1)(3.1)

(3.9)(3.9)

(3.15)(3.15)

(3.2)(3.2)

(3.17)(3.17)

(3.28)(3.28)

(3.5)(3.5)

(3.19)(3.19)

(3.21)(3.21)

(3.32)(3.32)

(3.14)(3.14)

(3.23)(3.23)

(3.26)(3.26)

(3.7)(3.7)

(3.31)(3.31)

(3.20)(3.20)

Delta zp =
Ugamma

Es
zp 

zp =
U  zp

Es

collect subs (3.11), (3.10) , Ugamma, Es

2 A A =
2  z zp 2  zp2  U

Es

We want the effect for an ensemble of particles, which means we need to average over many. So we 
need the averages of zp2 and zp*z. This involves integrating over all phases and amplitudes.
int rhs (3.5) 2, phi = 0 ..2 Pi

2 Pi

A2 
2

1
2 

int rhs (3.4) rhs (3.5) , phi = 0 ..2 Pi
2 Pi

A2 
2

therefore
algsubs z zp = (3.14), subs zp2 = (3.13), (3.12)

A
# Maple technical note: subs does not catch the z zp term.

2 A =
A U

Es

This is the amplitude change per turn due to synchrotron radiation. Note that it is negative indicating 
damping. We convert this to a differential equation ( s is the revolution time of the synchronous 
particle) and solve it:

subs
Delta A t

s

= Diff A t , t ,
subs A = A t , (3.15)

s

2 
d
dt

A t =
A t  U

s Es

dsolve (3.16)

A t = _C1 e

U  t

2 
s
 E

s

which is an exponential decay with the time constant
 d = coeff op 2, 1 , rhs (3.17) , t 1
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d =
2 s Es

U

which is the damping time.

At a higher level, we can make a more general ansatz by treating all planes together and put the effect
of radiation into a matrix:
diff u0 t , t  = M.u0 t ; dsolve %, u0 t  assuming M constant

u0
.

t = M u0 t

u0 t = _C1 eM t

Here u0 is a 6-element coordinate vector
u0 t  = x t , xp t , y t , yp t , phi t , delE t

u0 t =

x t

xp t

y t

yp t

t

delE t

and M is a matrix encoding the effect of synchrotron radiation on the beam coordinates. For M being 
nearly diagonal, u0 is very nearly an eigenvector of M and therefore we can to good approximation 
replace M with its Eigenvalues in (3.19). This works as long as the effect of s.r. emission is relatively
small (which it is).
From physics considerations we can identify the non-zero elements of M as the synchrotron radiation
changes angles of the particles but not the positions (ignoring dispersion for now). We then write M 
as
M Matrix 6, 6, 2, 2 = m22, 4, 4 = m44, 6, 6 = m66, 6, 5 = m65, 5, 6 = m56 , fill

= 0

M

0 0 0 0 0 0

0 m22 0 0 0 0

0 0 0 0 0 0

0 0 0 m44 0 0

0 0 0 0 0 m56

0 0 0 0 m65 m66

and can find its Eigenvectors and Eigenvalues
LinearAlgebra:-Eigenvectors M
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0

0

m22

m44

1
2

 m66
1
2

 4 m56 m65 m662

1
2

 m66
1
2

 4 m56 m65 m662

, 0, 1, 0, 0, 0, 0 , 

0, 0, 1, 0, 0, 0 , 

1, 0, 0, 0, 0, 0 , 

0, 0, 0, 1, 0, 0 , 

0, 0, 0, 0, 
m56

1
2

 m66
1
2

 4 m56 m65 m662
, 

m56
1
2

 m66
1
2

 4 m56 m65 m662
, 

0, 0, 0, 0, 1, 1

We know already some of the elements of M:
m22 = P_g_av / E_0, m44 = P_g_av / E_0, m65 = Diff P_rf, psi , m66 = Diff P_g, E

m22 =
P_g_av

E_0
, m44 =

P_g_av
E_0

, m65 = P_rf, m66 =
E

P_g

and therefore the Eigenvalues are
subs (3.23), (3.22) 1
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(3.32)(3.32)
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(3.23)(3.23)

(3.26)(3.26)

(3.7)(3.7)

(3.31)(3.31)
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0

0

P_g_av
E_0

P_g_av
E_0

1
2

 
E

 P_g
1
2

 4  P_rf  m56
E

 P_g
2

1
2

 
E

 P_g
1
2

 4  P_rf  m56
E

 P_g
2

These are the values that go into the exponential in (3.19). The negative sign indicates damping.
The total damping available is then the sum of all these:
Dtot = add (3.24)i, i = 1 ..6

Dtot =
2 P_g_av

E_0 E
P_g

We already calculated the vertical damping rate:
Dz = coeff op 2, 1 , rhs (3.17) , t

Dz =
U

2 s Es

The others are evaluated in a similar but somewhat more tedious fashion so we quote the results here:

Dx =
1 D

2

Ugamma

Es s

Dx =
1 D  U

2 s Es

and

DE =
2 D

2

Ugamma

Es s

DE =
2 D  U

2 s Es

with

D =

Int
eta s

3
s

1 2 rho s 2 k s , s

Int
1

rho s 2 , s
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(4.1)(4.1)

(3.28)(3.28)

(3.5)(3.5)
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(4.26)(4.26)

(3.21)(3.21)

(3.32)(3.32)

(4.15)(4.15)

(3.14)(3.14)

(3.23)(3.23)

(3.26)(3.26)

(4.5)(4.5)

(4.22)(4.22)

(4.29)(4.29)

(3.31)(3.31)

(4.13)(4.13)

(3.13)(3.13)

(4.11)(4.11)

(3.33)(3.33)

(3.3)(3.3)

(4.19)(4.19)

(4.23)(4.23)

(3.10)(3.10)

(3.16)(3.16)

(3.29)(3.29)

(3.22)(3.22)

(3.30)(3.30)

(3.18)(3.18)

(4.17)(4.17)

(4.16)(4.16)

(4.10)(4.10)

(4.12)(4.12)

(4.18)(4.18)

(4.28)(4.28)

(3.19)(3.19)

(4.7)(4.7)

(3.7)(3.7)

(4.4)(4.4)

(4.9)(4.9)

(4.20)(4.20)

(4.24)(4.24)

(3.20)(3.20)

(4.2)(4.2)

(4.14)(4.14)

(4.6)(4.6)

D =

s  1 2 s
2
 k s

s
3 ds

1

s
2 ds

and the integration carried out over one turn.
We can now see that the damping in the horizontal and longitudinal planes depend on the dispersion 
function around the ring, esp. in the dipoles (where ρ(s)<∞). We can define the damping partitions
Jx = 1 D

Jx = 1 D

 Jz = 1

Jz = 1

 JE = 2 D

JE = 2 D

and see how D can be used to adjust the damping between the longitudinal and the horizontal planes. 
This also affects the beam emittances and is of practical importance. The ρ2k term in D plays a role if 
the machine has gradient dipoles, where the integral in the numerator of D gets large: Jh becomes 
small and can go negative: the machine is anti-damped and stable acceleration under synchrotron 
radiation is not possible(!).

Robinson' criterion expressed in terms of damping partitions is just
Jh Jv JE = subs (3.30), (3.31), (3.32), Jx Jz JE

Jh Jv JE = 4

Quantum Excitation
Emission of s.r. is a quantum effect and not adiabatic. It therefore can counteract the damping 
described above and in fact it is the effect that determines the (horizontal and longitudinal) emittance 
of the beam. For the design and operation of synchrotron light sources, but also of electron-positron 
colliders, this is of utmost importance and therefore we will spend some time understanding the 
process and how to control it.
Let an electron emit a photon with energy u  and momentum k  = u /c. We will ignore the angle of 
emission as it is small (1/γ2), but as the emission can happen at a dispersive point in the lattice the 
emission will cause a change in betatron amplitude:

Delta x =
eta s ugamma s

Es
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x =
s  u s

Es

Delta xp = p s ugamma s

Es

xp =
p s  u s

Es

We recall the change in amplitude A from above, here written in terms of the horizontal amplitude:
A2 = beta xp2 2 alpha x xp gamma x2

A2 = 2  x xp  xp2  x2

Finding the total differential (now to full order!)
Delta lhs (4.3) = TDelta rhs (4.3) , x, xp

A2 = 2  xp 2  x  x 2  x 2  xp  xp 2  x  xp  xp
2

 x
2

collect subs (4.1), (4.2), (4.4) , ugamma s

A2 =
2  s  p s

Es
2

 p s
2

Es
2

 s
2

Es
2  u s 2

2  xp 2  x  s
Es

2  x 2  xp  p s

Es
 u s

we get terms quadratic in Δ that are actually important in this calculation. The terms linear in x and xp 
average to 0 and we are left with
lhs (4.5) = simplify op 1, rhs (4.5)

A2 =
 s

2
2  s  p s  p s

2
 u s 2

Es
2

We see that the emittance change depends on a function of dispersion and Twiss parameters:
s  = simplify op 1, rhs (4.6)

s =  s
2

2  s  p s  p s
2

sometimes called normalized dispersion. This needs to be integrated around one turn, weighted with 
the no. of photons emitted:
lhs (4.6)

s

 = 
1

c s

Int subs rhs (4.7) = lhs (4.7) , rhs (4.6) Ngamma ugamma s , s

A2

s

=

s  u s 2 N u s

Es
2 ds

c s
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We convert to a differential:
diff Asq t , t = rhs (4.8)

Asq
.

t =

s  u s 2 N u s

Es
2 ds

c s

and integrate
dsolve (4.9), Asq t

Asq t =
s  u s 2 N u s ds  t

Es
2 c s

_C1

We add this growth term (_C1=0) to the damping term in (3.16) and get a modified diff. equation:
lhs (3.16) A t = rhs (3.16) A t  rhs (4.9)

2 
d
dt

A t  A t =
A t 2 U

s Es

s  u s 2 N u s

Es
2 ds

c s

A t 2 = collect rhs dsolve (4.11), A t 1
2
, exp

A t 2 = _C1 e

U  t

s
 E

s
s  u s 2 N u s ds

Es c U

from which directly follows that the asymptotic emittance is
lhs (4.12) = op 2, rhs (4.12)  # for some reason limit fails to see this

A t 2 =
s  u s 2 N u s ds

Es c U

We now know the importance of (s) in finding the equilibrium emittance. (We also know that the 
damping time is not affected, merely the eq. value). To get this in a quantitative form for the 
emittance, we still need to find out N (u ). We will leave that computation for later and quote the 
result here:

N gamma s =
5

2 sqrt 3
alpha f c

rho s
gamma

N s =
5 f c  3

6 s
where αf  is the fine-structure constant (≈1/137) and ρ(s), the local bending radius.

To make use of these relations we need to evaluate N u 2 for the parameters of a given lattice. The 
calculations necessary to derive these formulae are tedious and not particularly enlightening, so we 
opt to quote the results without derivation instead.
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(4.9)(4.9)
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(4.24)(4.24)

(4.2)(4.2)

(4.14)(4.14)

(4.6)(4.6)

(4.17)(4.17)

We will give the results in terms of the so-called synchrotron-radiation integrals, These integrals (in 
essence, averages) of quantities used to calculate beam emittances and other quantum-emission-
related quantities. 

The 6 radiation integrals, typically written as ℐ, are:

1
= Int

eta s
rho s

, s = 0 ..C

1
=

0

C
s
s

ds

2
= Int

1
rho s 2 , s = 0 ..C

2
=

0

C
1

s
2 ds

3
= Int

1
abs rho s 3 , s = 0 ..C

3
=

0

C
1

s
3 ds

4
= piecewise sectormagnet = true, Int

eta s

rho s 3 1 2 rho s 2 k s , s = 0 ..C ,

rectangularmagnet = true, int
2 eta s k s

rho s
, s = 0 ..C

4
= 0

C
s  1 2 s

2
 k s

s
3 ds sectormagnet = true

0

C
2 s  k s

s
ds rectangularmagnet = true

(programmatically one can define the the magnet-type Booleans used in ℐ4 and then use that equation
directly in Maple.)

5
= Int

s

abs rho s 3 , s = 0 ..C

5
=

0

C
s

s
3 ds

6
= Int k s 2 eta s 2, s = 0 ..C
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6
=

0

C
k s 2 s

2
ds

We limit ourselves here to the horizontal plane; if vertical bending is present the forms for the vertical
plane have to be used (by adding the vertical plane for ρ(s) and η(s) to the kernel of ℐ1 to ℐ3, and by
evaluating ℐ4 to ℐ6 for the vertical plane where applicable). For a given machine lattice, these 
integrals can be evaluated piecewise along each (dipole) magnet of the lattice.

With these integrals in hand, we can cite the results for the horizontal equilibrium emittance:

x =
Cq

2

5

Jx 2

x =
Cq 

2
 

5

Jx 2

The vertical emittance is only enlarged by the finite emission angle of the radiated γ rays. This limit is 
very small although modern light-source rings strive to get close to this quantum-emission limit. It is

z =

Cq z s avg
1

rho s 3
avg

2 Jz
1

rho s 2
avg

z =

Cq z s
avg

 
1

s
3

avg

2 Jz 
1

s
2

avg

The quantum nature of the radiation also affects the energy spread of the beam, with the equilibrium 
energy spread being

E

E
= sqrt

Cq 3

2
2 4, x 4, z

E

E
=  

Cq 
3

2 
2 4, x 4, z

In the abovem the constant is

Cq =
55

32 sqrt 3
c

me

Cq =
55  c 3

96 me

evalf subs Constants, subs m e = m_e, = hbar, (4.24)
Cq = 3.83193860377186 10 13
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(4.12)(4.12)
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Cq = 3.8319E 13 # m

Cq = 3.8319 10 13

Note that the energy spread does not depend on the rf voltage at all, although the rf parameters (and 
the slip factor η) will determine the bunch length and, thus, the longitudinal beam emittance. The 
formula for the horizontal emittance has the expected dependence on the normalized dispersion (s), 
which is easily obtained from the lattice parameters.

It should be noted that the damping partitions can also be expressed in terms of the radiation 
integrals:

Jx = 1 4, x

2

Jx = 1 4, x

2

Jz = 1 4, z

2

Jz = 1 4, z

2

Je = 2 4, x 4, y

2

Je = 2 4, x 4, y

2

Quantum life time
The beam at equilibrium emittance is in a dynamic equilibrium. Individual particles damp down and 
periodically get excited to larger amplitude only to damp down again towards 0. So there is a constant
exchange of particles in the core of the beam and in the tail. This makes it impossible to shape the 
distribution of an electron beam; a scraped-off tail gets replenished within a damping time, at an 
overall loss in intensity. In fact, too tight an aperture and beam lifetime severely suffers due to this 
effect. We can calculate the beam lifetime as follows:
At equilibrium and in the absence of an aperture (collimator), the outflow and inflow through a 
certain amplitude must balance. Since

subs solve (3.18), U gamma , (3.16)
1
2

d
dt

A t =
A t

d

the flow of electrons through a certain amplitude (emittance) A0
2 can be written as
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N h A 0 2 subs A t = A t 2, (5.1)

N h A0
2  

d
dt

A t 2 =
N h A0

2  A t 2

d

where h(A2
0) is the density of the beam at amplitude A2

0 and A(t) has to be taken at A0 as well. If we 
place an aperture at this amplitude, the inflow stops while the outflow remains and therefore

diff N t , t = subs N = N t , A t = A 0 , rhs (5.2)

N
.

t =
N t  h A0

2  A0
2

d

This is solved rather simply:
dsolve (5.3)

N t = _C1 e

h A
0
2  A

0
2 t

d

with

tau q =
1

coeff op 2, 1 , rhs (5.4) , t

q = d

h A0
2  A0

2

Since the amplitude density h(A2) for a Gaussian beam is

h A 0 2 =
e

A 0 2

A
avg
2

Aavg
2

h A0
2 =

e

A
0
2

A
avg
2

Aavg
2

with A2
avg = 2 σ2, we have

tau q = simplify subs h A 0 2 = rhs (5.6) , rhs (5.5)

q =
e

A
0
2

A
avg
2

 Aavg
2  d

A0
2

We should plot this to get a feeling for the numbers.

Eq. (5.7) suggests a way to measure Aavg: using a collimator or other suitable aperture we measure 
beam lifetime vs the position of the aperture. The figure below shows such measurement. Since the 
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beam width is encoded in the slope the method does not depend on a precise knowledge of the closed
orbit, a significant advantage. Since the quantum lifetime becomes very short for apertures < 5 σ, it is 
in essence a tail scan and thus relying on the beam's shape in fact being Gaussian. For electron beams
this is the case to a high degree of accuracy. A similar measurement of the energy spread is possible 
by varying the rf voltage as shown in the second figure below. 

Figure: Horizontal Collimator scan in the PEP-II High Energy Ring
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Figure: Energy acceptance scan of the PEP-II Low Energy Ring

We have now worked out the expressions for radiation power, damping and quantum lifetime. 
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Low Emittance Lattices

Introduction
Users of Synchrotron Light-Sources demand higher photon beam brilliance (B) to carry out their 
experiments. Brilliance is defined as

B =
F

4 
2

x y

=
photons

s 0.1%BW  mm2 mrad2 A
:

where F is the flux of photons within 0.1% energy bandwidth.
Therefore storage ring of synchrotrons light sources require low beam emittances in order to 
increase the brilliance of light produced by the accelerated particles. 
Even in the limit of "zero" beam emittance, the phase space of the emitted radiation from particles 
traversing a curve path is itself finite due to diffraction effects at the source. For single-mode photon
emission, the diffraction-limited "emittance" of the photon beam is given by;

(photon) ≤ λ/(4π) = 98.66 pm rad/E /keV,
being λ the X-ray wavelength and E  the photon energy in keV. Thus for energies of 1, 5 and 10 
keV the corresponding electron beam emittances should be smaller than 100, 20 and 10 pm rad if 
we want to operate the accelerator in the diffraction limited regime.

Figure-1. Electromagnetic spectrum in terms of wavelength, frequency and energy.
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(1.2.1)(1.2.1)

Figure-2. Evolution of the natural emittance.

Emittance Calculation
The emittance is determined by two competing processes, quantum excitation of betatron 
oscillations due to photon emission and longitudinal re-acceleration by the RF cavities. The basic 
formula to calculate the natural emittance (ε0) of a ring is,

epsilon 0
C q gama r H mag

Jp x rho
:

 C q 3.841 1013 : # m units

gama r
E

0.511 10 3 :

gamar is the relativistic Lorentz factor, Jpx is the partition number (equal to 1 if no gradient dipoles 
are used), ρ is the bending radius and Hmag is defined as,

H mag
0

L ring
gama t

2
2 '    '2 dx ;

Hmag
0

L
ring

gamat 
2

2   x  x
2

dx

where ,  and gamat are the position dependent Twiss parameters and η, η' are the dispersion and 
dispersion divergence, respectively. The lattice design process aims to minimise the quantity Hmag.



USPAS at UT Austin Accelerator Physics with Maple Low Emittance Lattices

197

(1.3.1)(1.3.1)

Radiation Integrals
Usually the emittance is expressed as a function of the so-called Radiation Integrals, which were 
introduced in previous chapter:

RI 1

0

L ring
x

 dx;

RI 2

0

L ring
1
2  dx;

RI 3

0

L ring
1
3  dx;

RI 4

0

L ring
x 1

2 2 k 1  dx;

RI 5
H mag

3  ;

RI1
0

L
ring

x
dx

RI2

Lring
2

RI3

Lring
3

RI4

0

L
ring x  

1
2 2 k1

dx

RI5
0

L
ring

gamat 
2

2   x  x
2

dx

3

The natural emittance can be expressed in terms of the radiation integrals as;

epsilon 0
C q gama r RI 5

Jp x RI 2
;
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(1.3.2)(1.3.2)

(1.4.1.1)(1.4.1.1)

(1.3.3)(1.3.3)

0

7.51663405088061 1016 E 
0

L
ring

gamat 
2

2   x  x
2

dx

 Jpx Lring

Lattice Examples
We are going to study 3 different lattices, FODO, Double Bend Achromat (DBA) and Theoretical 
Minimum Emittance (TME). 

FODO
To simplify the system the quadrupoles are represented by thin lenses and the space between 
them is completely filled by dipoles (certainly it is not a realistic assumption).

with Lattice :
QFh  Quad 0, k / 2, 0 :
QDh  Quad 0, k / 2, 0 :
HB  Bend l, theta, 0 :
DB  Drift l :
FODO  DefineLine QFh, HB, QDh, QDh, HB, QFh :
FODOs  DefineLine QFh, DB, QDh, QDh, DB, QFh :
#Rmat := LinearAlgebra:-SubMatrix(FODO[R], [1, 2], [1, 2]);
#Trmat := `~`[simplify](subs(l = rho*theta, LinearAlgebra:-Trace(Rmat)));
#pha := sqrt(.5*Trmat-1);
#R12 := `~`[simplify](subs(l = rho*theta, Rmat[1, 2]));

Let's obtained the expressions of the phase advance for a FODO cell in terms of the strength and
length of the quadrupoles and dipoles, respectively.
cmux simplify cosmux FODOs ;
cmuy simplify cosmuy FODOs ;

cmux 1
l2 k2

2

cmuy 1
l2 k2

2
We can express the strength of the quadrupoles in terms of the phase advance;
sols  solve cmux = cos mux , k ;

sols k =
2 2 cos mux

l
, k =

2 2 cos mux
l

The values of βx, αx and ηx can be easily obtained as,
tw simplify~ twiss FODOs   assuming mux 0, mux Pi;
disp simplify~ dispersion FODO ;
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(1.4.1.5)(1.4.1.5)

(1.4.1.4)(1.4.1.4)

(1.3.2)(1.3.2)

tw

2 l l k 2

l2 k2 l2 k2 4

0

l k2 l k 2

2 l2 k2 l2 k2 4

2 l l k 2

l2 k2 l2 k2 4

0

l k2 l k 2

2 l2 k2 l2 k2 4

disp

2 l l k cos 2 sin  l k

sin  l2 k2 4 
2

0

0

0

In terms of the phase advance we obtained the following expressions for x, αx and ηx ;
 twissmux simplify~ subs (1.4.1.2) 1 1 , l = 1, tw  assuming mux 0, mux Pi;
twissmux

2 2 cos mux 2
sin mux

, 

0 , 

2 2 cos mux  cos mux 2 2 cos mux 2 cos mux 2
2 sin mux

, 

2 2 cos mux 2
sin mux

, 

0 , 

2 2 cos mux  cos mux 2 2 cos mux 2 cos mux 2
2 sin mux

dispmux simplify~ subs (1.4.1.2) 1 1 , l = 1, disp   assuming mux 0, mux Pi;
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(1.4.1.7)(1.4.1.7)

(1.3.2)(1.3.2)

dispmux

2 2 cos mux  cos 2 sin  2 2 cos mux

sin  2 
2

cos mux 1

0

0

0

We have all the ingradients to calculate the value of I5 for the FODO arc under the assumption 
of small θ;
FODOe ExpandLine FODO :
I2FODO I2 FODOe ;
I5  I5x FODOe, tw, disp :
I5_2 simplify~ subs (1.4.1.2) 1 1 , I5  :
I5approx convert series I5_2, theta, 12 , polynom ;

I2FODO
2 

2

l

I5approx
44 cos mux 3

15
5 cos mux 2 44 cos mux

15
151
30

cos mux 4

30
 csgn sin mux  

5
sin mux  l 1 cos mux 3

cos mux 2 cos mux

The ratio between the radiation integrals is;
emittFODO I5approx / I2FODO / theta^3;  

When plotting emittance as a function of µx we can observe the existence of a minimum around 
3π/4;
plot subs l = 1, emittFODO , mux = 0 ..Pi, gridlines, view = default, 0 ..10 ;
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mux
8 4

3 
8 2

5 
8

7 
8

0

2

4

6

8

10

We can evaluate the value of µx which minimises ϵx,
UseHardwareFloats deduced :
Digits 40 :
minmux fsolve diff emittFODO, mux = 0, mux = 0 ..Pi ;
evalf convert minmux, degrees ;
Digits 15 :
eminFODO  evalf subs mux = minmux, emittFODO ;# C q gama r ;

minmux 2.390616892178279416721623135695584567003

136.9722583544967894268409603732244209392 degrees

eminFODO 1.23048173467206
The βx,y and ηx throughout the FODO cell are shown in the following plot;
tmin subs mux = minmux, twissmux :
dmin subs mux = minmux, theta = 0.2, dispmux :

 QFmin  Quad 0, 
1

  sqrt 2
, 0 :

 QDmin  Quad 0, 
1

sqrt 2
, 0 :

 HBmin  Bend 1, 0.12327, 0 :
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 FODOmin  DefineLine QFmin, HBmin, QDmin, QDmin, HBmin, QFmin, QFmin, HBmin,
 QDmin, QDmin, HBmin, QFmin :

Pmin LatticePlot FODOmin, tmin, dmin :
#plots: display Pmin 1 , Pmin 2 , Pmin 3 , labels = typeset `s`, " (m)" , typeset `beta`,

" (m)" , title = "Twiss and Disp"
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Figure-5. βx,y and ηx functions in the FODO arc obtained by MAD-X.

Figure 5 compares the obtained β and η functions along a FODO cell by MAPLE (upper) and 
MAD-X (bottom). Very little differences are observed between the plots.
The behaviour of Hmag along the arc is shown in the figure below. It can be seen that dispersion 
is not cancel outside the cell and relatively large inside the dipoles.
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Figure-6. Hmag function along the FODO arc (obtained by MAD-X).

How we can design a lattice with a smaller natural emittance? One way would be to minimise the 
value of I5 in (1.3.2) which traduces into a reduction of Hmag. This can be done by minimising the 
dispersion function. This is the key point of the design of the double bend achromat (DBA) cell or 
also known as Chasman-Green cell. 

DBA
The double bend achromat consists of 2 dipoles where  and η' vanish upstream and 
downstream of the first and second dipoles of the DBA cell respectively. This is achieved by 
means of a central quadrupole responsible for changing the sign of the η'. Additional quadupoles
are required upstream and dowstream of the first and second dipoles respectively for keeping the
Twiss functions bounded.
Sextupoles are also required between the dipoles (dispersion region) for correcting the 
chromaticity introduced by the central quadrupole.
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Figure-7. βx,y and η functions throughout DBA cell (obtained by MAD-X).

This type of lattice is of particular interest for light sources since it offers free dispersion 
sections, ideal for insertion devices as wigglers and undulators. 
As mentioned, η and η' are zeroed at the exit of the second dipole thanks to the central 
quadrupole. The strength of this quadrupole can be easily calculated assuming thin lens 
approximation;

dispeq LinearAlgebra Multiply
1 0

k_mid 1
,

m

' m
=

m

' m
;

dispeq
m

k_mid m x m

=
m

x m

solve dispeq 2 , k_mid ;
2 x m

m

The dispersion in a dipole evolves as;
HB  Bend l, theta, 0 :
DBAbende ExpandLine HB :

'
= LinearAlgebra Multiply HB R 1 ..2, 1 ..2 ,

0

' 0

1 cos

sin
;
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(1.4.2.4)(1.4.2.4)

(1.4.2.3)(1.4.2.3)
x

=

cos  0

sin  l x 0 1 cos

sin   0

l
cos  x 0 sin

The values of η and η' at the exit of the dipole are;
subs 0 = 0, ' 0 = 0, (1.4.2.3) ;  

x
=

1 cos

sin

For the evaluation of I5 we just need the contribution from the bending magnets. Due to 
symmetry reasons, we can evaluate I5 for a single dipole of length (L) and angle (θ). The 
strategy is to assume arbitrary values of bx0 and ax0 at the entrance of the dipole and afterwards 
minimise I5 against these parameters.

twissDBA TwissTran HB, bx 0 , ax 0 ,
1 ax 0 2

bx 0
, 0, 0, 0 :

dispDBA EtaTran HB, 0, 0, 0, 0 : 
I2DBA subs l = rho theta, I2 DBAbende ;

I5DBAh simplify~ I5x DBAbende, bx 0 , ax 0 ,
1 ax 0 2

bx 0
, 0, 0, 0 , 0, 0, 0,

0 ;

I5DBA_approx convert series I5DBAh, theta, 6 , polynom ;

I2DBA

I5DBAh
1

2 l2 bx0

sin  cos  l2 ax0
2 sin  cos  

2
 bx0

2

2 cos
2
 l  ax0 bx0 4 sin  l2 ax0

2 4 cos  l  ax0 bx0 3 l2  ax0
2

3
 bx0

2 sin  cos  l2 2 l ax0  bx0 4 sin  l2 3 l2 

I5DBA_approx

1
10

 l2 ax0
2 2

3
 bx0

2 1
2

 l ax0 bx0
1
10

 l2  
5

2 l2 bx0

The first derivative of I5_approx with respect ax0 and bx0 would allow us to determine the 
minimum emittance for the DBA cell.

min_a diff I5DBA_approx, ax 0 ;
min_b  diff I5DBA_approx, bx 0 ;
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(1.4.2.7)(1.4.2.7)
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min_a

1
5

 l2 ax0
1
2

 l bx0  
5

2 l2 bx0

min_b

4 bx0

3

l ax0

2
 

5

2 l2 bx0

1
10

 l2 ax0
2 2

3
 bx0

2 1
2

 l ax0 bx0
1
10

 l2  
5

2 l2 bx0
2

Solving the system of equation for  ax0 and bx0.
sols solve min_a = 0, min_b = 0 , ax 0 , bx 0 , explicit ; 

sols ax0 = 15 , bx0 =
2 l 15

5
, ax0 = 15 , bx0 =

2 l 15
5

The natural emittance of DBA cell for small values of θ is;

eminDBA simplify~
subs sols, l = rho theta, I5DBA_approx

I2DBA 
3 ;#C q gamma r ;

eminDBA
15

60
Again, this result is only valid when θ is small and the dipoles do not have quadrupole 
component (Jpx=1).
Comparing the minimum emittance of the DBA lattice to the one obtained for the FODO with 
µx=137 deg;

evalf
eminFODO
eminDBA

;

19.0625410647892

The typical behaviour of the Hmag function along the DBA cell is;
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Figure-8. Hmag function along the DBA arc (obtained by MAD-X).

This is a significant improvement, however ϵx can be further reduced by relaxing the constraints 
imposed on the dispersion outside the arc. This leads us to the TME lattice.

TME
The Theoretical Minimum Emittance lattice follows a similar strategy as the DBA, but now 0
and η'≠0 outside the arc. The value of I5 is then minimised against βx0, αx0, η0 and η'0.
HB  Bend l, theta, 0 :
TMEbende ExpandLine HB :
I2TME subs l = rho theta, I2 TMEbende ;
 I5TMEh simplify~ I5x TMEbende, bx 0 , ax 0 , gx 0 , 0, 0, 0 , eta 0 , etap 0 , 0,

0 :
 I5TME_approx convert series I5TMEh, theta, 6 , polynom ;

I2TME

I5TME_approx
2 ax0

2 0
2

4 ax0 bx0 0 etap0 2 bx0
2 etap0

2 2 0
2

 
3

2 l2 bx0

1
2 l2 bx0

2 bx0
2 etap0

2
3

 0 l
2
3

 l ax0
2 0 2 ax0 bx0 0

2
3

 l ax0 bx0 etap0  
4
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(1.3.2)(1.3.2)

(1.4.3.1)(1.4.3.1)

1
10

 l2 ax0
2 2

3
 bx0

2 1
2

 l ax0 bx0
1
10

 l2  
5

2 l2 bx0

Now we minimised the approximate expression of I5 against the  bx0, ax0, η0 and η'0.
min_a diff I5TME_approx, ax 0 ;
min_b  diff I5TME_approx, bx 0 ;
min_eta  diff I5TME_approx, eta 0 ; 
min_etap  diff I5TME_approx, etap 0 ;  

min_a
4 ax0 0

2
4 bx0 0 etap0  

3

2 l2 bx0

4
3

 l ax0 0 2 bx0 0
2
3

 l bx0 etap0  
4

2 l2 bx0

1
5

 l2 ax0
1
2

 l bx0  
5

2 l2 bx0

min_b
4 ax0 0 etap0 4 bx0 etap0

2  
3

2 l2 bx0

2 ax0
2 0

2
4 ax0 bx0 0 etap0 2 bx0

2 etap0
2 2 0

2
 

3

2 l2 bx0
2

4 bx0 etap0 2 ax0 0
2
3

 l ax0 etap0  
4

2 l2 bx0

1
2 l2 bx0

2 2 bx0
2 etap0

2
3

 0 l
2
3

 l ax0
2 0 2 ax0 bx0 0

2
3

 l ax0 bx0 etap0  
4

4 bx0

3

l ax0

2
 

5

2 l2 bx0

1
10

 l2 ax0
2 2

3
 bx0

2 1
2

 l ax0 bx0
1
10

 l2  
5

2 l2 bx0
2

min_eta
4 ax0

2 0 4 ax0 bx0 etap0 4 0  
3

2 l2 bx0
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(1.4.3.2)(1.4.3.2)

(1.3.2)(1.3.2)

(1.4.3.1)(1.4.3.1)

2
3

 l
2
3

 l ax0
2 2 ax0 bx0  

4

2 l2 bx0

min_etap
4 ax0 bx0 0 4 bx0

2 etap0  
3

2 l2 bx0

2 bx0
2 2

3
 l ax0 bx0  

4

2 l2 bx0

Again we look for the minimum of the emittance with respect to bx0, ax0, η0 and η'0.
min_a diff I5TME_approx, ax 0 ;
min_b  diff I5TME_approx, bx 0 ;
min_eta  diff I5TME_approx, eta 0 ; 
min_etap  diff I5TME_approx, etap 0

min_a
4 ax0 0

2
4 bx0 0 etap0  

3

2 l2 bx0

4
3

 l ax0 0 2 bx0 0
2
3

 l bx0 etap0  
4

2 l2 bx0

1
5

 l2 ax0
1
2

 l bx0  
5

2 l2 bx0

min_b
4 ax0 0 etap0 4 bx0 etap0

2  
3

2 l2 bx0

2 ax0
2 0

2
4 ax0 bx0 0 etap0 2 bx0

2 etap0
2 2 0

2
 

3

2 l2 bx0
2

4 bx0 etap0 2 ax0 0
2
3

 l ax0 etap0  
4

2 l2 bx0

1
2 l2 bx0

2 2 bx0
2 etap0

2
3

 0 l
2
3

 l ax0
2 0 2 ax0 bx0 0

2
3

 l ax0 bx0 etap0  
4

4 bx0

3

l ax0

2
 

5

2 l2 bx0

1
10

 l2 ax0
2 2

3
 bx0

2 1
2

 l ax0 bx0
1
10

 l2  
5

2 l2 bx0
2
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(1.4.3.5)(1.4.3.5)

min_eta
4 ax0

2 0 4 ax0 bx0 etap0 4 0  
3

2 l2 bx0

2
3

 l
2
3

 l ax0
2 2 ax0 bx0  

4

2 l2 bx0

min_etap
4 ax0 bx0 0 4 bx0

2 etap0  
3

2 l2 bx0

2 bx0
2 2

3
 l ax0 bx0  

4

2 l2 bx0

Solving the system of 4 equations will provide the values of bx0, ax0, η0 and η'0 that minimise 
the emittance.
sols solve min_a = 0, min_b = 0, min_eta = 0, min_etap = 0 , ax 0 , bx 0 , eta 0 ,

etap 0 , explicit ;

sols ax0 = 15 , bx0 =
8 l 15

15
, 0 =

l 
6

, etap0 =
2

, ax0 = 15 , bx0

=
8 l 15

15
, 0 =

l 
6

, etap0 =
2

The minimum emittance corresponds to substituing the values obtained in (1.4.3.4) in (1.4.3.1).

eminTME simplify~ subs l = rho theta,
subs sols, I5TME_approx

I2TME 
3 ;

#C q gamma r ;

eminTME
15

180
Comparing to the minimum natural emittance of the DBA lattice, there is a factor 3 reduction.

evalf
eminDBA
eminTME

;

3.
For completeness we show below the twiss, dispersion and Hmag functions along the TME cell.
Error, missing operator or `;`
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Figure-9. βx,y and η functions along a TME cell (obtained by MAD-X).

The H function in a TME is relatively small compared to a FODO or DBA cells.
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                                                 Figure-10. Hmag function along the TME arc (obtained by MAD-X).

By symmetry, the TME cell contain a single dipole. However outside the dipole η is relatively 
large which may preclude the installation of insertion devices. One way around is to break the 
symmetry and vanish the dispersion at specific locations. 

MBA
The next step in low-emittance lattice design is the Multiple Bend Achromat (MBA) arc. It 
consists on combining DBA and TME cells. The outer cells are DBA-likewise for satisfying the
achromat condition. The inner ones are TME-likewise to minimise Hmag. Moreover it has been 
observed that lower emittances can be achieved when the deflection angle of the outer magnets is
smaller than the ones of the middle dipoles (longitudinal gradient dipoles). 
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(1.3.2)(1.3.2)

(1.4.4.1)(1.4.4.1)

(1.4.1.6)(1.4.1.6)

(1.4.3.1)(1.4.3.1)

Figure-11.  βx,y and η functions aloing the 7 MBA cell of the MAX-IV storage ring.

Assume each arc has a fixed number M of dipoles and the bending angle is 

M
2 pi

M N cells
:

Figure-12. Arc cell of a MBA lattice. Blue and red colors represent the DBA and MBA dipoles.

The bending angles of the inner and outside dipoles satisfy (assuming same radius):
2  M 2 = M;

2 M 2  = M

isolate (1.4.4.1) = M,
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(1.4.4.2)(1.4.4.2)

(1.4.4.3)(1.4.4.3)

(1.3.2)(1.3.2)

(1.4.1.6)(1.4.1.6)

(1.4.4.4)(1.4.4.4)

(1.4.3.1)(1.4.3.1)

=
2 M
M 2

Since the synchrotron radiation integrals are additive, I5 and I2 for an MBA arc are,

I5MBA simplify eminDBA 2 
 

4

eminTME M 2
 

4

;

I2MBA simplify
2  M 2  

;

I5MBA
15  

4
 

4
 M 6 

4
2 

4

180 

I2MBA
  M 2 2 

Therefore I5/I2 is;

MBAratio collect
180

sqrt 15
3

I5MBA
I2MBA

, ;

 subs (1.4.4.2), MBAratio ;

MBAratio
M 2  

4
6 

4

2 M 2  

2 M
4

M 2 3 6 
4

M

istep collect subs M 2 = C, (1.4.4.4) , C3 ;
makefrac  ``@numer / ``@denom :
istep2 simplify numer makefrac istep , power ;
istep3  6  C3 4

factor expand~ istep2 6  C3 4
;

eq1  diff istep3, = 0;

istep4
 eq1 8 M 2 

3

8
;

istep5  root 3 subs C = M 2, lhs istep4 , symbolic = simplify  root 3 rhs istep4 ,
symbolic ;

aval  solve istep5, ;
bval simplify subs = aval, rhs (1.4.4.2) ;
bval
aval

;

istep
6 

4

M
2 M

4

M C3

istep2 6 
4
 C3 M4 8 M3 24 M2 

2
32 M 

3
16 

4

istep3 6 
4
 C3 2 M

4
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(1.4.4.5)(1.4.4.5)

(1.4.4.2)(1.4.4.2)

(1.3.2)(1.3.2)

(1.4.4.6)(1.4.4.6)

(1.4.1.6)(1.4.1.6)

(1.4.3.1)(1.4.3.1)

eq1 24 
3
 C3 8 2 M

3
= 0

istep4 3 
3
 C3 = 2 M

3

istep5  M 2  31 3 = 2 M

aval
M

31 3 M 2 31 3 2

bval
31 3 M

31 3 M 2 31 3 2

31 3

MBAfactor simplify~ subs = aval, = bval, MBAratio  ;

MBAfactor
3 M3

31 3 M 2 31 3 2
3

It is worth mentioning that the obtained expression reproduces the result obtained for the DBA 
case (M=2); The result approaches to the TME result as long as we increase the number of 
dipoles. Typically this expression is approximate by (M+1)/(M-1)
evalf subs M = 2, MBAfactor ;
limit MBAfactor, M = infinity ;

plots multiple plot, MBAfactor, M = 2 ..10 ,
M 1
M 1

, M = 2 ..10 ;

3.

1
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(1.4.4.8)(1.4.4.8)

(1.4.4.2)(1.4.4.2)

(1.3.2)(1.3.2)

Table 1: Obtained coefficients of the natural emittance for different lattices assuming small angle and pure dipole componentTable 1: Obtained coefficients of the natural emittance for different lattices assuming small angle and pure dipole component

(1.4.4.7)(1.4.4.7)

(1.4.1.6)(1.4.1.6)

(1.4.3.1)(1.4.3.1)

M
2 3 4 5 6 7 8 9 10

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

SUMMARY TABLE

Lattice 
Type

Minimum Emittance [ Cq
2 3 ] Conditions

FODO 1.2  µx=137

DBA

1

4 15
=η'=0

TME

1

12 15
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(1.4.4.8)(1.4.4.8)

(1.4.4.2)(1.4.4.2)

(1.3.2)(1.3.2)

Table 1: Obtained coefficients of the natural emittance for different lattices assuming small angle and pure dipole componentTable 1: Obtained coefficients of the natural emittance for different lattices assuming small angle and pure dipole component

(1.4.4.7)(1.4.4.7)

(1.4.1.6)(1.4.1.6)

(1.4.3.1)(1.4.3.1)

MBA
1

12 15
  

M 1
M 1

References
A. Wolski, Low Emittance Storage Rings, arXiv : 150702213 v1, 2015.
A.W. Chao and M. Tigner, Handbook of Accelerator Physics and Engineering, 3 rd. printing,
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(1.18)(1.18)

(1.4)(1.4)

(1.11)(1.11)

(1.7)(1.7)

(1.2)(1.2)

(1.14)(1.14)

(1.13)(1.13)

(1.1)(1.1)

(1.8)(1.8)

(1.9)(1.9)

(1.17)(1.17)

(1.3)(1.3)

(1.5)(1.5)

(1.15)(1.15)

(1.19)(1.19)

(1.6)(1.6)

(1.12)(1.12)

(1.16)(1.16)

(1.10)(1.10)

Undulator motion and radiation
Wigglers and undulators are segmented magnets with periodically alternating polarity, causing the 
particles (usually electrons) to undergo a wiggling motion. The difference between the two is strictly 
quantitative: a wiggler typically has large-amplitude wiggles of relatively long wavelength whereas an
undulator has small-amplitude wiggles of relatively short wavelength. This is parameterized in terms 
of the undulator parameter K, which we will discuss later.
The field equation of the undulator can be written down as
B z = B0 sin k u z

B z = B0 sin ku z

where we conveniently ignore end effects. 

It can be shown by integrating the equations of motion with this field that the trajectory through the 
undulator is approximately

x t =
 sin k u  c t

k u

x t =
 sin ku c t

ku

and
y t = c t

y t = c t

where κ is
q * B0 c / m0 * gamma * k u =

q B0 c
m0  ku

=

(ignoring that the average velocity along the axis is actually slower due to the wiggles).
 is the initial angle to make the average trajectory straight in x:

=
K

=
K

with K defined as below and noting that me below does not include the c2, whereas m0 does.
We can do a parametric plot of this:

plot subs k u =
2
0.02

, =
1

20000
, Constants, rhs (1.3) , rhs (1.2) , t = 0 ..10 9 , labels

= typeset 'c t ' , typeset 'x '
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(1.18)(1.18)

(1.4)(1.4)

(1.11)(1.11)

(1.7)(1.7)

(1.2)(1.2)

(1.14)(1.14)

(1.13)(1.13)

(1.1)(1.1)

(1.8)(1.8)

(1.9)(1.9)

(1.17)(1.17)

(1.3)(1.3)

(1.5)(1.5)

(1.15)(1.15)

(1.19)(1.19)

(1.6)(1.6)

(1.12)(1.12)

(1.16)(1.16)

(1.10)(1.10)

c t
0.05 0.10 0.15 0.20 0.25

x

1. 10 - 7
0

1. 10 - 7

The maximum angle of the trajectory against the axis of the device can be calculated as follows:

Theta =
int B0 sin k u z , z = 0 ..

lambda u
4

Brho

=
B0 cos

ku u

4
1

ku Brho

simplify subs lambda u =
2 Pi
k u

, (1.6)

=
B0

ku Brho

and can be shown to be 

Theta =
K

gamma

=
K

with

K =
q B0 c

m0 ku

K =
q B0 c

m0 ku

In general terms we speak of wigglers when K>>1 and of undulators when K 1 or less.

Just as a regular dipole, the electrons emit radiation, in this case at every wiggle, except in this case 
the radiation from each wiggle adds coherently to narrow the spectrum significantly, depending on 
the travel time between the wiggles of the photons and the electrons.
The time it takes for an electron to travel one undulator period is

t e =
lambda u
c beta avg
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(1.18)(1.18)

(1.4)(1.4)

(1.11)(1.11)

(1.7)(1.7)

(1.2)(1.2)

(1.14)(1.14)

(1.13)(1.13)

(1.1)(1.1)

(1.8)(1.8)

(1.9)(1.9)

(1.17)(1.17)

(1.3)(1.3)

(1.5)(1.5)

(1.15)(1.15)

(1.19)(1.19)

(1.6)(1.6)

(1.12)(1.12)

(1.16)(1.16)

(1.10)(1.10)te = u

c avg

We will show below that βavg can be expressed approximately as

beta avg = beta 1
K2

4
2

avg =  1
K2

4 
2

and putting that into the travel time (1.10),
subs (1.11), (1.10)

te = u

c  1
K2

4 
2

During that time, the photon travels a distance
s ph = t e c

sph = te c

subs (1.12), (1.13)

sph = u

 1
K2

4 
2

which is ahead of the electron. We have constructive interference when the photon overtakes the 
electron by exactly one wavelength i.e. the path length difference is sph-λu:
lambda ph = collect rhs (1.14) lambda u , lambda u ;

ph =
1

 1
K2

4 
2

1  u

Figure: Electron trajectory and phase of radiation, from [21]
This can be shown to be, for K2/γ2 << 1,
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(2.10)(2.10)

(2.43)(2.43)

(1.14)(1.14)

(2.9)(2.9)

(2.39)(2.39)

(2.2)(2.2)

(1.9)(1.9)

(2.6)(2.6)

(2.27)(2.27)

(1.15)(1.15)

(1.6)(1.6)

(2.24)(2.24)

(1.12)(1.12)

(1.16)(1.16)

(1.7)(1.7)

(2.1)(2.1)

(2.12)(2.12)

(2.42)(2.42)

(2.11)(2.11)

(2.34)(2.34)

(2.41)(2.41)

(2.37)(2.37)

(2.35)(2.35)

(1.5)(1.5)

(2.21)(2.21)

(2.30)(2.30)

(2.40)(2.40)

(2.25)(2.25)

(1.11)(1.11)

(2.15)(2.15)

(2.19)(2.19)

(2.20)(2.20)

(1.13)(1.13)

(2.14)(2.14)

(2.4)(2.4)

(1.1)(1.1)

(2.36)(2.36)

(2.31)(2.31)

(1.3)(1.3)

(2.7)(2.7)

(2.23)(2.23)

(2.38)(2.38)

(1.10)(1.10)

(1.18)(1.18)

(2.28)(2.28)

(2.5)(2.5)

(2.22)(2.22)

(1.4)(1.4)

(1.2)(1.2)

(2.26)(2.26)

(2.18)(2.18)

(2.17)(2.17)

(1.8)(1.8)

(1.17)(1.17)

(2.13)(2.13)

(1.19)(1.19)

(2.16)(2.16)

(2.29)(2.29)

(2.32)(2.32)

lambda ph =
lambda u

2
2 1

K2

2

ph =
u 1

K2

2

2 
2

This is the wavelength of the fundamental harmonic of an undulator. 
The line shape can be approximately found by realizing that the total spectrum is made up from N 
periods of undulator wiggles, therefore the power will have a sin(πN)/πN shape and the width is 
approximately
omega

N

N
We quote (from Wiedemann II) the total radiated energy per electron through the undulator (m0 =
me*c2):

Delta E =
r e m 0

2
K2 k u 2 L u
3

E =
re m0 

2
 K2 ku

2 Lu

3

Because it is frequently used in  the s.r. community we define the spectral brightness:

B =
Diff N ph , t

4
2

sigma x sigma z sigma x ' sigma z ' d omega
omega

B =
t

Nph 

4 
2
 x z x  1 z x  d

FEL equations of motion
We will consider the basic motion of a relativistic electron in an undulator and derive the "pendulum 
equations" that indicate the ability of an electron beam to self-bunch and create the coherence that 
causes the lasing ability of the FEL

The magnetic field of an undulator is described as a sinusoidal variation along the z axis:
Bz z t = B 0 sin k u z t

Bz z t = B0 sin ku z t

ku is the wave number of the undulator. The equation of motion of an electron in the undulator 
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(2.21)(2.21)

(2.30)(2.30)

(2.10)(2.10)

(2.40)(2.40)

(2.25)(2.25)

(2.43)(2.43)

(2.15)(2.15)

(2.19)(2.19)

(2.20)(2.20)

(2.14)(2.14)

(2.4)(2.4)

(2.9)(2.9)

(2.39)(2.39)

(2.36)(2.36)

(2.2)(2.2)

(2.31)(2.31)

(2.6)(2.6)

(2.27)(2.27)

(2.7)(2.7)

(2.23)(2.23)

(2.24)(2.24)

(2.38)(2.38)

(2.28)(2.28)

(2.5)(2.5)

(2.22)(2.22)

(2.26)(2.26)

(2.1)(2.1)

(2.18)(2.18)

(2.17)(2.17)

(2.12)(2.12)

(2.42)(2.42)

(2.11)(2.11)

(2.34)(2.34)

(2.13)(2.13)

(2.41)(2.41)

(2.37)(2.37)

(2.35)(2.35)

(2.16)(2.16)

(2.29)(2.29)

(2.32)(2.32)

magnetic field is then
gamma m 0 diff v x t , t = c2q c rhs (2.1)

 m0 vx
.

t = c3 q B0 sin ku z t

We can integrate this trivially, using the approximation z(t)=ct:
int lhs (2.2) , t = int subs z t = c t, rhs (2.2) , t

 m0 vx t =
c2 q B0 cos ku c t

ku

subs v x t = v x , t =
z
c

, solve (2.3), v x t

vx =
c2 q B0 cos ku z

ku  m0

Knowing vx we can find an expression for the velocity alog the undulator axis vz obeying that the 
total cannot exceed c:

subs (2.4), subs
2

= 1
1
2 , v z = c sqrt beta2 v x 2

c2

vz = c 1
1
2

c2 q2 B0
2 cos ku z 2

ku
2 

2
 m0

2

To keep this manageable we again use the undulator parameter K from the previous section:
(1.9)

K =
q B0 c

m0 ku

subs solve (2.6), B 0 , (2.5)

vz = c 1
1
2

K2 cos ku z 2

2

We want to split this up into an average part and a varying part, which we can do to first order by 
noting the √(1-x) structure of (2.7) and doing a series expansion:

s1 lhs (2.7) = series subs 1
1
2

K2 cos k u  z 2

2 = freeze
1
2

K2 cos k u  z 2

2 1, rhs (2.7) , freeze
1
2

K2 cos k u z 2

2 , 2

s1 vz = c
1
2

 c freeze/R0 O freeze/R02

expand thaw convert s1, polynom

vz = c
c

2 
2

c K2 cos ku z 2

2 
2
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(2.21)(2.21)

(2.30)(2.30)

(2.10)(2.10)

(2.40)(2.40)

(2.25)(2.25)

(2.43)(2.43)

(2.15)(2.15)

(2.19)(2.19)

(2.20)(2.20)

(2.14)(2.14)

(2.4)(2.4)

(2.9)(2.9)

(2.39)(2.39)

(2.36)(2.36)

(2.2)(2.2)

(2.31)(2.31)

(2.6)(2.6)

(2.27)(2.27)

(2.7)(2.7)

(2.23)(2.23)

(2.24)(2.24)

(2.38)(2.38)

(2.28)(2.28)

(2.5)(2.5)

(2.22)(2.22)

(2.26)(2.26)

(2.1)(2.1)

(2.18)(2.18)

(2.17)(2.17)

(2.12)(2.12)

(2.42)(2.42)

(2.11)(2.11)

(2.34)(2.34)

(2.13)(2.13)

(2.41)(2.41)

(2.37)(2.37)

(2.35)(2.35)

(2.16)(2.16)

(2.29)(2.29)

(2.32)(2.32)

We convert the cos2 term into a term involving cos of twice the angle:
s2 lhs (2.9) = frontend expand, simplify applyop combine, 3, rhs (2.9)

s2 vz =
c K2 cos 2 ku z

4 
2

c K2

4 
2 c

c

2 
2

and select the terms not dependent on ku, which make up the average velocity:
v z, avg = collect add `if` type op i, rhs s2 , freeof k u , op i, rhs s2 , 0 , i = 1

..nops rhs s2 , c

vz, avg =
K2

4 
2 1

1

2 
2  c

whereas those dependent on  make up the oscillating part:
v z, osc = add `if` type op i, rhs s2 , dependent k u , op i, rhs s2 , 0 , i = 1

..nops rhs s2

vz, osc =
c K2 cos 2 ku z

4 
2

we also have gone back to using z instead ct for the longitudinal coordinate.
The FEL requires an interaction of the electron beam with an electromagnetic field that represents the 
light wave. In a planar undulator, the light will be horizontally polarized and therefore we have a 
horizontal transverse field
E x = E 0 cos k 1 z omega 1 t psi 0

Ex = E0 cos 1 t k1 z 0

k1 is the wave number of the light wave with the angular frequency ω1.
This field will interact with the horizontal component(!) of the motion of the electron, and it will 
actually change (slightly) the energy of the electron:
combine subs (2.4) , (2.13), m 0 diff gamma t , t = q v x E x , trig
m0 

.
t

=
1

2 ku  m0

q2 c2 B0 E0 cos 1 t k1 z ku z 0 q2 c2 B0 E0 cos 1 t

k1 z ku z 0

Note that we have now two contributions with waves of a different "effective" k: a sum and a 
difference of ku and k1. We will see that only one of them—the sum—eventually contributes to the 
motion. 

We will now define a phase wrt. to this wave number:
theta z = k 1 k u z omega 1 t avg

z = k1 ku  z 1 tavg

where tavg is given by

t avg = Int
1

v z, avg
, z
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(2.40)(2.40)

(2.25)(2.25)

(2.43)(2.43)

(2.15)(2.15)

(2.19)(2.19)

(2.20)(2.20)

(2.14)(2.14)

(2.4)(2.4)

(2.9)(2.9)

(2.39)(2.39)

(2.36)(2.36)

(2.2)(2.2)

(2.31)(2.31)

(2.6)(2.6)

(2.27)(2.27)

(2.7)(2.7)

(2.23)(2.23)

(2.24)(2.24)

(2.38)(2.38)

(2.28)(2.28)

(2.5)(2.5)

(2.22)(2.22)

(2.26)(2.26)

(2.1)(2.1)

(2.18)(2.18)

(2.17)(2.17)

(2.12)(2.12)

(2.42)(2.42)

(2.11)(2.11)

(2.34)(2.34)

(2.13)(2.13)

(2.41)(2.41)

(2.37)(2.37)

(2.35)(2.35)

(2.16)(2.16)

(2.29)(2.29)

(2.32)(2.32)

tavg =
1

vz, avg
dz

the electron arrival time at z averaged over an undulator period. We can put this into (2.15) and get 
for the derivative of theta:
diff theta z , z = diff subs (2.16), rhs (2.15) , z

d
dz

z = k1 ku
1

vz, avg

We substitute from (2.11) the average velocity:
subs (2.11), (2.17)

d
dz

z = k1 ku
1

K2

4 
2 1

1

2 
2  c

and expand to first order in terms of the denominator:

lhs (2.18) = thaw convert series subs
1
4

 
K2

2 1
1

2 
2 = freeze

1
4

 
K2

2
1

2 
2

1, rhs (2.18) , freeze
1
4

 
K2

2
1

2 
2 , 2 , polynom

d
dz

z = k1 ku
1

c

1 
K2

4 
2

1

2 
2

c
lhs (2.19) = subs omega 1 = k 1 c, rhs (2.19)

d
dz

z = ku k1 
K2

4 
2

1

2 
2

where we find the term that reduces the average velocity in .(2.11)
k1 and ku are connected by the resonant condition that we discussed earlier: that the light wave skips 
ahead of the electron exactly by one period. This condition is
2 * Pi / k u * 2 * gamma0^2 * 1 K^2 / 2 = 2 * Pi / k 1

 1
K2

2

ku 0
2 =

2 
k1

and we can put this into (2.20). Note that in (2.21) we have γ0, the reference energy whereas the 
electron is at an energy γ which may be slightly different.

simplify subs solve (2.21), k 1 , (2.20)

d
dz

z =

2
0

2
 ku

2
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(2.26)(2.26)

(2.1)(2.1)

(2.18)(2.18)

(2.17)(2.17)

(2.12)(2.12)

(2.42)(2.42)

(2.11)(2.11)

(2.34)(2.34)

(2.13)(2.13)

(2.41)(2.41)

(2.37)(2.37)

(2.35)(2.35)

(2.16)(2.16)

(2.29)(2.29)

(2.32)(2.32)

We can express this in terms of a relative energy deviation delta:

delta =
gamma gamma0

gamma0

=
0

0
subs solve (2.23), gamma , (2.22)

d
dz

z =
1

2
 0

2
0

2
 ku

1
2
 0

2

and to first order in δ
lhs (2.24) = convert series rhs (2.24) , , 2 , polynom

d
dz

z = 2 ku 

So we have an expression for the phase θ(z) but still need one for the energy deviation δ=δ(z). This 
is just eq. (2.14) except that we use δ=dγ/γ and keep only the cosine of the sum term in k1 and ku:
subs cos t 1 z k1 z ku 0 = 0, gamma t = delta t gamma, (2.14)

gamma m 0

.
t =

q2 c2 B0 E0 cos t 1 z k1 ku z 0

2 
2
 m0

2 ku

We will also replace the frequencies in terms of the phase θ(t):
solve (2.15), omega 1

1 =
ku z z k1 z

tavg

simplify subs t avg = t, subs solve (2.15), omega 1 , (2.26)

.
t =

q2 c2 B0 E0 cos z 0

2 
2
 m0

2 ku

We replace ku with K:
subs solve (2.6), k u , (2.28)

.
t =

q c E0 cos z 0  K

2 
2
 m0

and change variable from t to z=ct, where we pickup another c:

PDEtools:-dchange t =
z
c

, (2.29), z , params = c

d
dz

z  c =
q c E0 cos z 0  K

2 
2
 m0

(2.30)
c
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(2.9)(2.9)

(2.39)(2.39)

(2.36)(2.36)

(2.2)(2.2)

(2.31)(2.31)

(2.6)(2.6)

(2.27)(2.27)

(2.7)(2.7)

(2.23)(2.23)

(2.24)(2.24)

(2.38)(2.38)

(2.28)(2.28)

(2.5)(2.5)

(2.22)(2.22)

(2.26)(2.26)

(2.1)(2.1)

(2.18)(2.18)

(2.17)(2.17)

(2.12)(2.12)

(2.42)(2.42)

(2.11)(2.11)

(2.34)(2.34)

(2.13)(2.13)

(2.41)(2.41)

(2.37)(2.37)

(2.35)(2.35)

(2.16)(2.16)

(2.29)(2.29)

(2.32)(2.32)

d
dz

z =
q E0 cos z 0  K

2 
2
 m0

Equations (2.25) and (2.31) make up the so-called pendulum equations. We recognize that they have 
the same structure as the longitudinal equations of motion.

The exponential gain arises from the property that the E field in (2.13) is proportional to the light 
intensity. So once the process gets underway, an increase in light intensity increases the energy 
transfer to the electric field, which in turn increases the intensity gain etc. The result is an exponential 
growth in light intensity that eventually saturates, mostly because particles start moving too far in the 
micro-buckets and thus start taking energy out of the beam. 

We can numerically integrate these to get a feel for the phase space they create. We define a test case:
testCase K = 1, q = 1, m 0 = 0.511, gamma = 20000, E 0 = 1E5, k u = 0.02

testCase K = 1, q = 1, m0 = 0.511, = 20000, E0 = 100000., ku = 0.02

subs delta = delta z , subs testCase, (2.25)
d
dz

z = 0.04 z

subs testCase, (2.31)
d
dz

z = 0.000244618395303327 cos z 0

sol dsolve (2.33), (2.34), delta 0 = d0, theta 0 = th0 , numeric, parameters = psi 0 , d0,
th0 , relerr = 1E 5, range = 0 ..10000

sol proc x_rkf45 ... end proc

sol parameters = psi 0 =
Pi
4

, d0 = 0.0, th0 = 1

psi[0] = 0.785398163397448, d0 = 0., th0 = 1.
sol 100

z = 100., z = 0.00512669243168009, z = 0.989664133485801
plots:-odeplot sol, theta z , delta z , z = 0 ..10000
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Plots Array 1 ..65 ;
 jj 1;
 for ii from 4 to 4 by 0.125 do

   sol parameters = psi 0 =
Pi
2

, d0 = 0.0, th0 = ii ;

   Plots jj plots:-odeplot sol, theta z , delta z , z = 0 ..500 ;
   jj jj 1;
 end do:

Plots

 1 .. 65 Array

Data Type: anything

Storage: rectangular

Order: Fortran_order

jj 1
plots:-display convert Plots, list



USPAS 2016 at UT Austin Accelerator Physics with Maple Undulators and FELs

229

(2.21)(2.21)

(2.30)(2.30)

(2.10)(2.10)

(2.40)(2.40)

(2.25)(2.25)

(2.43)(2.43)

(2.15)(2.15)

(2.19)(2.19)

(2.20)(2.20)

(2.14)(2.14)

(2.4)(2.4)

(2.9)(2.9)

(2.39)(2.39)

(2.36)(2.36)

(2.2)(2.2)

(2.31)(2.31)

(2.6)(2.6)

(2.27)(2.27)

(2.7)(2.7)

(2.23)(2.23)

(2.24)(2.24)

(2.38)(2.38)

(2.28)(2.28)

(2.5)(2.5)

(2.22)(2.22)

(2.26)(2.26)

(2.1)(2.1)

(2.18)(2.18)

(2.17)(2.17)

(2.12)(2.12)

(2.42)(2.42)

(2.11)(2.11)

(2.34)(2.34)

(2.13)(2.13)

(2.41)(2.41)

(2.37)(2.37)

(2.35)(2.35)

(2.16)(2.16)

(2.29)(2.29)

(2.32)(2.32)

4 2 0 2 4
0.10

0.05

0

0.05

0.10

The micro-bunching is visible in this figure, although the energy loss and gain are equal and no net 
energy transfer seems to occur. However, the micro-bunched beam changes the field pattern so that 
on average the electrons lose energy to the field which sets off the gain along the undulator.
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Figure: Micro-bunching in an FEL, from [21]

Carrying out the detailed derivation is a bit too long for this lecture, but in the limit of a cold (parallel)
beam with vanishing momentum spread, the radiation power can be shown to increase along the 
undulator as

P = P 0 exp
y

L G

P = P0 e

y
L

G

where LG is the gain length, given by

L G =
lambda u

4 Pi sqrt 3 rho

LG = u 3

12  
with ρ being the dimensionless FEL parameter defined as
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rho =
1
16

i e
i A

K2

3
sigma x 2k u 2

1
3

=

162 3 
ie K

2

iA 
3
 x

2
 ku

2

1 3

16
(ignoring again a Bessel-function multiplier that is close to unity). ie is the electron peak current and
iA the "Alfven" current,

i A =
e c
r e

iA =
e c
re

subs Constants, subs r e = r_e, (2.42)
iA = 17045.0889076137

which is about 17 kA. This gain length for the "1-d" case is a bit too short but in practice gives a 
good starting point for design of a SASE FEL.
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Alignment and Dipole Errors and Orbit Excursions
Any practical implementation of particle accelerators will incur some alignment tolerances, and the 
effect of these on the beam needs to be assessed and correction strategies need to be developed. 
These alignment tolerances are in addition to the field uniformity tolerances that we discussed earlier. 
Also, there are tolerances in the values of the fields, the dipole (guide-) field and the focusing fields.
We will study first the effect of alignment errors and guide-field tolerances on the beam. Note that 
alignment tolerances and guide-field tolerances are very similar in their effect on the beam and are 
therefore treated together: a misalignment causes a dipole error at the next focusing element and thus 
an extra kick on the beam.
We begin with a general ansatz of the error forces in the equation of motion:
diff z Theta , Theta, Theta Q^2 * z Theta = f Theta

d2

d
2 z Q2 z = f

The function f(Θ) represents all the forces due to misalignment and field-setting errors. f(Θ) has to be
periodic in Θ with at least harmonic 1, but possibly with higher harmonics also. We can therefore 
make a Fourier ansatz:
f Theta  Sum fr n * exp I * n * Theta , n

f
n

fr n  eI n 

with fr(n) the strength of each harmonic n, so that
(1.1)

d2

d
2 z Q2 z =

n
fr n  eI n 

Maple can solve this directly with dsolve, but it turns out that its solutions are not in the most 
convenient and suitable form, so we make a solution ansatz instead by observing that the resultant 
closed orbit has to be periodic as well (although it may have a different spectrum than f(Θ)):
z Theta = sum F n * exp I * n * Theta , n

z =
n

F n  eI n 

We are interested in finding an expression for F(n), which gives the spectral form of the orbit. We 
put the solution ansatz into (1.3):
subs (1.4), (1.3)

d2

d
2 n

F n  eI n Q2 
n

F n  eI n =
n

fr n  eI n 

simplify (1.5)

n
F n  n2 eI n Q2 

n
F n  eI n =

n
fr n  eI n 

factor combine (1.6)

n
F n  eI n  Q n  Q n =

n
fr n  eI n 

(1.7) has to hold for each harmonic separately, so we can solve for F(n) for a particular n:
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solve op 1, 1 , (1.7) = op 2, 1 , (1.7) , F n

F n =
fr n

Q2 n2

So we find that the orbit shape reflects that of the misalignment kicks, however the 1/(Q2-n2) factor 
indicates that orbit harmonics close to the tune Q are significantly enhanced relative to the harmonic 
content of the misalignments. This is in fact commonly observed in machines before orbit correction 
has been fully applied. It suggests that one strategy to correct the orbit could be to successively find 
the highest harmonics and then use a pattern of orbit-corrector dipole strength that exactly cancels that
particular harmonic. Successive application of the algorithm should reduce the orbit excursions, 
initially quite fast as the dominant harmonics get corrected first and then slower as the orbit now has 
many harmonics of roughly equal (albeit small) strength left. This harmonic correction is in fact one 
of the standard algorithms used in orbit correction.

Closed-orbit bumps
One of the most suitable and practical means of moving the beam around in linear and circular 
accelerators are closed bumps. By "closed" we refer to an orbit change that is confined within a 
certain region of the lattice and does not affect the beam position outside of the region. Closed orbit 
bumps are one (rather simple) method of correcting the orbit of an accelerator: Obit peaks are 
successively reduced using closed bumps, and as long as the lattice is reasonably linear they 
superimpose. One drawback of the method is that it is purely local and therefore a strong localized 
error may not always be corrected with the most effective set of correctors.

Two-corrector bump

It should be obvious to everybody that a single corrector will affect the trajectory everywhere 
downstream; which means it will affect the closed orbit everywhere ("globally") in a ring 
(why?). So the minimum configuration for a closed bump will be having two correctors, with 
the idea of having the second (downstream) one canceling the effect of the first one. We will 
describe such a setup with Matrix optics using the matrix representation of a piece of lattice in 
between:

R

sin 2  0 cos 2 0  sin 2 0 0

0
2

0
1
0

 sin 2 sin 2  0 cos 2 0 0

0 0 1 0

0 0 0 1

R

sin 2  0 cos 2 0  sin 2 0 0

0
2

0
1
0

 sin 2 sin 2  0 cos 2 0 0

0 0 1 0

0 0 0 1
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(we assume for simplicity that the piece of beam line is straight).
The effect of the bump magnets is an additive change to the angle; we just represent this by a 
coordinate vector at 0 position but finite kick angle dxp. Then
R.Vector 0, dxp, 0, 0

0  sin 2  dxp

sin 2  0 cos 2  dxp

0

0

For us to be able to close the bump we need the position at the end to be 0 again. Then we can 
place a second corrector there and excite it to cancel the effect of the first. Trivially, this 
requires µ2 to be n*π:
solve (1.1.1.2) 1 , mu2, allsolutions

 _Z1~
which is Maple notation for an integer times π. So sin(µ2)=0, cos(µ2)=±1. The angle at the 
2nd corrector is then
subs sin mu2 = 0, cos mu2 = 1, (1.1.1.2)

0

dxp

0

0

and the negative of that is required to close the bump. Two equal correctors (2n+1)π apart 
cancel each other.
We also want the amplitude of the bump, and the angle at the center. For this we need to use 
the full matrix as beta in the middle can be different from that at the ends:

s  0  sin mu s cos mu s

0
, s  0  sin mu s , 

s  0 1  sin mu s s 0  cos mu s

0  s
, 

cos mu s sin mu s  s  0

s

s  0  sin s cos s

0
, s  0  sin s , 

s  0 1  sin s s 0  cos s

s  0
, 

cos s sin s  s  0

s
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Rh simplify subs~ mu s =
Pi
2

, (1.1.1.5)

Rh

s  0

0
s  0

s  0 1

s  0

s  0

s

Rh. 0, dxp

s  0  dxp

s  0  dxp

s

So besides the kick angle dxp, the beta function product also scales the amplitude of the bump.
Furthermore α(s) controls the angle.  
While restrictive to the machine optics, 2-corrector bumps have important applications in the 
construction of local bumps for beam injection and extraction as they minimize the number of 
(expensive) kicker magnets needed and the optics can often be designed and tuned to precisely
achieve the required π phase advance.

Three-corrector bump
Two-corrector bumps are fine for a lattice section with the right phase advance. Occasionally 
this is not the case and we need a way to make a closed bump for a lattice with arbitrary phase 
advance. If we provide a third corrector this is possible.
Consider a lattice section with two equal parts with a corrector in the middle, and one at each 
end.
R. R.Vector 0, dxp1, 0, 0 Vector 0, dxp2, 0, 0  

# Note the arrangement of the product and the addition
sin 2  0 cos 2  0  sin 2  dxp1 0  sin 2  

sin 2  0 cos 2  dxp1 dxp2 , 

0
2

0
1
0

 sin 2
2
 0  dxp1 sin 2  0

cos 2  sin 2  0 cos 2  dxp1 dxp2 , 

0 , 

0

Again, we need the position at the end to be zero, and this time we do not look for a phase 
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angle but for the strength of the intermediate corrector magnet:
solve (1.1.2.1)1, dxp2, allsolutions

2 cos 2  dxp1
simplify subs dxp2 = (1.1.2.2), (1.1.2.1)

0

dxp1

0

0

The same result as before. (Note that we seem to be missing some solutions here as there 
should be one with +dxp1 as well.) For the amplitude we get
R.Vector 0, dxp1, 0, 0

0  sin 2  dxp1

sin 2  0 cos 2  dxp1

0

0

which does not depend on dxp2. The angle at the center is just -dxp2/2 for α(0)=0 so in the 
middle of the 2nd corrector the beam is parallel to the reference. Except in degenerate cases, a 
3 bump can always be closed and therefore is a universal local bump suitable, e.g., for orbit 
correction.

Four-corrector bump
None of the bumps considered so far allows one to change the beam angle at a given point (e.g. 
the point of max. deflection). To do that it requires a further degree of freedom, provided by a 
4th corrector magnet.

To keep the expressions manageable we use three identical lattice sections in the derivation for 
a 4 bump. The extension to arbitrary sections is quite straightforward.
R. R. R.Vector 0, dxp1, 0, 0 Vector 0, dxp2, 0, 0 Vector 0, dxp3, 0, 0  

sin 2  0 cos 2  sin 2  0

cos 2  0  sin 2  dxp1 0  sin 2  sin 2  0

cos 2  dxp1 dxp2 0  sin 2  
0

2

0

1
0

 sin 2
2
 0  dxp1 sin 2  0 cos 2  
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sin 2  0 cos 2  dxp1 dxp2 dxp3 , 

0
2

0
1
0

 sin 2  sin 2  0

cos 2  0  sin 2  dxp1 0  sin 2  sin 2  0

cos 2  dxp1 dxp2 sin 2  0 cos 2  
0

2

0

1
0

 sin 2
2
 0  dxp1 sin 2  0 cos 2  

sin 2  0 cos 2  dxp1 dxp2 dxp3 , 

0 , 

0

solve (1.1.3.1) 1 , dxp3

dxp3 = sin 2
2
 dxp1 3 cos 2

2
 dxp1 2 cos 2  dxp2

so the closure setting for corrector 3 depends on corrector2. We now need to decide where we 
want to control beam position and angle; for convenience we chose the symmetry point. This 
implies adding a half section after corrector2 (i.e. (1.1.1.5)).
 (1.1.1.5).LinearAlgebra:-SubVector R.Vector 0, dxp1, 0, 0 Vector 0, dxp2, 0,

0 , 1 ..2

s  0  sin s cos s  0  sin 2  dxp1

s  0  sin s  sin 2  0 cos 2  dxp1

dxp2 , 

1

s
s  0 1  sin s s

0  cos s  0  sin 2  dxp1
1

s
cos s

sin s  s  0  sin 2  0 cos 2  dxp1

dxp2
At a symmetry point it is reasonable to assume α(s)=0. Also, µ(s) is µ2/2



USPAS 2016 at UT Austin Accelerator Physics with Maple Alignment Errors and Resonances

239

(1.1.3.3)(1.1.3.3)

(1.1.3.5)(1.1.3.5)

(1.1.3.1)(1.1.3.1)

(1.1.3.9)(1.1.3.9)

(1.1.3.2)(1.1.3.2)

(1.1.3.4)(1.1.3.4)

(1.1.3.8)(1.1.3.8)

(1.1.3.7)(1.1.3.7)

(1.1.3.6)(1.1.3.6)

simplify subs s = 0, mu s =
mu2

2
, (1.1.3.3)

s  0  4 dxp1 cos
2

2

2

dxp1 dxp2  sin
2

2

0  4 dxp1 cos
2

2

2

3 dxp1 dxp2  cos
2

2

s

collect combine collect (1.1.3.4), dxp1 , trig , beta s , beta 0

s  0  dxp1 sin
3 2

2
sin

2
2

 dxp2

0  dxp1 cos
3 2

2
cos

2
2

 dxp2

s

With some simplification we can find an expression for dxp2 to get a certain bump angle we 
call dxpb:
solve (1.1.3.5) 2 = dxp b , dxp2

dxp2 =
0  cos

3 2
2

 dxp1 dxpb s

0  cos
2

2
collect simplify subs (1.1.3.6), (1.1.3.2) , cos

dxp3 = 4 cos 2
2
 dxp1

2 dxp1 cos
3 2

2

2 dxpb s

0
 cos 2

cos
2

2

dxp1

combine (1.1.3.7), trig

dxp3 =
0  cos

3 2
2

 dxp1 2 s  cos 2  dxpb

0  cos
2

2
So we have found an expression for corrector3 to bring the beam back onto the axis, and we 
can close the bump:
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(2.11)(2.11)

(2.5)(2.5)

(1.1.3.5)(1.1.3.5)

(2.15)(2.15)

(1.1.3.9)(1.1.3.9)

(2.3)(2.3)

(2.4)(2.4)

(2.8)(2.8)

(2.1)(2.1)

(2.9)(2.9)

(2.2)(2.2)

(1.1.3.6)(1.1.3.6)

(1.1.3.3)(1.1.3.3)

(2.7)(2.7)

(2.12)(2.12)

(1.1.3.1)(1.1.3.1)

(1.1.3.2)(1.1.3.2)

(2.14)(2.14)

(2.6)(2.6)

(1.1.3.4)(1.1.3.4)

(2.10)(2.10)

(1.1.3.8)(1.1.3.8)

(1.1.3.7)(1.1.3.7)

simplify subs (1.1.3.8), subs (1.1.3.6), (1.1.3.1)
0

0  cos
2

2
 dxp1 dxpb s

0  cos
2

2

0

0

This completes the 4-bump calculation.

Gradient (Focusing) Errors
The next higher order we will consider are gradient errors, leading to a disturbance in the focusing 
pattern of the machine. Since the focusing lattice determines the envelope (β-) functions we will not 
be surprised in finding that focusing errors lead to a deviation of the envelope functions form the 
designed values, commonly referred to as "beta beating".
We begin with an ansatz similar to the above except the force due to the errors is now dependent on 
the oscillation amplitude of the particles:
diff z Theta , Theta, Theta Q^2 * z Theta = f Theta z Theta

d2

d
2 z Q2 z =

n
fr n  eI n  z

We can immediately see that we get a new tune:
collect (2.1) rhs (2.1) , z Theta

Q2
n

fr n  eI n  z
d2

d
2 z = 0

which is just 
sqrt frontend coeff, lhs (2.2) , z

Q2
n

fr n  eI n 

expand thaw simplify convert series subs
n

fr n  eI n = freeze
n

fr n  eI n ,

(2.3) , freeze
n

fr n  eI n , 2 , polynom , symbolic

Q n
fr n  eI n 

2 Q
to first order.
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(2.11)(2.11)

(2.5)(2.5)

(2.15)(2.15)

(2.3)(2.3)

(2.4)(2.4)

(2.8)(2.8)

(2.1)(2.1)

(2.9)(2.9)

(2.2)(2.2)

(2.7)(2.7)

(2.12)(2.12)

(2.14)(2.14)

(2.6)(2.6)

(2.10)(2.10)

While not wrong, we have been too quick and are missing on a number of essential features of the 
solution. 
We can in fact ask Maple just to solve this d.e.:
dsolve (2.1), z

z = _C1 J 2 Q
n

2 
n

fr n  eI n 

n
_C2 Y 2 Q

n

2 
n

fr n  eI n 

n

but this is not getting us to a particularly insightful solution. 

We can go back to the matrix description of a ring and insert a thin quadrupole at one location and see
what its effect may be:
R LinearAlgebra:-SubMatrix R, 1 ..2, 1 ..2

R

sin 2  0 cos 2 0  sin 2

0
2

0
1
0

 sin 2 sin 2  0 cos 2

Rq 1 0 , kq 1

Rq
1 0

kq 1

Rq.R

sin 2  0 cos 2 , 0  sin 2 , 

kq sin 2  0 cos 2
0

2

0
1
0

 sin 2 , kq 0  sin 2

sin 2  0 cos 2

We get the tune from the trace of this matrix:
2 cos mu = LinearAlgebra:-Trace (2.8)

2 cos = 2 cos 2 kq 0  sin 2
solve (2.9), mu

= arccos cos 2
kq 0  sin 2

2
lhs (2.10) = simplify convert series rhs (2.10) , kq, 2 , polynom , symbolic

=
0  kq
2

2

So kq modifies the tune by an amount that scales with the β function at its location. The extension to 
multiple gradient errors is obvious. Comparing (2.11) with (2.8) we can relate the effect of one 
quadrupole error to the spectral ansatz made above
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(2.11)(2.11)

(2.5)(2.5)

(2.15)(2.15)

(2.3)(2.3)

(2.4)(2.4)

(2.8)(2.8)

(2.1)(2.1)

(3.1)(3.1)

(3.3)(3.3)

(2.9)(2.9)

(2.2)(2.2)

(2.7)(2.7)

(2.12)(2.12)

(3.5)(3.5)

(3.4)(3.4)

(2.14)(2.14)

(3.2)(3.2)

(2.6)(2.6)

(2.10)(2.10)

We can get an idea of the effect of the gradient error on the beta function by observing that Rq.R has 
he same form as R except that the phase advance is now given by (2.11). Since the R12 element has 
the β function and is not changed by the gradient error, we can make the ansatz
beta 0 sin mu2 = beta 1 sin rhs (2.11)

0  sin 2 = 1  sin
0  kq
2

2

and solve for β(1):
solve (2.12), 1

1 =
0  sin 2

sin
0  kq
2

2

lhs (2.13) = convert series rhs (2.13) , kq, 2 , polynom

1 = 0
0

2
 cos 2  kq

2 sin 2
and
subs mu2 = 2 Pi Q, (2.14)

1 = 0
0

2
 cos 2  Q  kq

2 sin 2  Q
We now see that (at the location of the gradient error) beta changes dependent on the tune Q. 
Moreover, when Q hits any half or full integer, sin(2πQ) becomes 0 and β(1) is unbound. This is the 
parametric half-integer resonance, so called as it is the parameter beta that exhibits the resonant 
behavior.
It remains as homework to show how beta beating propagates around the ring.

Sextupole and Higher-Order Field Errors
We can use a similar approach as used above for the orbit analysis to analyze the effect of higher-
order field errors as well, at least in a qualitative way. We make the ansatz
diff x Theta , Theta, Theta Qx^2 * x Theta = Qx2 f Theta x Theta 2 z Theta 2

d2

d
2 x Qx2 x = Qx2 

n
fr n  eI n  x

2
z

2

where we use the x2 and z2 dependence of a sextupolar field as derived at another location in this 
course.

To solve this we need to use a trick and use that, to first order, the motion is sinusoidal and put that 
into the rhs of (3.1):
lhs (3.1) = subs x Theta = cos Qx Theta Theta0 , z Theta = cos Qz Theta Theta0 ,

rhs (3.1)
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(3.5)(3.5)

(3.4)(3.4)

(3.2)(3.2)

(3.1)(3.1)

(3.3)(3.3)

d2

d
2 x Qx2 x = Qx2 

n
fr n  eI n  cos Qx 0

2
cos Qz 

0
2

lhs (3.2) = applyop combine, 3, rhs (3.2)
d2

d
2 x Qx2 x = Qx2 

n
fr n  eI n  

cos 2 Qx 2 0
2

cos 2 Qz 2 0
2

and Maple can solve this:
dsolve (3.3), x Theta ;

x = sin Qx  _C2 cos Qx  _C1
1
2

Qx sin Qx  

n
fr n  eI n  cos 2 Qx 2 0 cos 2 Qz 2 0 d  cos Qx 

cos Qx  
n

fr n  eI n  cos 2 Qx 2 0 cos 2 Qz 2 0

d  sin Qx 

To proceed we need to interchange the order of Integral and Sum, and then Maple can evaluate the 
integral:
lhs (3.4) = value subs _C1 = 0, _C2 = 0, applyrule IntSum2SumInt, rhs (3.4)

x =
1
2

Qx 

n

fr n  
3 Qx eI n  cos 3 Qx 2 0

9 Qx2 n2
I n eI n  sin 3 Qx 2 0

9 Qx2 n2

2

fr n  
Qx eI n  cos Qx 2 0

Qx2 n2
I n eI n  sin Qx 2 0

Qx2 n2

2

1
2

fr n  
Qx 2 Qz  eI n  cos Qx 2 Qz  2 0

n2 Qx 2 Qz 2

I n eI n  sin Qx 2 Qz  2 0
n2 Qx 2 Qz 2
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(3.5)(3.5)

(3.4)(3.4)

(3.2)(3.2)

(3.1)(3.1)

(3.3)(3.3)

1
2

fr n  
Qx 2 Qz  eI n  cos Qx 2 Qz  2 0

n2 Qx 2 Qz 2

I n eI n  sin Qx 2 Qz  2 0
n2 Qx 2 Qz 2  cos Qx 

n

fr n  
I n eI n  cos Qx 2 0

Qx2 n2
Qx eI n  sin Qx 2 0

Qx2 n2

2

fr n  
I n eI n  cos 3 Qx 2 0

9 Qx2 n2
3 Qx eI n  sin 3 Qx 2 0

9 Qx2 n2

2

1
2

fr n  
I n eI n  cos Qx 2 Qz  2 0

n2 Qx 2 Qz 2

Qx 2 Qz  eI n  sin Qx 2 Qz  2 0
n2 Qx 2 Qz 2

1
2

fr n  
I n eI n  cos Qx 2 Qz  2 0

n2 Qx 2 Qz 2

Qx 2 Qz  eI n  sin Qx 2 Qz  2 0
n2 Qx 2 Qz 2  sin Qx 

By inspection we can see the following resonant denominators:
We now see several resonant poles: Qx

2 n2, (3Qx)
2 n2, (Qx 2Qz)

2 n2 and (Qx+2Qz)
2 n2. These are

the integer and the 1/3 integer resonances we have encountered before but also coupling resonances 
due to the z2 term in the sextupole field. Note that sextupoles drive all of these, not just the 1/3 
integer. 

If we carried the vertical plane as well, we could also see the effect of skew sextupoles.
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(1.1.4)(1.1.4)

(1.1.3)(1.1.3)

(1.1.16)(1.1.16)

(1.1.13)(1.1.13)

(1.1.6)(1.1.6)

(1.1.14)(1.1.14)

(1.1.7)(1.1.7)

(1.1.8)(1.1.8)

(1.1.10)(1.1.10)

(1.1.1)(1.1.1)

(1.1.15)(1.1.15)

(1.1.9)(1.1.9)

(1.1.11)(1.1.11)

(1.1.17)(1.1.17)

(1.1.12)(1.1.12)

(1.1.2)(1.1.2)

(1.1.5)(1.1.5)

Collective Effects
Up to now we have been working under the single-particle model: effects of the other particles have 
been ignored completely. Since the particles are all of (usually) the same charge, this is clearly an 
approximation which we will now lift. This opens up the whole field of beam instabilities, a field too 
vast to cover here in any depth. But we will try to give at least an inkling of the effects we can expect 
and how to analyse them. 

Space charge

The most straightforward effect to investigate will be the direct space-charge effect on the betatron
motion. This is highly relevant for proton machines as it establishes one of the limits of the beam 
current achievable esp. at lower beam energy
To analyze this effect we calculate the fields caused by the beam particle ensemble on a test 
particle in the beam, using Maxwell's equations in a cylindrical system with r being the transverse
coordinate (Fig. 1):

Fig. 1: Self-fields generated by a round beam[6].
The electrical field we get from
1 / r * Diff r * E r , r = q / 0 * n r ;

d
dr

r E r

r
=

q n r

0

and the magnetic field:
1 / r * Diff r * B theta r , r = q / c * 0 * beta * n r ;
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(1.1.4)(1.1.4)

(1.1.3)(1.1.3)

(1.1.16)(1.1.16)

(1.1.13)(1.1.13)

(1.1.6)(1.1.6)

(1.1.14)(1.1.14)

(1.1.7)(1.1.7)

(1.1.8)(1.1.8)

(1.1.10)(1.1.10)

(1.1.1)(1.1.1)

(1.1.15)(1.1.15)

(1.1.9)(1.1.9)

(1.1.11)(1.1.11)

(1.1.17)(1.1.17)

(1.1.12)(1.1.12)

(1.1.2)(1.1.2)

(1.1.5)(1.1.5)

d
dr

r B r

r
=

q  n r
c 

0

The beam distribution n(r) is, for a Gaussian beam,
n r = n 0 / 2 * Pi * l b * sigma^2 * exp r^2 / 2 * sigma^2

n r =
n0 e

r2

2 2

2  lb 
2

and putting this together we get for the electric field
subs (1.1.3), (1.1.1) r

d
dr

r E r =
r q n0 e

r2

2 2

2 
0
  lb 

2

and integrate to get the field expression:
int lhs (1.1.4) , r

r
=

int rhs (1.1.4) , r = 0 ..r
r

E r =
q n0 1 e

r2

2 2

2 
0
  lb r

For the magnetic field, we put the beam density into the second equation and have
subs (1.1.3), (1.1.2) r

d
dr

r B r =
r q  n0 e

r2

2 2

2 c 
0
  lb 

2

int lhs (1.1.6) , r
r

=
int rhs (1.1.6) , r = 0 ..r

r

B r =
q  n0 1 e

r2

2 2

2 c 
0
  lb r

We put this together to find the force acting on the particle:
F unapply simplify q rhs (1.1.5)  c rhs (1.1.7) , r

F r
q2 n0 1 e

r2

2 2
 

2
1

2 
0
  lb r
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(1.1.4)(1.1.4)

(1.1.3)(1.1.3)

(1.1.16)(1.1.16)

(1.1.13)(1.1.13)

(1.1.6)(1.1.6)

(1.1.14)(1.1.14)

(1.1.7)(1.1.7)

(1.1.8)(1.1.8)

(1.1.10)(1.1.10)

(1.1.1)(1.1.1)

(1.1.15)(1.1.15)

(1.1.9)(1.1.9)

(1.1.11)(1.1.11)

(1.1.17)(1.1.17)

(1.1.12)(1.1.12)

(1.1.2)(1.1.2)

(1.1.5)(1.1.5)

The oscillator equation for the particle motion:
diff x theta , theta, theta Q^2 * x theta = 0

d2

d
2 x Q2 x = 0

and putting the force into (1.1.9), noting the factors 1/(β2c2) which arises from the s  change 
of variables and 1/(m ) which we need to take care of the energy scaling, we get
lhs (1.1.9) = R^2 / beta^2 * gamma * m * c^2 * subs r = x theta , F r

d2

d
2 x Q2 x =

R2 q2 n0 1 e

x 2

2 2
 

2
1

2 
2
  m c2 

0
  lb x

To make further progress we can expand the rhs into a series in x( ) (and note: we need to keep 3 
terms):
thaw convert series subs x theta = freeze x theta , rhs (1.1.10) , freeze x theta , 3 ,

polynom

R2 q2 n0 
2

1  x

4 
2
  m c2 

2
 

0
  lb

and put this back into the diff. eq.  (1.1.9):
lhs (1.1.9) = (1.1.11)

d2

d
2 x Q2 x =

R2 q2 n0 
2

1  x

4 
2
  m c2 

2
 

0
  lb

Rearranging it to gather up the z(θ) terms:
collect (1.1.12) rhs (1.1.12) , x theta

Q2
R2 q2 n0 

2
1

4 
2
  m c2 

2
 

0
  lb

 x
d2

d
2 x = 0

we can see what is happening: the machine tune, Q, is replaced by a new value, Qsc:
Q sc = sqrt frontend coeff, lhs (1.1.13) , x theta

Qsc =

4 Q2
R2 q2 n0 

2
1

2
  m c2 

2
 

0
  lb

2
Under the assumption that the modification to the tune is small we can expand to first order again:

thaw simplify convert series subs
R2 q2 n0 1

2

2
  m c2 

2
 0   lb



USPAS 2016 at UT Austin Accelerator Physics with Maple Collective Effects

248

(1.2.16)(1.2.16)

(1.1.3)(1.1.3)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.1.16)(1.1.16)

(1.1.6)(1.1.6)

(1.2.8)(1.2.8)

(1.1.8)(1.1.8)

(1.1.10)(1.1.10)

(1.1.9)(1.1.9)

(1.1.11)(1.1.11)

(1.2.4)(1.2.4)

(1.1.12)(1.1.12)

(1.1.2)(1.1.2)

(1.1.5)(1.1.5)

(1.2.3)(1.2.3)

(1.2.15)(1.2.15)

(1.2.6)(1.2.6)

(1.1.4)(1.1.4)

(1.1.13)(1.1.13)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.1.14)(1.1.14)

(1.1.7)(1.1.7)

(1.2.1)(1.2.1)

(1.2.5)(1.2.5)

(1.1.1)(1.1.1)

(1.1.15)(1.1.15)

(1.1.17)(1.1.17)

(1.2.13)(1.2.13)

(1.2.12)(1.2.12)

(1.2.7)(1.2.7)

(1.2.10)(1.2.10)

= freeze
R2 q2 n0 1

2

2
  m c2 

2
 0   lb

, rhs (1.1.14) , freeze
R2 q2 n0 1

2

2
  m c2 

2
 0   lb

, 2 ,

polynom , symbolic

8 Q2
R2 q2 n0 

2
1

2
  m c2 

2
 

0
  lb

8 Q

We replace β2-1 by 1/γ2 and change come constants and end up with:

Q sc = expand subs 0 =
q2

r0 4  m c2 , 1
2

=
1
2 , (1.1.15)

Qsc = Q
R2 n0 r0

2 Q 
2
 

3
 

2
 lb

This is the direct space-charge tune shift. As is evident by the 1/γ3 factor, it primarily is strong in 
beams of low γ: proton and ion beams. Electron beams typically have high values of gamma even 
at lower beam energy so they are not nearly as much affected by the direct space-charge tune shift.

In reality, particle beams are traveling in vacuum pipes made of more-or-less well-conducting 
material as well as in magnets. The walls and magnets do affect the fields and modify the tune 
shift. We give here without derivation the correction factor to be applied to δ(Q) for a beam 
traveling in an elliptical beam pipe of half width w and half height h, and magnetic gaps of half 
height g:

F = 1 sigma y sigma x sigma y
E 1 1 B

2 2

h2

E 2 C m B
2 2

g2

F = 1 y x y  
E1 B 

2
 

2
1

h2

E2 Cm B 
2
 

2

g2

where E1 and E2 are empirical geometric factors (0.172 and 0.206, resp., for a vac. chamber of a 
1:2 aspect ratio), Cm, the packing fraction of the ring with dipole magnets, and B, the bunching 
factor. Because of the γ2 dependence of the addition in F, this factor can modify the space-charge 
tune shift and in fact slow its reduction as γ goes up, in this way leading to its becoming 
significant e.g. for electrons beams where the direct space-charge is usually not an issue.

Luminosity and Beam-beam forces
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(1.2.15)(1.2.15)

(1.2.6)(1.2.6)

(1.2.16)(1.2.16)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.2.8)(1.2.8)

(1.2.1)(1.2.1)

(1.2.5)(1.2.5)

(1.2.13)(1.2.13)

(1.2.12)(1.2.12)

(1.2.4)(1.2.4)

(1.2.7)(1.2.7)

(1.2.10)(1.2.10)

(1.2.3)(1.2.3)

At high energy in the center of mass system, particle colliders with counter-rotating beams are 
necessary to reach the energy with reasonable beam energies. The figure of merit for particle 
colliders is the luminosity, which is defined as the interaction rate R normalized to the reaction 
cross section sigma:

=
R

sigma

=
R

For fixed target experiments, this is the number of incoming particles/second times the number of 
nuclei in the path of the beam.

= diff N t , t n l
= N

.
t  n l

For colliding bunched beams, one beam acts like a target:

n l =
N 1
A int

n l =
N1

Aint

and for the other beam we have
diff N t , t = N 2 f b

N
.

t = N2 fb
with fb being the bunch frequency and Aint the area of interaction. N1 and N2 are the number of 
particles in each of the bunches. Putting this together we have
` ` = rhs (1.2.3)  rhs (1.2.4)

=
N1 N2 fb

Aint

Aint is the product of the transverse beam sizes and, for matched beam sizes
A int = 4 Pi sigma x sigma z

Aint = 4  x z

thus
subs (1.2.6), (1.2.5)

=
N1 N2 fb
4  x z

with the σ being the rms beam widths of Gaussian distributions. 

At the collision point(s), particles of one beam are exposed to the e-m field of the other beam and 
will experience a transverse kick not unlike what we just analyzed. We can make a similar ansatz 
as before except that the magnetic force now has the opposite polarity relative to the electric field, 
and we end up with
F bb subs

2
=

2
, n 0 = N, (1.1.8)
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(1.2.15)(1.2.15)

(1.2.6)(1.2.6)

(1.2.16)(1.2.16)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.2.8)(1.2.8)

(1.2.1)(1.2.1)

(1.2.5)(1.2.5)

(1.2.13)(1.2.13)

(1.2.12)(1.2.12)

(1.2.4)(1.2.4)

(1.2.7)(1.2.7)

(1.2.10)(1.2.10)

(1.2.3)(1.2.3)

Fbb r
q2 N 1 e

r2

2 2
 

2
1

2 
0
  lb r

valid for a round beam σx=σz=σ and equal particle count N. Other than in case of space-charge, 
the interaction happens at a specific location only so in principle this goes into Hill's equation as a 
δ function. We will make use of the matrix approach we already developed to facilitate this 
analysis.
The kick creates a change in transverse momentum proportional to the time it acts upon the test 
particle:
Delta p t, bb = F bb Delta t

pt, bb = Fbb t

and

Delta t =
l b
2 c

t =
lb
2 c

so
subs (1.2.10), (1.2.9)

pt, bb =
Fbb lb

2 c

The change in angle is then the transverse momentum change relative to the longitudinal 
momentum:

Delta Diff z s , s =
rhs (1.2.11)
gamma m 0

c

d
ds

z s =
Fbb lb
2  m0

We can now treat this to first (linear) order as a focusing error in the lattice and do similar 
replacements as in (1.1.6) :

F bb = subs e0 =
q2

r0 4  m 0
, 1

2
= 2, convert series F bb z , z, 3 ,

polynom

Fbb =
q2 N z

2 
2
 

0
  lb

subs (1.2.13), (1.2.12)
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(1.2.16)(1.2.16)

(1.3.2)(1.3.2)

(1.2.9)(1.2.9)

(1.2.11)(1.2.11)

(1.3.26)(1.3.26)

(1.2.8)(1.2.8)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.2.4)(1.2.4)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.2.3)(1.2.3)

(1.2.15)(1.2.15)

(1.2.6)(1.2.6)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.2.2)(1.2.2)

(1.2.14)(1.2.14)

(1.3.29)(1.3.29)

(1.2.1)(1.2.1)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.2.5)(1.2.5)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.2.13)(1.2.13)

(1.2.12)(1.2.12)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.2.7)(1.2.7)

(1.3.4)(1.3.4)

(1.2.10)(1.2.10)

(1.3.19)(1.3.19)

d
ds

z s =
q2 N z

4 
2
 

0
   m0

This can be inserted as an additional thin lens into the one-turn matrix of a ring, taken at the 
interaction point, and from that we can get the effect on the machine tune, which is left as an 
exercise. The result is (for q=1e):

=
N r0 IP

4 
2
  

=
N r0 IP

4 
2
  

For elliptical beams, like in electron machines, this formula is modified to read

x, z =
N r0 IP, x, z

2 x, z x z   

x, z =
N r0 IP, x, z

2 x, z x z   

In case of unequal particle count N, the number to use is the one of the other beam.
The first-order effect is not unlike the space-charge tune shift. However, nonlinear effects are 
much stronger relative to the first-order tune shift in the beam-beam case than in case of space-
charge. The hand-waving argument is that in case of space charge averaging a small force over a 
whole ring may well lead to cancellations that reduce the overall nonlinear effect, while in the 
beam-beam case the full nonlinearity comes to bear as it is an impulsive force. As a matter of 
practicality, space-charge tune shift can be as high as 0.5 whereas beam-beam tune shift can reach 
0.1 in electron-positron colliders where there is damping, while it is limited to about 1/10 of that 
in proton and proton-antiproton colliders with no appreciable damping.

Robinson Damping/Instability
Note: This section is somewhat experimental in that I drafted it right before the 2014 school and it is
not a finished product. I am including it here since I believe the physics behind the equations is 
correct and the approach I am taking is also correct. The derivations proceed along the same path as 
in Wiedemann ([2]. Vol. II, p. 200 ff). 

We start from the longitudinal equations of motion for energy deviation and phase deviation from 
the reference as derived earlier in this course:
diff W t , t  = q * V * sin Phi s sin Phi t / 2 * h * Pi ;

W
.

t =
q V sin s sin t

2 h 
and
diff Phi t , t  = omega rf ^2 * eta * W t / beta^2 * E s
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

.
t = rf

2
  W t

2
 Es

We again limit ourselves to small amplitude of motion and expand to first order:
subs t = s t , (1.3.1)

W
.

t =
q V sin s sin s t

2 h 

lhs (1.3.3) = thaw convert series subs t = freeze t , rhs (1.3.3) , freeze t ,
2 , polynom

W
.

t =
q V cos s  t

2 h 
We now add a term describing the power exchanged with the beam due to the presence of an 
impedance in the vacuum system. While general now, this term will become dependent on the 
impedance of the rf cavity (or cavities) and the beam current.
lhs (1.3.4) = rhs (1.3.4) P

W
.

t =
q V cos s  t

2 h 
P

We now combine this with the equation for the phase (the somewhat complicated series of steps 
is to avoid Maple doing replacements we don't want):
subs t =' s t ', lhs (1.3.2) = rhs (1.3.2)

# watch out, Phi[s] phi(t) may get replaced with something else

t s t = rf
2

  W t
2
 Es

simplify (1.3.6)

.
t = rf

2
  W t

2
 Es

eval rhs (1.3.7)

rf
2

  W t
2
 Es

solve diff (1.3.8), t = diff phi t , t, t , diff W t , t
..

t  
2
 Es

rf
2

 

subs diff W t , t = (1.3.9), (1.3.5) omega rf 2 eta
2

E s
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

..
t =

rf
2

  
q V cos s  t

2 h 
P

2
 Es

We now use the expression for the synchrotron frequency Ωs to get rid of the cos(Φs) term:
Omega s  = simplify 1 / 2 * sqrt 2 * sqrt h * omega s ^2 * eta * q * V * cos Phi s / beta

^2 * Pi * E s , symbolic

s =
2  s h   q  V  cos s

2   Es

subs solve (1.3.11), cos Phi s , (1.3.10)

..
t =

rf
2

  s
2
 

2
 Es t

s
2
 h2 

P

2
 Es

expand subs s = rf

h
, (1.3.12)

..
t = s

2
 t rf

2
  P

2
 Es

We have the oscillator equation for the phase plus a term depending on the power exchange with 
the beam. We now need to evaluate P(ω). To do this, we will first evaluate the voltage induced by 
the beam for a given impedance, but will leave the impedance unevaluated and express the voltage
for the various real and imaginary impedance terms. We express the beam current (at  the rf 
harmonic) as
i h t i b * cos h * omega rf * t phi t sin h * omega rf * t phi t

ih t ib cos h rf t t sin h rf t t

The phase angle φ(t) is modulated with the synchrotron oscillation:
phi t = phi0 * sin Omega s * t

t = 0 sin s t

subs (1.3.15), ih t

ib cos h rf t 0 sin s t sin h rf t 0 sin s t

We expand the beam current to first order in phi0, which gives
i h combine convert series (1.3.16), 0, 2 , polynom , trig

ih ib cos h rf t ib sin h rf t
ib 0 sin h rf t s t

2

ib 0 sin h rf t s t

2

ib 0 cos h rf t s t

2
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

ib 0 cos h rf t s t

2

The beam current induces a voltage in the impedance. We express the impedance in terms of its 
components at the rf frequencies and its sidebands. The indices to Z indicate that it is the cavity 
(c), upper or lower sideband or fundamental (+,– or 0), and real or imaginary part (r or i). The 
voltage induced in the cavity is then Vh*ih; note the minus sign in the expression for Vh, necessary
to ensure that positive beam current extracts power from the beam as necessary by energy 
conservation.

V h = 1  op 1, i h * Z c0r op 2, i h * Z c0i op 3, i h * Z c r
op 4, i h * Z c r op 5, i h * Z c i op 6, i h * Z c i

Vh = ib cos h rf t  Zc0r ib sin h rf t  Zc0i

ib 0 sin h rf t s t  Zc r

2

ib 0 sin h rf t s t  Zc r

2

ib 0 cos h rf t s t  Zc i

2

ib 0 cos h rf t s t  Zc i

2
expand (1.3.18)
Vh = ib cos h rf t  Zc0r ib sin h rf t  Zc0i

ib 0 Zc r sin h rf t  cos s t

2

ib 0 Zc r cos h rf t  sin s t

2

ib 0 Zc r sin h rf t  cos s t

2

ib 0 Zc r cos h rf t  sin s t

2

ib 0 Zc i cos h rf t  cos s t

2

ib 0 Zc i sin h rf t  sin s t

2

ib 0 Zc i cos h rf t  cos s t

2

ib 0 Zc i sin h rf t  sin s t

2
We can now replace the sin(Ωst) and cos(Ωst) terms by ϕ(t) and diff(ϕ(t),t) using (1.3.15):
solve (1.3.15), sin s  t

sin s t =
t
0

solve diff (1.3.15), t , cos s  t

cos s t =
.

t
0 s

subs (1.3.20), (1.3.21), (1.3.19)
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

Vh = ib cos h rf t  Zc0r ib sin h rf t  Zc0i

ib Zc r sin h rf t  
.

t

2 s

ib Zc r cos h rf t  t

2

ib Zc r sin h rf t  
.

t

2 s

ib Zc r cos h rf t  t

2

ib Zc i cos h rf t  
.

t

2 s

ib Zc i sin h rf t  t

2

ib Zc i cos h rf t  
.

t

2 s

ib Zc i sin h rf t  t

2
We collect terms of interest:
collect (1.3.22),

.
t , t , ii, ir, sin, cos,

Vh =
ib Zc r

2 s

ib Zc r

2 s

 sin h rf t
ib Zc i

2 s

ib Zc i

2 s

 cos h rf t  
.

t
1
2

 ib Zc i
1
2

 ib Zc i  sin h rf t

1
2

 ib Zc r
1
2

 ib Zc r  cos h rf t  t ib cos h rf t  Zc0r

ib sin h rf t  Zc0i

To get to the power exchanged with the beam, we multiply by the beam current again:
P omega = i h rhs (1.3.23)

P = ib cos h rf t ib sin h rf t
ib 0 sin h rf t s t

2

ib 0 sin h rf t s t

2

ib 0 cos h rf t s t

2

ib 0 cos h rf t s t

2
 

ib Zc r

2 s

ib Zc r

2 s

 sin h rf t

ib Zc i

2 s

ib Zc i

2 s

 cos h rf t  
.

t
1
2

 ib Zc i

1
2

 ib Zc i  sin h rf t
1
2

 ib Zc r
1
2

 ib Zc r  cos h rf t

 t ib cos h rf t  Zc0r ib sin h rf t  Zc0i

simplify expand (1.3.24)
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

P =
1

2 s

ib
2 cos h rf t

2
 Zc i 

.
t cos h rf t

2
 Zc i 

.
t

2 cos h rf t
2
 Zc0r s 2 Zc0i s

0 cos h rf t
2
 sin s t  Zc r t  s

0 cos h rf t
2
 sin s t  Zc r t  s

0 sin h rf t  sin s t  Zc i cos h rf t  
.

t

0 sin h rf t  sin s t  Zc i cos h rf t  
.

t

0 cos h rf t  sin s t  Zc r sin h rf t  
.

t

0 cos h rf t  sin s t  Zc r sin h rf t  
.

t

2 0 cos h rf t  sin s t  sin h rf t  Zc0i s

2 0 sin h rf t  sin s t  cos h rf t  Zc0r s 0 sin s t  Zc i t  s

0 sin s t  Zc i t  s 0 cos h rf t
2
 sin s t  Zc i 

.
t

0 cos h rf t
2
 sin s t  Zc i 

.
t 2 0 cos h rf t

2
 sin s t  Zc0r s

cos h rf t  Zc i sin h rf t  t  s

cos h rf t  Zc i sin h rf t  t  s

sin h rf t  Zc r cos h rf t  t  s

sin h rf t  Zc r cos h rf t  t  s Zc i t  s Zc i t  s

cos h rf t
2
 
.

t  Zc r cos h rf t
2
 
.

t  Zc r 2 cos h rf t
2
 s Zc0i

Zc r 
.

t Zc r 
.

t cos h rf t
2
 
.

t  sin s t  0 Zc r

cos h rf t
2
 
.

t  sin s t  0 Zc r 2 cos h rf t
2
 sin s t  0 s Zc0i

0 sin s t  Zc r 
.

t 0 sin s t  Zc r 
.

t 2 0 sin s t  Zc0i s

2 cos h rf t  sin h rf t  Zc0i s 2 sin h rf t  cos h rf t  Zc0r s

cos h rf t
2
 Zc r t  s cos h rf t

2
 Zc r t  s

sin h rf t  Zc i cos h rf t  
.

t sin h rf t  Zc i cos h rf t  
.

t

cos h rf t  Zc r sin h rf t  
.

t cos h rf t  Zc r sin h rf t  
.

t

cos h rf t
2
 t  s Zc i cos h rf t

2
 t  s Zc i
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

0 cos h rf t  sin s t  Zc i sin h rf t  t  s

0 cos h rf t  sin s t  Zc i sin h rf t  t  s

0 sin h rf t  sin s t  Zc r cos h rf t  t  s

0 sin h rf t  sin s t  Zc r cos h rf t  t  s

cos h rf t
2
 sin s t  t  0 s Zc i

cos h rf t
2
 sin s t  t  0 s Zc i

We collect the terms of interest again:
collect (1.3.25),

.
t , t , ii, ir, cos, sin

P =
ib
2 0 Zc i 0 Zc i 0 Zc r 0 Zc r  sin s t

2 s

ib
2 Zc i Zc i Zc r Zc r

2 s

 cos h rf t
2

ib
2 0 Zc i 0 Zc i 0 Zc r 0 Zc r  sin h rf t  sin s t

2 s

ib
2 Zc i Zc i Zc r Zc r  sin h rf t

2 s

 cos h rf t

ib
2 0 Zc r 0 Zc r  sin s t

2 s

ib
2 Zc r Zc r

2 s

 
.

t

ib
2 0 s Zc i 0 s Zc i 0 s Zc r 0 s Zc r  sin s t

2 s

ib
2 s Zc i s Zc i s Zc r s Zc r

2 s

 cos h rf t
2

1
2 s

ib
2 0 s Zc i 0 s Zc i 0 s Zc r

0 s Zc r  sin h rf t  sin s t

ib
2 s Zc i s Zc i s Zc r s Zc r  sin h rf t

2 s
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

 cos h rf t
ib
2 0 s Zc i 0 s Zc i  sin s t

2 s

ib
2 s Zc i s Zc i

2 s

 t

ib
2 2 0 Zc0i s 2 0 Zc0r s  sin s t

2 s

ib
2 2 Zc0i s 2 Zc0r s

2 s

 cos h rf t
2 ib

2 2 0 Zc0i s 2 0 Zc0r s  sin h rf t  sin s t

2 s

ib
2 2 Zc0i s 2 Zc0r s  sin h rf t

2 s

 cos h rf t Zc0i 0 sin s t  ib
2

Zc0i ib
2

Since we are primarily interested in the evolution of e.g. the oscillation amplitude—a process slow
on the scale of the rf frequency and even of the synchrotron frequency—we will now average 
over the various oscillating components (sin, cos and sin*cos average to 0; sin^2 and cos^2 
average to 1/2):

subs cos h rf  t
2

=
1
2

, sin h rf  t
2

=
1
2

, (1.3.26)

P =
ib
2 0 Zc i 0 Zc i 0 Zc r 0 Zc r  sin s t

4 s

ib
2 Zc i Zc i Zc r Zc r

4 s

ib
2 0 Zc i 0 Zc i 0 Zc r 0 Zc r  sin h rf t  sin s t

2 s

ib
2 Zc i Zc i Zc r Zc r  sin h rf t

2 s

 cos h rf t

ib
2 0 Zc r 0 Zc r  sin s t

2 s

ib
2 Zc r Zc r

2 s

 
.

t

ib
2 0 s Zc i 0 s Zc i 0 s Zc r 0 s Zc r  sin s t

4 s

ib
2 s Zc i s Zc i s Zc r s Zc r

4 s

1
2 s

ib
2 
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

0 s Zc i 0 s Zc i 0 s Zc r 0 s Zc r

 sin h rf t  sin s t

ib
2 s Zc i s Zc i s Zc r s Zc r  sin h rf t

2 s

 cos h rf t
ib
2 0 s Zc i 0 s Zc i  sin s t

2 s

ib
2 s Zc i s Zc i

2 s

 t

ib
2 2 0 Zc0i s 2 0 Zc0r s  sin s t

4 s

ib
2 2 Zc0i s 2 Zc0r s

4 s

ib
2 2 0 Zc0i s 2 0 Zc0r s  sin h rf t  sin s t

2 s

ib
2 2 Zc0i s 2 Zc0r s  sin h rf t

2 s

 cos h rf t Zc0i 0 sin s t  ib
2

Zc0i ib
2

collect simplify (1.3.27) ,
.

t , t , sin, cos
P

=
1

4 s

ib
2 2 0 Zc i 2 0 Zc i 2 0 Zc r

2 0 Zc r  cos h rf t  sin h rf t

ib
2 0 Zc i 0 Zc i 0 Zc r 0 Zc r

4 s

 sin s t

ib
2 2 Zc i 2 Zc i 2 Zc r 2 Zc r  cos h rf t  sin h rf t

4 s

ib
2 Zc i Zc i Zc r Zc r

4 s

 
.

t
1

4 s
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

ib
2 2 0 s Zc i 2 0 s Zc i 2 0 s Zc r

2 0 s Zc r  cos h rf t  sin h rf t

ib
2 0 s Zc i 0 s Zc i 0 s Zc r 0 s Zc r

4 s

 sin s t

1
4 s

ib
2 2 s Zc i 2 s Zc i 2 s Zc r

2 s Zc r  cos h rf t  sin h rf t

ib
2 s Zc i s Zc i s Zc r s Zc r

4 s

 t

ib
2 4 0 Zc0i s 4 0 Zc0r s  cos h rf t  sin h rf t

4 s

ib
2 2 0 Zc0i s 2 0 Zc0r s

4 s

 sin s t

ib
2 4 Zc0i s 4 Zc0r s  cos h rf t  sin h rf t

4 s

ib
2 2 Zc0i s 2 Zc0r s

4 s

algsubs cos h rf  t  sin h rf  t = 0, (1.3.28)

P =
.

t  
sin s t  ib

2 0 Zc i Zc i Zc r Zc r

4 s

ib
2 Zc i Zc i Zc r Zc r

4 s

t  

sin s t  ib
2 0 Zc i Zc i Zc r Zc r

4

ib
2 s Zc i s Zc i s Zc r s Zc r

4 s
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

sin s t  ib
2 0 Zc0i Zc0r

2

ib
2 2 Zc0i s 2 Zc0r s

4 s

rhs (1.3.29)

.
t  

sin s t  ib
2 0 Zc i Zc i Zc r Zc r

4 s

ib
2 Zc i Zc i Zc r Zc r

4 s

t  

sin s t  ib
2 0 Zc i Zc i Zc r Zc r

4

ib
2 s Zc i s Zc i s Zc r s Zc r

4 s

sin s t  ib
2 0 Zc0i Zc0r

2

ib
2 2 Zc0i s 2 Zc0r s

4 s

P omega = collect map simplify, subs sin Omega s t = 0, (1.3.30) , diff phi t , t ,
phi t , i b

P =

.
t  ib

2 Zc i Zc i Zc r Zc r

4 s

Zc i

4

Zc i

4

Zc r

4

Zc r

4
 ib

2 t
Zc0i

2

Zc0r

2
 ib

2

This does indeed have the dimension of power, which is the derivative of the energy by time. We 
can now replace P(ω) in (1.3.13):
subs (1.3.31), (1.3.13)

..
t = s

2
 t

1
2
 Es

rf
2

  

.
t  ib

2 Zc i Zc i Zc r Zc r

4 s

Zc i

4

Zc i

4

Zc r

4

Zc r

4
 ib

2 t
Zc0i

2

Zc0r

2
 ib

2

We can now see three distinct terms in the equation of motion for ϕ(t):
A term dependent on diff(ϕ(t),t). This term will cause amplitude growth if<0 or damping 
depending on the sign. Below transition η >0 and the term will be negative if Z+ > Z , which is
Robinson damping. A positive term will cause Robinson instability
A term dependent on ϕ(t), which will cause a beam-current dependent shift in synchrotron 
tune.
A term independent of the phase angle. This term will cause a shift in the synchronous angle 
(to make up for the lost energy).
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

Maple can solve this equation although it becomes a long mess of a solution. We can so 
somewhat better by freezeing the impedances in (1.3.32) by section:

subs Zc i Zc i Zc r Zc r = freeze Zc i Zc i Zc r Zc r ,

Zc i

4

Zc i

4

Zc r

4

Zc r

4
= freeze

Zc i

4

Zc i

4

Zc r

4
Zc r

4
,

Zc0i

2

Zc0r

2
= freeze

Zc0i

2

Zc0r

2
, (1.3.32) ;

..
t = s

2
 t

1
2
 Es

rf
2

  

.
t  ib

2 freeze/R10

4 s

Zc i

4

Zc i

4

Zc r

4

Zc r

4
 ib

2 t freeze/R12 ib
2

dsolve (1.3.33)
t

= e

1
8 2 E

s
 

s
rf
2   i

b
2 freeze/R10

rf
4  2 i

b
4 freeze/R102 16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c i
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c i
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c r
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c r
64 

s
4 4 E

s
2 1/2

 t

 _C2

e

1
8 2 E

s
 

s
rf
2   i

b
2 freeze/R10

rf
4  2 i

b
4 freeze/R102 16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c i
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c i
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c r
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c r
64 

s
4 4 E

s
2 1/2

 t

 _C1

4  freeze/R12 ib
2 rf

2

 ib
2 Zc r Zc r Zc i Zc i  rf

2
4 s

2
 

2
 Es

thaw (1.3.34)
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(1.3.2)(1.3.2)

(1.3.26)(1.3.26)

(1.3.16)(1.3.16)

• • 

(1.3.17)(1.3.17)

• • 

• • 

(1.3.12)(1.3.12)

(1.3.11)(1.3.11)

(1.3.13)(1.3.13)

(1.3.27)(1.3.27)

(1.3.8)(1.3.8)

(1.3.14)(1.3.14)

(1.3.7)(1.3.7)

(1.3.1)(1.3.1)

(1.3.10)(1.3.10)

(1.3.31)(1.3.31)

(1.3.5)(1.3.5)

(1.3.20)(1.3.20)

(1.3.22)(1.3.22)

(1.3.21)(1.3.21)

(1.3.29)(1.3.29)

(1.3.9)(1.3.9)

(1.3.23)(1.3.23)

(1.3.25)(1.3.25)

(1.3.34)(1.3.34)

(1.3.32)(1.3.32)

(1.3.6)(1.3.6)

(1.3.33)(1.3.33)

(1.3.18)(1.3.18)

(1.3.24)(1.3.24)

(1.3.35)(1.3.35)

(1.3.4)(1.3.4)

(1.3.19)(1.3.19)

t

= e

1
8 2 E

s
 

s
rf
2   i

b
2 Z

c i
Z

c i
Z

c r
Z

c r

rf
4  2 i

b
4 Z

c i
Z

c i
Z

c r
Z

c r
2 16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c i
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c i
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c r
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c r
64 

s
4 4 E

s
2 1/2

 t

 _C2

e

1
8 2 E

s
 

s
rf
2   i

b
2 Z

c i
Z

c i
Z

c r
Z

c r

rf
4  2 i

b
4 Z

c i
Z

c i
Z

c r
Z

c r
2 16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c i
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c i
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c r
16 

rf
2   i

b
2 2 E

s
 

s
2 Z

c r
64 

s
4 4 E

s
2 1/2

 t

 _C1

4  
Zc0i

2

Zc0r

2
 ib

2 rf
2

 ib
2 Zc r Zc r Zc i Zc i  rf

2
4 s

2
 

2
 Es
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(1.10)(1.10)

(1.11)(1.11)

(1.8)(1.8)

(1.2)(1.2)
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(1.9)(1.9)

(1.7)(1.7)

(1.5)(1.5)

(1.3)(1.3)

Cyclotrons

The cyclotron is one of the first circular accelerators. Nevertheless it is still very much a machine 
being designed, built and used today, for medical applications, isotope production and other 
applications where moderate energy, high intensity and high reliability are essential.

The cyclotron principle is qute straightforward; in a constant B-field (usually vertical), charged 
particles travel on circular orbits given by the Lorentz force being equal to the centrifugal force:
m v2

R
 = q v Bz

m v2

R
= q v Bz

so

algsubs
v
R

= ,
(1.1)
v

m = q Bz
What this says is that R increases commensurate with the particle's velocity such that the angular 
frequency ω0 remains constant. Therefore a fixed-frequency rf system with an accelerating gap 
particles pass by on each turn will be able to accelerate such particles to an energy
E Vrf n 2

E 2 Vrf n

where the factor 2 arises from particles passing the gap (at least) twice per turn. It will become 
immediately clear that this is the case only for nonrelativistic particles as m = γ*m0, therefore:
subs m = gamma m0, (1.2)

 m0 = q Bz

and thus ω varies with 1/γ for constant Bz. 

There are some ways out. 
We can change the rf frequency at the expense of accelerating only one bunch at a time. This leads to 
the synchrocyclotron, allowing higher energy but at much reduced intensity. 

We can increase the B-field radially. This will keep synchronicity towards higher energy. The 
problem with this approach is not immediately obvious: it leads to a weakening of the vertical beam 
stability and beam loss. This can be visualized as follows:



USPAS 2016 at UT Austin Accelerator Physics with Maple Cyclotrons

266

(1.4)(1.4)

(1.10)(1.10)

(1.11)(1.11)

(1.8)(1.8)

(1.2)(1.2)

(1.6)(1.6)

(1.1)(1.1)

(1.9)(1.9)

(1.7)(1.7)

(1.5)(1.5)

(1.3)(1.3)

Fig. 1: vertical defocusing and focusing effect of radial field gradient [6].

The effect is a direct consequence of Maxwell's equations for the magnetic field. In the absence of 
any longitudinal field, we have
diff Bz r , r = diff Br z , z

d
dr

Bz r =
d
dz

Br z

and a positive gradient will lead to particles at positive z to be deflected further positively and get lost 
quickly. In fact, for vertical beam stability one usually wants a slightly negative gradient of the radial 
field.

It turns out that azimuthal variation of the field can break through the barrier of the relativistic energy 
limit of a cyclotron. in this so-called "isochronous cyclotron" the B-field varies azimuthally by 
introduction of "hills and valleys" of the magnetic poles. The orbit radius varies, in the extreme case 
of 0 field in the valleys the orbit is straight in the valleys, and therefore has an angle against the edge 
of the hills.
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rho

R

Fig. 2: Isochronous or AVF cyclotron [6].
The variation of the field at the edge of the hills introduces a longitudinal field component that is 
normal to the edge. If the trajectory has an angle other than normal against the edge, this longitudinal 
component has a transverse component as seen by the beam and thus a vertical force results that can 
be seen to be either focusing or defocusing depending on this angle. In an AVR cyclotron it is 
always focusing. This focusing, then, counters the vertical defocusing due to the increase in B-field to
maintain synchronicity and extend the energy reach of the isochronous cyclotron. 

Eventually, the required rise of the B-field and associated defocusing becomes too strong to be 
countered by the straight edges as shown in Fig. 2 even with field-less valleys. The next step, then, is
to shape the pole edges into a spiral shape which further increases the edge focusing. It also allows to
lengthen the hills thus aiding synchronicity.

We can get an approximate expression for the edge focusing for 0 valley field from 1.5 by rotating it 
with the angle of the beam against the normal of the poleface:
1
f

=
tan theta

rho
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1
f

=
tan

We can define the "flutter" function

F2 =
B Bavg

2

avg

Bavg
2

F2 =
B Bavg

2

avg

Bavg
2

F2 =
R

rho
1

F2 =
R

1

where ρ is the bending radius of the hill and R the min length from the center to the orbit in the valley,
to have a parameter that works for non-zero valley field as well.

The focusing properties can be parametrized in terms of the machine "tunes", the number of 
oscillations per turn a particle not launched exactly on the design trajectory undergoes as it goes 
around the accelerator. There are radial and vertical tunes. For an isochronous cyclotron, the radial 
tune is
Qx = 1 n

Qx = 1 n

whereas the vertical tune is
Qz = F2 n

Qz = F2 n

n is the so-called "field index", a measure of the gradient in the field normalized to the dipole strength
and is given by

n =
Bz
diff Bz s , s

n =
 

d
ds

Bz s

Bz
Positive n is horizontally focusing whereas negative n is horizontally defocusing; with the behaviour 
in the vertical plane being the opposite. In the absence of flutter we see immediately that -1 < n< 1 for
stable motion in both planes. Isochronicity requires n>0 towards higher energy and therefore a 
normal cyclotron cannot accelerate particles to relativistic energy. 

Practically speaking, F2 is limited to values near unity and therefore the isochronous cyclotron as 
described (Thomas cyclotron) is still limited in (proton-) energy to maybe 35 or 40 MeV. We can 
increase the effect by inclining the edges even more, thus amplifying the vertical focusing. This leads 
to spiral focusing, which allows large cyclotrons like TRIUMF and SIN to reach or exceed 0.5 GeV 
beam energy.
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Fig. 3: Vertical tune vs energy in the TRIUMF cyclotron [34].
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Fig. 4: Lower half of TRIUMF cyclotron during construction [34].
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PARTICLE COLLIDERS

PARTICLE COLLIDERS ATF2 LATTICE DESIGN TUNING PROCESS CONCLUSIONS

High Energy Physics and Accelerators

Particle accelerators have been extensively used to discover
new particles

1950-1970: Anti-particles, Quarks,...
1970 Establishment of the Standard Model

Predictions of the Standard Model are questioned by particle
colliders

⇓
2012: Higgs Boson by the Large Hadron Collider

The High Energy Physics community demands for particle
colliders with high Luminosity (L) at high energy

Number of Events/sec = L σproce ss

L ≈ fre p
nb N 2

σ∗
x σ

∗
y

(assuming Gaussian beams - head-on collisions)
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Large Hadron Collider

27 km of tunnel filled with superconducting dipoles
1232 Dipoles (B m a x = 8.33 T ) 8 RF cavities
N p=1.1 1011/bunch 2808 bunches/beam
E=14 TeV @ CM L ≈1034cm−2s−1

Is the LHC the best machine for conducting experiments that
require high precision?
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Clean Collision

Hadrons are not elementary particles ⇒ Unknown initial
state of its compounds
Leptons are point-like particle
Lepton collisions can be fully reconstructed

Lepton Colliders are used for high precision experiments
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Ring e+e− Collider

LEP reached E @ CM=209 GeV, L ≈ 1031cm−2s−1

Limited by energy loss due to Synchrotron Radiation
emission by bend particles ⇒ U≈3 GeV! Pra d =18MW!
⇑ ρ ⇒ TLEP
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Linear Colliders

Linear e+e− Collider

SLC ran from 1987 to 1989 Discovery of the Z0 particle
E @ CM=91.2 GeV L ≈ 1030cm−2s−1

Not limited by SR but
Gradient and luminosity are a concerned single pass



PARTICLE COLLIDERS ATF2 LATTICE DESIGN TUNING PROCESS CONCLUSIONS

Linear Colliders

Future Linear Collider

Source Damping Ring Linac BDS
L ≈ 1

σx σy
≈ 1025 ≈ 1028 ≈ 1030 ≈ 1034

x2

Two proposals for the future linear collider

International Linear Collider (ILC) (E m a x =1 TeV, LT ≈30 Km)
uses SC accelerating cavities (≈ 30 MV/m)

Compact Linear Collider (CLIC) (E m a x =3 TeV, LT ≈50 Km)
uses NC accelerating cavities (≈ 100 MV/m)
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Linear Colliders

ILC footprint

fre p 5 Hz N p 2·1010 nb 1312
E C M 500 GeV L 1.8 1034cm−2s−1 δp

p 0.12 %
γεx 10 µm β∗

x 11 mm σ∗
x 474 nm

γεy 35 nm β∗
y 0.48 mm σ∗

y 5.9 nm

L = fre p
nb N 2

σ∗
x σ

∗
y

σ∗
x ,y =

√
εx ,y · β∗

x ,y

How do we focus the beam?
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Linear Colliders

ILC footprint
fre p 50 Hz N p 0.4·1010 nb 312
E C M 3 TeV L 5.8 1034cm−2s−1 δp

p 0.3 %
γεx 0.7 µm β∗

x 6.9 mm σ∗
x 45 nm

γεy 20 nm β∗
y 0.07 mm σ∗

y 1.0 nm
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Linear Colliders

Final Focus System

The Final Focus System (FFS) of the BDS provides the
required focusing @ IP
2 Strong quadrupoles, Final Doublet (FD), located a
distance L* from the interaction point (IP) focus the beam
on both planes
The FD introduces chromaticity (ξ) which needs to be
corrected if aiming to nm beam sizes ξ ≈ L∗

β∗
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Linear Colliders

Chromaticity Correction Schemes

There exists two possible chromaticity correction schemes:
non-local: its operational principle was demonstrated at
SLAC (1994)
local: its operational principle has been recently
demonstrated at ATF2 (2013)

Figure 4: Two design concepts for final focus systems of linear colliders. Top: non-local correction

scheme used for the SLC and for the FFTB [29, 30]. Bottom: compact local correction proposed in

[32]. The dark grey rectangles and the light grey hexagons represent bending dipoles and sextupoles,

respectively. The dashed line shows qualitatively the horizontal dispersion.

Two different conceptual designs for the final focus system have been proposed, which differ in the

scheme used for the chromatic correction: (1) a non-local correction scheme, experimentally verified

for the SLC [29] and for the Final Focus Test Beam (FFTB) [30] at SLAC, and (2) a compact local

correction scheme recently proposed [32] for the next generation of linear colliders. The two concepts

are qualitatively shown in Fig. 4.

The design (1) (top of Fig. 4) foresees a dedicated chromatic correction section upstream of the

final telescope. Sextupoles combined with dipoles (to generate horizontal dispersion) are used to

compensate the chromaticity of the lattice. On the other hand, the beam focusing is carried out in

a downstream, non-dispersive section. This scheme with separate sections is meant to avoid gen-

erating unwanted high order chromatic terms. Pairs of sextupoles separated by minus unit optical

transformations (−I) are used to correct the chromaticity without introducing second-order geomet-

ric aberrations [24].

This system is conceptually simple and has a solid experimental validation. However, it has the

main disadvantage that it is quite long. The chromatic correction section requires large  -functions
and dispersion, which moreover imposes tight tolerances on the magnet alignment. In addition, the

chromatic kick is not local but it has to be transported to the interaction point through many lattice

elements. This induces higher order aberration terms.

In order to counteract the drawbacks of the long system, another design for the final focus system

has been developed [32, 33]. This novel scheme, often referred to as compact design because of its

much shorter length, is given in Fig. 4 bottom part. It relies on a local correction of the chromaticity,

to be applied in the vicinities of the final doublet where a sextupole is to be placed. In order to

correct the pure geometrical chromaticity, another sextupole must be placed upstream, at a−I optical
transformation. The optics must be adjusted so as to have a zero dispersion at the interaction point.

This type of local correction reduces dramatically the total length of the system. In the case of CLIC,

the compact scheme reduces the length of the final focus section by a factor 6 [34]. More details on

the CLIC design are given in the next section.

13
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ATF2
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Description

ATF2

In 2008 the Accelerator Test Facility (ATF2) in Japan was
constructed to test FFS (ILC & CLIC)
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Description

Real ATF2
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Lattices

ATF2 Nominal Lattice

ATF2 Nominal Lattice (ATF2 NL) is the scale-down version of
the ILC FFS lattice
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Lattices

ATF2 Ultra-low β∗ Lattice

ATF2 ultra-low β∗ Lattice (ATF2 UL) features a chromaticity
comparable to that one of CLIC

Para m eter S ymbol AT F 2 N L IL C AT F 2 U L C LIC
Relative energy spread [%] ∆p 0.08 0.13 0.08 0.3
Norm. horizontal emittance [µm] γεx 5 10 5 0.7
Norm. vertical emittance [nm] γεy 30 35 30 20
Horizontal beta function [mm] β∗

x 4 (40)1 11 4 6.9
Vertical beta function [mm] β∗

y 0.1 0.48 0.025 0.068
Horizontal beam size [µm] σ∗

x 2.8 (9) 0.47 2.8 45
Vertical beam size [nm] σ∗

y 37 5.8 23 1
Free distance before IP [m] L∗ 1.0 3.5 1 3.5
Vertical chromaticity ξy 104 8 103 4 104 5 104

⇓ β∗
y ⇒ ⇑ β(F D)

y ⇒ FD is very sensitive to &B field errors

ATF2 UL: σ∗
y

σ∗
x
≈ 1

120 ⇒ sensitive to coupling

1Currently ATF2 is running with β∗
x 10 times larger than nominal value



PARTICLE COLLIDERS ATF2 LATTICE DESIGN TUNING PROCESS CONCLUSIONS

LATTICE DESIGN
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Impact of Magnetic Field Errors

The multipole content (field quality) of each magnet
installed at ATF2 have been measured
Each component (up to 12-pole) is introduced into the
MAD-X model of ATF2 as a thin lens at
upstream/middle/downstream

Project Magnetic Errors β∗
x σ∗

x β∗
y σ∗

y
[mm] [µm] [µm] [nm]

ATF2 Nominal OFF 4 2.8 100 37
ATF2 Nominal ON 4 2.8 100 65
ATF2 10β∗

x 1β∗
y ON 40 9.0 100 37

ATF2 Ultra-low β∗ OFF 4 2.8 25 23
ATF2 Ultra-low β∗ ON 4 2.8 25 80
ATF2 10β∗

x
1
4β

∗
y ON 40 9.0 25 22
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Final Doublet

Order by Order Analysis

The obtained σ∗
y for the ATF2 Ultra-low β∗ at different orders

(no) is:

The coefficient analysis reveals that the 5th order is the most
responsible of the evaluated ∆σ∗

y for both lattices
If δp=0 ⇒ σ∗

y =77.5 nm

Geometric Skew Dodecapole Aberration!
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Final Doublet

Field Quality QF1

By comparison of the evaluated tolerances with the measured
multipole components of each of quadrupoles of the FD we
infer that QF1FF was the responsible of ∆σ∗

y
We decided to replace the bad QF1 (QC3) by a good QF1
(4Q17) in autumn 2012

ATF2 NL:
σ∗

y =37.5 nm
ATF2 UL:
σ∗

y =31 nm
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Octupole Magnets

ATF2 Ultra-low

Further analysis of map coefficients for ATF2 UL reveals that
the 3rd order is the most responsible of the evaluated ∆σ∗

y

 15

 20

 25

 30

 35

 2  2.5  3  3.5  4  4.5  5  5.5  6

γεx [µm]

ATF2 Ultra-low β*

(γεx operation)

order 1
order 2
order 3
order 5

If δp=0 ⇒ σ∗
y =19.5 nm

Chromatic Skew Octupole Aberration!
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Octupole Magnets

We will insert 2 octupoles of length 10 cm separated by a
phase advanced of π

Octupole-1: Upstream of FD
Octupole-2: Upstream the bending magnets

These octupoles permit to reduce σ∗
y =22 nm!
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Octupole Magnets

To be installed in Spring 2016!
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TUNING PROCESS
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Beam Sizes Monitor at ATF2

The beam size is measured by a Shintake
monitor
Compton signal generated when scanning
fringe pattern through the beam

M = cos(θ)exp[
−2π2σ2

y
h2 ],

h = λ
2sin(θ/2) fringe pitch

BSM has 3 different θcrossing to cover
σ∗

y from µm down to 10 nm
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Beam Size Tuning Process

The tuning process is based on pre-design orthogonal
linear/non-linear knobs (η∗, α∗, <px , y >, T324, T346..)
Each knob is meant to control an specific beam size aberration
at IP

Linear knobs are based on sextupole displacements (∆x ,∆y )

B x , B y of sextupole gradient (gs = ∂2 B x
∂y∂x =

∂2 B y
∂x 2 )

Sextupole

{
B x = gs xy ⇒ B̂ x = B x + (gs∆x )y + (gs∆y )x + gs∆x∆y
B y = 1

2 gs(x 2 − y 2) ⇒ B̂ y = B y + (gs∆x )x − (gs∆y )y + 1
2 gs(∆x 2 −∆y 2)

Non-linear knobs are based on variations of skew sextupole strengths
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Tuning Results

Major Difficulties:
Earthquake
Shintake monitor
Field errors
Wakefields...

Measured σ∗
y

44 ±6 nm
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The lattice design process has been crucial for the
operation of ATF2
ATF2 has demonstrated the feasibility of the ILC FFS2

ATF2 has achieved a world record minimum e− beam size
of < 50 nm
ATF2 is routinely delivering ≈60 nm within 24 hours
Octupoles will be installed in spring 2016
Go-no-Go decision for ILC will be taken in 2016 by Japan

2 G . W hite et al. P hys. R ev. L ett. vol 112 - 014801 (2013)
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The Lattice Package

A Maple package for charged-particle optics and beam-line analysis.

H.-Ulrich (Uli) Wienands

SLAC National Accelerator Laboratory

Menlo Park, CA 94025, USA

uli@slac.stanford.edu

Date of this manual: February 10, 2016.

Introduction

The Lattice package is a Maple package to design and analyze charged-particle beam lines and circular 

machines. It employs a beam-line description using the standard elements (dipoles, quadrupoles and so 

on) and retains the algebraic power of Maple. Beam-line elements are described using the equations 

governing the particle motion in algebraic form. In this way it is possible to compute expressions 

(rather than numbers) for beam-line parameters like Twiss functions, dispersion and such, for beam 

lines or rings, and to perform analysis on these expressions using the full power of Maple. The user 

can—within the limits of Maple's capabilities and of memory limitations—demonstrate analytically that 

certain characteristics can in fact be obtained using a given beam line, or not, as the case may be. 

Numeric calculations are possible as well to find values for magnet settings, track particle coordinates, 

generate lattice plots etc. 

The Lattice package takes a hybrid approach to the computations for a beam line. First-order analysis is

done by using 6x6 TRANSPORT[1] matrices. Thus most algorithms and examples found in the 

literature can be modeled essentially unchanged with the Lattice package. For particle tracking and 

modeling of nonlinear elements a tracking function (map) is included for each element. The tracking 

function of a beam line is computed by composition of the tracking functions for each element of the 

beam line and no truncation is done. This ensures accurate and symplectic tracking as long as the 

tracking function for each element is symplectic. A beam can be defined for use in tracking, including 

its first-order defining ! matrix[2]. Plotting commands are provided to allow for simple plotting of 

lattice functions and phase-space portraits. Output in a format suitable for input to MAD8[3] can be 

generated.

Since the full power of Maple is available to the user, the package does not have special matching or 

fitting routines but rather relies on the extensive capabilities of the Maple programming language to 

facilitate such operations. Likewise, operations like series expansion to a desired order can be 

performed using the series, taylor and mtaylor functions of Maple. 

The coordinates the Lattice package uses are positions and angles in the beam-following Frenet-Serret 

coordinate system, i.e. a particle's coordinates in 6-d phase space are described by <x,x',y,y',l,dp>. 

These are not canonical in the Hamiltonian sense. 

The Lattice package implements the commonly used methods to model beam lines and circular 

machines. Common beam line elements are available: Drift, Quad, Bend, Sextupole, RfCavity as 

well as Solenoid, GKick, Foil, Wire. These elements are implemented as Maple Records, which are 
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instantiated upon calling the respective element type procedures that return the Record implementing the

element.

Beam lines are built using the DefineLine procedure which returns a Record implementing a whole 

beam line. For certain calculations one may desire each element instantiated separately; this can be done 

using the ExpandLine procedure which returns a Maple Vector of the elements of the beam line.

The individual parameters of each element or beam line are available using the standard Maple :- 

("member of") operator. This allows quick extraction e.g. of the first-order TRANSPORT matrix R to 

perform operations on using Maple's LinearAlgebra package or other specialized operations. In certain 

cases it is also possible to replace the value of parameters in a given element, although this requires care

to avoid an element record having inconsistent parameters and a better mechanism is provided by the

Subs operation. The parameters available for each element are described in the next section.

Procedures are available for computing the matched Twiss functions and dispersion: twiss returns a 

maple Vector with the 6 Twiss functions, dispersion returns a Vector with the 4 dispersion functions. 

Functions for the individual quantities also exist: betax, alphax, gammax and their vertical 

counterparts as well as etax...etapy.

Tunes and cosines of the phase advance are computed by cosmux, cosmuy and nux, nuy.

Twiss functions and dispersion can be propagated through a lattice using TwissTran and EtaTran.

Particle tracking is supported by providing a function DefineBeam that sets up the data structure for a 

particle beam, which is characterized by its ! matrix and can have particles, as well as the Track 

procedure that actually performs the tracking. Due to speed limitations this is not practical for large-

scale multi-turn tracking studies (e.g. to find the dynamic aperture of a ring) but rather for exploratory 

limited studies. However, it is possible to extract and convert the tracking function to a numeric 

polynomial map the evaluation of which is actually quite efficient. Using mtaylor, this map can be 

limited to a desired order for further increase in tracking speed.

Lattice function plot structures can be generated using the LatticePlot procedure and put on the screen 

using plots:-display.

Beam distribution and phase-space ellipse plot structures are generated with BeamPlot.

Synchrotron-radiation integrals are computed by the functions I1, I2, I3, I4x and I5x. These act on

ExpandedLines.

The procedure Subs can be used to substitute variables on elements and beam lines of the Lattice 

package. It changes all occurrences of a variable in the given element or beam line. It recursively 

changes any sublines as well. Note that this is preferable to changing members of the element record as 

Subs ensures that all occurrences of a variable are changed and the element record remains consistent.

The symplectic 6x6 Matrix J is defined in Lattice and can be used together with VectorCalculus:-

Jacobian to check symplecticity of an operation or element or beam-line map.

Output for the lattice program MAD8 can be produced using Mad8Form.

Most of the accelerator physics formulae used in Lattice are from Ref. [4]. Units used in Lattice are 

meter, radian, MeV, MV, Tesla unless otherwise noted.

The Lattice package is compatible with Maple versions 15 and later.
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Implementation details
The machine elements are represented by Maple Records. Each element has a somewhat different set of

parameters stored in its record, but a number of parameters are common to all elements:

l - the length of the element. This length is understood to be the path length unless otherwise noted. 

Procedures like DefineLine or ExpandLine keep track and recalculate the length as appropriate.

R - the first-order 6x6 R matrix. This is used for first-order calculations like twiss and dispersion. 

For elements with only higher-order terms, R implements a drift of the equivalent length. Some 

elements 0 length will have R=IdentityMatrix.

TF - the trackFunction or map. This function describes the passage of particles through the element 

and can include to higher than first order. It is implemented with the Maple arrow operator. TF 

always acts on the column Vector with the 6 particle coordinates, <x,xp,y,yp,l,dp>. Elements like

Foil and Collimator can add random values to the beam coordinates.

kind - This is a name denoting the kind of the element. In general it is the same as the name of the 

constructor (Drift, Quad etc.).

Eref - a reference energy. Not always assigned a value. Used if elements change the average energy 

of a beam, like synchrotron radiation in a bend.

A general note: Record elements in Maple and therefore in the Elements of Lattice can be changed. 

However, the parameter values of the elements in Lattice are interdependent; this interdependence gets 

lost if only one parameter value gets changed by assignment. As a result such assignments lead to 

erroneous results unless great care is taken. The Subs procedure is provided to allow change of 

parameter values that will maintain consistency across all parameters of an element. Subs also allows to

change parameters in BeamLines in a correct and consistent manner.

Lattice defines a number of types that are used to restrict the operation of the procedures in Lattice to its

own types. In a few instances this is used to overload Maple operations. The types defined in Lattice 

are:

Element - An element like a Drift, Quad etc. Any BeamLine is also an Element. An ExpandedLine 

is a Vector of Elements.

BeamLine - A BeamLine is a concatenation of several Elements. A BeamLine is distinct from a mere

Element type by having  a parameter BL, which is assigned the list of Elements making up the

BeamLine. The other parameters of a BeamLine are the combination of the parameters from the

Elements of the BeamLine, i.e. the length l is the total length, the R Matrix is the total R matrix and 

the trackFunction TF is the total trackFunction.

ExpandedLine - a Vector of Elements. In general, the components of this Vector are Elements and 

not BeamLines. Sublines are expanded in the ExpandLine procedure. The Elements of an

ExpandedLine have the following parameters:

s - the total distance from the beginning of the exit of the element

R - the R matrix of this element (not cumulative)

TF - the trackFunction of this element (not cumulative)

kind - the kind of this element

Eact - the actual beam energy at the exit of this element. (this allows evaluations of e.g. the energy

sawtooth of an electron storage ring)

any other parameter the present element has.

Machine - A BeamLine with the addition of a Title. Certain operations (like Mad8Form) require a

Machine as argument.
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(3.2)(3.2)

(3.1)(3.1)

(4.1.1)(4.1.1)

Initialization

As usual with Maple packages, the package file Lattice.mla has to be placed in a directory (folder) 

where Maple can find it; the same is true for the help database Lattice.help (or Lattice .hdb for Maple 

versions before 18). The correct locations depend on the operating system used (Windows vs Mac OS 

X vs Linux) and the specific setup of the user. Loading Lattice using the with command will produce a 

confirmatory message even with its output suppressed.

restart

"Maple Initialization loaded..."

with Lattice

"Lattice.mw, Version 1.0.1, 4-Feb-2016"

`.`, BeamPlot, Bend, DefineBeam, DefineElement, DefineLine, DefineMachine, Drift,

Edefault, ElnamT, EtaTran, ExpandLine, Foil, GKick, H, Hx, HxTran, Hy, I1, I2, I3, I4x,

I5x, J, LatticePlot, LumpLine, Mad8Form, Quad, QuadOld, RfCavity, SRotate, ST,

Sextupole, Solenoid, Subs, Track, Tunes, TwissTran, Wire, `^`, alphax, alphaxT, alphay,

alphayT, betax, betaxT, betay, betayT, cosmux, cosmuy, dET, dispersion, etapx, etapxT,

etapy, etapyT, etax, etaxT, etay, etayT, gammax, gammay, nux, nuy, sinmux, sinmuy, twiss,

twissx, twissy

Element Details

In this section the individual machine elements provided by Lattice are described by example. An 

explicit listing of the tracking function is obtained by calling element:-TF(<x,xp,y,yp,dl,dp>) with 

unassigned names in the coordinate vector. Note that the name l is used for the length of the element 

and should not be used for the path-length difference in the particle vector.

Drift
drift d Drift len

Record l = len, kind = Drift, dE = 0, Eref = 0, R =

1 len 0 0 0 0

0 1 0 0 0 0

0 0 1 len 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, TF
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(4.2.1)(4.2.1)

(4.1.2)(4.1.2)

(4.1.1)(4.1.1)

= trackFunction

drift:-TF x, xp, y, yp, dl, dp

xC len xp

xp

yC len yp

yp

dl

dp

len - length [m]

This element implements a field-free drift region. The track function presently is to first order only i.

e. neglects the path-length change with angle. 

Bend
dipole d Bend len, theta, n, E ref ;

Record l = len, a = !, E1 = 0, E2 = 0, n = n, Eref = E
ref

, kind = Bend, " =
len

!
, dE = E

/K
177

4000000
 

E
4
 ?:-a ?:-a

?:-l #
, R = cos 1K n  ! , 
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(4.2.1)(4.2.1)

(4.1.1)(4.1.1)

(4.2.2)(4.2.2)

sin 1K n  !  len

1K n  !
, 0, 0, 0, 

len 1K cos 1K n  !

! 1K n
, 

K
1K n  ! sin 1K n  !

len
, cos 1K n  ! , 0, 0, 0, 

sin 1K n  !

1K n
, 

0, 0, cos n  ! , 
sin n  !  len

n  !
, 0, 0 , 

0, 0, K
n  ! sin n  !

len
, cos n  ! , 0, 0 , 

K
sin 1K n  !

1K n
, K

len 1K cos 1K n  !

! 1K n
, 0, 0, 1, 

len 1K n  !K sin 1K n  !

! 1K n
3 / 2

, 

0, 0, 0, 0, 0, 1 , TF = trackFunction

dipole:-TF x, xp, y, yp, dl, dp

cos 1K n  !  xC
sin 1K n  !  len xp

1K n  !
C

len 1K cos 1K n  !  dp

! 1K n
, 

K
1K n  ! sin 1K n  !  x

len
C cos 1K n  !  xpC

sin 1K n  !  dp

1K n
, 

cos n  !  yC
sin n  !  len yp

n  !
, 

K
n  ! sin n  !  y

len
C cos n  !  yp , 

K
sin 1K n  !  x

1K n
K

len 1K cos 1K n  !  xp

! 1K n
C dl

C
len 1K n  !K sin 1K n  !  dp

! 1K n
3 / 2

, 

dp

len - the length [m]

theta - the bending angle [rad]

n - (optional) the field index, defaults to 0

E[ref] - (optional) the reference energy [MeV], defaults to 0
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(4.3.2)(4.3.2)

(4.2.1)(4.2.1)

(4.1.1)(4.1.1)

(4.3.1)(4.3.1)

The Bend element implements a sector dipole magnet. The field index n allows to implement a 

gradient magnet. Edge focusing is taken into account.

The transfer function at present is first-order only and does not include and higher-order 

aberrations.

Quad

quadrupole d Quad len, k1l ;

Record l = len, k1l = k1l, ns = 0, Eref = 0, dE = 0, kind = Quad, R = cos len  k1l , 

sin len  k1l  len

k1l
, 0, 0, 0, 0 , 

K
k1l  sin len  k1l

len
, cos len  k1l , 0, 0, 0, 0 , 

0, 0, cosh len k1l , 
sinh len k1l  len

k1l
, 0, 0 , 

0, 0, 
k1l  sinh len  k1l

len
, cosh len  k1l , 0, 0 , 

0, 0, 0, 0, 1, 0 , 

0, 0, 0, 0, 0, 1 , TF = trackFunction

quadrupole:-TF x, xp, y, yp, dl, dp

cos len  k1l  xC
sin len  k1l  len  xp

k1l

K
k1l  sin len  k1l  x

len
C cos len  k1l  xp

cosh len k1l  yC
sinh len k1l  len  yp

k1l

k1l  sinh len  k1l  y

len
C cosh len  k1l  yp

dl

dp

len - the length [m]

k1l - the integrated focusing strength [1/m]
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(4.4.2)(4.4.2)

(4.4.1)(4.4.1)

(4.2.1)(4.2.1)

(4.1.1)(4.1.1)

The Quadrupole element implements a thick quadrupole. The focusing strength is the integrated 

strength k1*len. This allows to model a thin quadrupole by setting the length to 0 when calling

Quad(). Modifying the length to 0 in a subsequent Subs operation, however, will lead to a divide-

by-zero error and is to be avoided.

The trackFunction at present is to first order only and does not contain any chromatic or third-order 

aberrations. Chromaticity can be modelled by calling Quad with k1l being a function of dp (the 6th 

coordinate) of the particle.

Sextupole

sext d Sextupole len, k2l

Record l = len, k2l = k2l, Eref = 0, kind = Sextupole, dE = 0, R =

1 len 0 0 0 0

0 1 0 0 0 0

0 0 1 len 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

,

TF = trackFunction

sext:-TF x, xp, y, yp, l, dp

xC
1

2
 len xpC

1

2
 len xpC k2l yC

1

2
 len yp

2

K xC
1

2
 len xp

2

xpC k2l yC
1

2
 len yp

2

K xC
1

2
 len xp

2

yC
1

2
 len ypC

1

2
 len ypC 2 k2l xC

1

2
 len xp  yC

1

2
 len yp

ypC 2 k2l xC
1

2
 len xp  yC

1

2
 len yp

l

dp

len - the length [m]

k2l - the integrated sextupole strength [1/m^2]

The Sextupole element implements a thin sextupole with a pure quadratic field. The length is made 
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(4.5.2)(4.5.2)

(4.2.1)(4.2.1)

(4.1.1)(4.1.1)

(4.5.1)(4.5.1)

up by drift sections of half the element length up-and downstream of the thin sextupole element. The

R matrix of the sextupole is that of a drift section.

The trackFunction implements a pure sextupolar field plus the first-order drift.

Sextupoles with more realistic behavior can be modelled using several sextupole-slices.

Solenoid
This element is not yet properly debugged. Use at your own risk!

sol d Solenoid len, ks

Record l = len, a = a1, Eref = Er, kind = Solenoid, dE = E/0 , R = cos ks len
2
, 

sin ks len  cos ks len

ks
, sin ks len  cos ks len , 

sin ks len
2

ks
, 0, 0 , 

Kks sin ks len  cos ks len , cos ks len
2
, Kks sin ks len

2
, sin ks len  cos ks len , 

0, 0 , 

Ksin ks len  cos ks len , K
sin ks len

2

ks
, cos ks len

2
, 

sin ks len  cos ks len

ks
, 0, 

0 , 

ks sin ks len
2
, Ksin ks len  cos ks len , Kks sin ks len  cos ks len , cos ks len

2
, 

0, 0 , 

0, 0, 0, 0, 1, 0 , 

0, 0, 0, 0, 0, 1 , TF = trackFunction

sol:-TF x, xp, y, yp, l, dp

cos ks len
2
 xC

sin ks len  cos ks len  xp

ks
C sin ks len  cos ks len  y

C
sin ks len

2
 yp

ks
, 

Kks sin ks len  cos ks len  xC cos ks len
2
 xpK ks sin ks len

2
 y

C sin ks len  cos ks len  yp , 

Ksin ks len  cos ks len  xK
sin ks len

2
 xp

ks
C cos ks len

2
 y
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(4.6.1)(4.6.1)

(4.5.2)(4.5.2)

(4.2.1)(4.2.1)

(4.1.1)(4.1.1)

C
sin ks len  cos ks len  yp

ks
, 

ks sin ks len
2
 xK sin ks len  cos ks len  xpK ks sin ks len  cos ks len  y

C cos ks len
2
 yp , 

l , 

dp

len - the length [m]

ks - the solenoid strength [1/m]

The Solenoid element implements a solenoid without fringe fields. The strength ks is not integrated.

The trackFunction implements the first-order equations only.

RfCavity

This element is not yet properly debugged. Use at your own risk!

cav d RfCavity len, freq, V0, phi

Record l = len, kind = RfCavity, R =

1 len 0 0 0 0

0 1 0 0 0 0

0 0 1 len 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, TF = trackFunction, Eref, dE

= E/Vcav sphi

cav:-TF x, xp, y, yp, l, dp
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(4.6.2)(4.6.2)

(4.5.2)(4.5.2)

(4.2.1)(4.2.1)

(4.1.1)(4.1.1)

(4.7.1)(4.7.1)

xC len xp

xp

yC len yp

yp

l

dpC

V0 sin $C
1

299792458
 

l freq #

BeamBetar

BeamEnergy

len - the length [m]

freq - the rf frequency [Hz]

V0 - the peak rf voltage [MV]

phi - the synchronous angle [rad]

The RfCavity element implements a single-cell rf cavity. The R matrix is that of the equivalent drift 

section. 

The trackFunction adds the longitudinal energy change to the 6th coordinate of the particle. No 

change in path length due to the kick is calculated.

GKick
corr d GKick dx, dxp, dy, dyp, dl, ddp

Record l = 0, kind = GKick, R =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, dx = dx, dxp = dxp, dy = dy, dyp

= dyp, dl = dl, ddp = ddp, dE = 0, Eref = 0, TF = trackFunction

corr:-TF x, xp, y, yp, l, dp
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(4.6.2)(4.6.2)

(4.5.2)(4.5.2)

(4.7.2)(4.7.2)

(4.2.1)(4.2.1)

(4.1.1)(4.1.1)

(4.8.1)(4.8.1)

xC dx

xpC dxp

yC dy

ypC dyp

lC dl

dpC ddp

dx - horizontal offset [m]

dxp - horizontal angle kick [rad]

dy - vertical offset [m]

dyp - vertical angular kick [rad]

dl - longitudinal offset [m]

ddp - energy kick [1]

The GKick element implements a general kick. It can be used to model orbit correctors but also 

misalignments. No energy dependence of the kick is present. The element has zero length and the R 

Matrix is the IdentityMatrix.

The trackFunction adds the specified deflections and offsets to the particle coordinates.

Wire
w d Wire len, i, xs, ys, Eref

Record l = len, k1 = K
0.149896271779928 mu_0 i xs

2
K ys

2

# xs
2
C ys

2 2
 Eref

, kind = Wire, R = 1.

C
0.0749481358899640 mu_0 i xs

2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

, 
1

2
 len

C
1

2
 len 

0.0749481358899640 mu_0 i xs
2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

C 1 , 0., 0., 0., 0. , 

0.149896271779928 mu_0 i xs
2
K ys

2
 len

# xs
2
C ys

2 2
 Eref

, 1.

C
0.0749481358899640 mu_0 i xs

2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

, 0., 0., 0., 0. , 

0., 0., 1.K
0.0749481358899640 mu_0 i xs

2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

, 
1

2
 lenC

1

2
 len 1

K
0.0749481358899640 mu_0 i xs

2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

, 0., 0. , 

0., 0., K
0.149896271779928 mu_0 i xs

2
K ys

2
 len

# xs
2
C ys

2 2
 Eref

, 1.
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(4.6.2)(4.6.2)

(4.5.2)(4.5.2)

(4.7.2)(4.7.2)

(4.2.1)(4.2.1)

(4.8.2)(4.8.2)

(4.1.1)(4.1.1)

(4.8.1)(4.8.1)

K
0.0749481358899640 mu_0 i xs

2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

, 0., 0. , 

0., 0., 0., 0., 1., 0. , 

0., 0., 0., 0., 0., 1. , Eref = Eref, TF = trackFunction

w:-TF x, xp, y, yp, l, dp

x , 

xpC
1

Eref
0.299792543559857 K

1

2
 

xs mu_0 i

# xs
2
C ys

2

C
1

2
 

mu_0 i

#
K

2 xs
2
 mu_0 i

# xs
2
C ys

2
 x

xs
2
C ys

2
K

xs mu_0 i ys y

# xs
2
C ys

2 2

C
1

2
 

xs mu_0 i

# xs
2
C ys

2
K

2 mu_0 i xs
2
K ys

2
 xs

# xs
2
C ys

2 2
 x

2

xs
2
C ys

2

C
1

2
 

K
4 ys mu_0 i xs

2

# xs
2
C ys

2 2
K

2 mu_0 i xs
2
K ys

2
 ys

# xs
2
C ys

2 2
 y x

xs
2
C ys

2

C
1

2
 

xs mu_0 i

# xs
2
C ys

2
K

4 ys
2
 mu_0 i xs

# xs
2
C ys

2 2
 y

2

xs
2
C ys

2

C
1

2
 

mu_0 i xs
2
K ys

2

# xs
2
C ys

2 2
K

2 mu_0 i xs
3
K 3 ys

2
 xs  xs

# xs
2
C ys

2 3
 x

3

xs
2
C ys

2

C
1

2
 

1

xs
2
C ys

2

2 ys mu_0 i xs

# xs
2
C ys

2 2
K

2 mu_0 i 6 ys xs
2
K 2 ys

3
 xs

# xs
2
C ys

2 3
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(4.6.2)(4.6.2)

(4.5.2)(4.5.2)

(4.7.2)(4.7.2)

(4.2.1)(4.2.1)

(4.8.2)(4.8.2)

(4.1.1)(4.1.1)

(4.8.1)(4.8.1)

K
2 mu_0 i xs

3
K 3 ys

2
 xs  ys

# xs
2
C ys

2 3
 y x

2

C
1

2
 

1

xs
2
C ys

2

mu_0 i xs
2
K ys

2

# xs
2
C ys

2 2
K

2 mu_0 i Kxs
3
C 3 ys

2
 xs  xs

# xs
2
C ys

2 3

K
2 mu_0 i 6 ys xs

2
K 2 ys

3
 ys

# xs
2
C ys

2 3
 y

2
 x

C
1

2
 

2 ys mu_0 i xs

# xs
2
C ys

2 2
K

2 mu_0 i Kxs
3
C 3 ys

2
 xs  ys

# xs
2
C ys

2 3
 y

3

xs
2
C ys

2
 len , 

y , 

ypC
1

Eref
0.299792543559857 K

1

2
 

ys mu_0 i

# xs
2
C ys

2
K

ys mu_0 i xs x

# xs
2
C ys

2 2

C
1

2
 

mu_0 i

#
K

2 ys
2
 mu_0 i

# xs
2
C ys

2
 y

xs
2
C ys

2

C
1

2
 

ys mu_0 i

# xs
2
C ys

2
K

4 ys mu_0 i xs
2

# xs
2
C ys

2 2
 x

2

xs
2
C ys

2

C
1

2
 

K
2 mu_0 i Kxs

2
C ys

2
 xs

# xs
2
C ys

2 2
K

4 ys
2
 mu_0 i xs

# xs
2
C ys

2 2
 y x

xs
2
C ys

2

C
1

2
 

ys mu_0 i

# xs
2
C ys

2
K

2 mu_0 i Kxs
2
C ys

2
 ys

# xs
2
C ys

2 2
 y

2

xs
2
C ys

2
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(4.6.2)(4.6.2)

(4.5.2)(4.5.2)

(4.7.2)(4.7.2)

(4.2.1)(4.2.1)

(4.8.2)(4.8.2)

(4.1.1)(4.1.1)

(4.8.1)(4.8.1)

C
1

2
 

2 ys mu_0 i xs

# xs
2
C ys

2 2
K

2 mu_0 i 3 ys xs
2
K ys

3
 xs

# xs
2
C ys

2 3
 x

3

xs
2
C ys

2

C
1

2
 

1

xs
2
C ys

2

mu_0 i Kxs
2
C ys

2

# xs
2
C ys

2 2
K

2 mu_0 i K2 xs
3
C 6 ys

2
 xs  xs

# xs
2
C ys

2 3

K
2 mu_0 i 3 ys xs

2
K ys

3
 ys

# xs
2
C ys

2 3
 y x

2
C

1

2
 

1

xs
2
C ys

2

2 ys mu_0 i xs

# xs
2
C ys

2 2

K
2 mu_0 i K3 ys xs

2
C ys

3
 xs

# xs
2
C ys

2 3
K

2 mu_0 i K2 xs
3
C 6 ys

2
 xs  ys

# xs
2
C ys

2 3
 y

2
 x

C
1

2
 

mu_0 i Kxs
2
C ys

2

# xs
2
C ys

2 2
K

2 mu_0 i K3 ys xs
2
C ys

3
 ys

# xs
2
C ys

2 3
 y

3

xs
2
C ys

2
 len , 

l , 

dp

len - the length of the wire [m]

i - the excitation current [A]

xs - the horizontal distance to the central orbit [m]

ys - the vertical distance of the wire to the central orbit [m]

Eref - the beam energy [GeV]. Note: the energy has to be given for the kick to be computable. 

The Wire element implements a current-carrying wire parallel to the beam orbit. Primary use is for 

beam-beam compensation. The model used is a 1/r drop in field of the wire (i.e. the wire is long 

compared to the distance from the beam). No end fields are considered. The R Matrix models the 

first-order kick (gradient) on the beam axis due to the wire. 

The trackFunction implements the full nonlinear kick due to the wire, but without end effects.

Foil
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(4.7.2)(4.7.2)

(4.2.1)(4.2.1)

(4.1.1)(4.1.1)

(4.8.1)(4.8.1)

(4.6.2)(4.6.2)

(4.5.2)(4.5.2)

(4.8.2)(4.8.2)

(4.9.1)(4.9.1)

Foils only work with numerical input data, so the following produces an error when trying to access

the trackFunction:

window d Foil len, X0, Eref

"Rms scattering angle is ",

0.0136 
len

X0
 1C 0.038 ln

len

X0

Eref

Record l = len, kind = Foil, R =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, Eref = Eref, dE = 0, TF

= trackFunction

window:-TF x, xp, y, yp, ldp

Error, (in Statistics:-Sample) unable to evaluate 0.136e-1*
(len/X0)^(1/2)*(1+0.38e-1*ln(len/X0))/Eref to floating-point

len - length of the foil [m]

X0 - radiation length of the material [m]

Eref - reference energy [MeV]. Used for the scattering calculation

The Foil element implements a scattering foil, e.g. a window in a beam line. As such items are 

invariably thin, the R Matrix is the unit matrix independent of length. Note that there is no energy 

loss calculated in the foil.

The trackFunction implements a Gaussian random-number generator and assigns angular kicks in 

both direction to the particle coordinates. The rms scattering angle is calculated using the PDG 

formula[5] and is printed when the Foil constructor is called. 

Examples
Since the various functions are documented in the Help facility, this guide will introduce the use of

Lattice by means of an example.

We reload Lattice as usual in Maple using with:

restart;
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(5.1.3)(5.1.3)

(4.7.2)(4.7.2)

(4.2.1)(4.2.1)

(5.1.2)(5.1.2)

(4.1.1)(4.1.1)

(4.8.1)(4.8.1)

(4.6.2)(4.6.2)

(4.5.2)(4.5.2)

(4.8.2)(4.8.2)

(5.1.1)(5.1.1)

(5.1)(5.1)

with Lattice :

"Maple Initialization loaded..."

"Lattice.mw, Version 1.0.1, 4-Feb-2016"

Example 1: Thin-lens FODO Lattice
Build a simple thin-lens FODO lattice and derive some formulae for its parameters.

The elements are defined thus:

QFh d Quad 0,
kf

2
:

QDh d Quad 0,
kd

2
:

DRh d Drift
lcell

4
:

Build the beam line from these elements. This can be done in stages:

FOD d DefineLine QFh, DRh, DRh, QDh :

 DOF d DefineLine QDh, DRh, DRh, QFh :

FODO d DefineLine FOD, DOF :

Note that DefineLine works in a left-to-right fashion, like a beam-line definition in MAD, unlike 

matrix multiplication.

Find the cosine of the phase advance " as function of the quadrupole strengths kf and kd:

cos mux = simplify cosmux FODO ;

cos mux = K
1

2
 kd lcellC

1

8
 kd lcell

2
 kfC 1K

1

2
 lcell kf

cos muy = simplify cosmuy FODO

cos muy = 1C
1

2
 lcell kfC

1

2
 kd lcellC

1

8
 kd lcell

2
 kf

which can be solved for the quad strengths in terms of the cosines in order to get the FODO cell 

parameters independent of the quadrupole strengths.

convert~ solve (5.1.1), (5.1.2) , kf, kd , radical

kf =
1

lcell

1

2
 cos muy K

1

2
 cos mux

C
1

2
 cos muy

2
K 2 cos muy  cos mux C cos mux

2
K 16 cos muy

C 32K 16 cos mux
1/2

, kd = 4 
3

2
 cos mux K 2C

1

2
 cos muy
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(4.6.2)(4.6.2)

(4.5.2)(4.5.2)

(5.1.6)(5.1.6)

(4.8.2)(4.8.2)

C
1

2
 cos muy

2
K 2 cos muy  cos mux C cos mux

2
K 16 cos muy

C 32K 16 cos mux
1/2

lcell K4C
1

2
 cos muy K

1

2
 cos mux

C
1

2
 cos muy

2
K 2 cos muy  cos mux C cos mux

2
K 16 cos muy

C 32K 16 cos mux
1/2

Make the two phase advances equal for further simplification:

subs mux = µ, muy = µ, (5.1.3)

kf =
1

2
 

K32 cos µ C 32

lcell
, kd =

4 2 cos µ K 2C
1

2
 K32 cos µ C 32

lcell K4C
1

2
 K32 cos µ C 32

and put this back into the cell:

cell d Subs (5.1.4) 1 , (5.1.4) 2 , FODO : 

#` `Note: Subs does not accept a list of replacement equations.

Compute the lattice functions for this cell:

tw d twiss cell :

simplify~ tw  assuming 0 ! mu, mu ! Pi;

K
lcell cos µ C 1

K2C K2 cos µ C 2  sin µ

0

K2 cos µ C K2 cos µ C 2  cos µ C 2K K2 cos µ C 2

lcell sin µ

lcell cos µ K 3C 2 K2 cos µ C 2

K2C K2 cos µ C 2  sin µ

0

K
2 cos µ K 2C K2 cos µ C 2  cos µ K K2 cos µ C 2

sin µ  lcell

Plot this for a cell length of 6 m

plot subs lcell = 6, (5.1.6) 1 , (5.1.6) 4 , mu = 0 ..Pi, view = default, 0 ..60 , labels = 'mu',

typeset 'beta x ', ", ",'beta y ' ;
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µ

#

8

#

4

3 #

8

#

2

5 #

8

3 #

4

7 #

8

%
x, 
%

y

0

10

20

30

40

50

60

To plot the lattice functions specify values for the variables:

cell_numeric d Subs lcell = 6, mu =
Pi

2
, cell :

twiss_numeric d evalf~ twiss cell_numeric ;

10.2426406871193

1.00000000000000 10
-15

0.0976310729378179

1.75735931288072

K1.50000000000000 10
-15

0.569035593728850

latticePlot d LatticePlot cell_numeric, twiss_numeric, 0, 0, 0, 0 :

plots:-display latticePlot, labels = typeset "Distance  (m)" , typeset beta x , beta y , eta x ,

"  (m)"
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Distance  (m)
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%
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(m
)

0
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4

6

8

10

A phase-space plot can be created by defining a beam and using BeamPlot. To make the plot more 

interesting, create some particles. Note that this does not involve actual tracking.

Beam d DefineBeam Electron, 1, 1EK6, 1EK6, twiss_numeric, 0, 0, 0, 1000 : 

Beam:-Sigma

0.0000102426406871193, K1.00000000000000 10
-21

, 0, 0, 0, 0 , 

K1.00000000000000 10
-21

, 9.76310729378179 10
-8

, 0, 0, 0, 0 , 

0, 0, 0.00000175735931288072, 1.50000000000000 10
-21

, 0, 0 , 

0, 0, 1.50000000000000 10
-21

, 5.69035593728850 10
-7

, 0, 0 , 

0, 0, 0, 0, 1, 0 , 

0, 0, 0, 0, 0, 0

BeamPlot Beam

PLOT ... PLOT ...

PLOT ... PLOT ...

plots:-display %
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Note that in this version of Lattice the bottom two plots are only produced when particles exist in 

the beam.

In order to see the phase space at the center of the cell, track the beam through the half-cell (FOD):

half_cell d Subs lcell = 6, mu =
Pi

2
, Subs (5.1.4) 1 , (5.1.4) 2 , FOD :

Beam_D d Track half_cell, Beam :

plots:-display BeamPlot Beam_D 2 ;
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The result is as expected.

Tracks can be plotted by converting the line to an ExpandedLine and tracking that. 

cell_e d ExpandLine cell_numeric, cell_numeric : # use 2 cells to make the plot more interesting

BeamVector d Track cell_e, Beam : #` here Track will create a Vector with Beam elements

. The first element is at the entrance so there are one more beam elements than elements 

in the beam line.

 s d 0, seq cell_e i :-s, i = 1 ..numelems cell_e : 

#` `get the distances from the line, but need to pre-pend 0

plots:-display seq plot s, seq BeamVector i :-Coordinates j 1 , i = 1 ..numelems s , j

= 1 ..100 ,

                      labels = typeset "Distance  (m)" , typeset 'x ', "  (m)"  
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Note that the plotting uses two nested seqs: the inner one gets one track and plots it vs s; the outer 

one plots each trace. The plots:-display function puts all traces onto one graph.

Example 2: Multi-turn Tracking Example
This example demonstrates how a Lattice model can be used for multi-turn tracking by making a 

floating-point map out of the trackFunction.

The elements of a ring

QFh := Quad 0, 27
K1

:

QDh := Quad 0, K14
K1

:

HBh := Bend 5 2
K1

, # 8
K1

, 0 :

FODO := DefineLine QFh, HBh, HBh, QDh, QDh, HBh, HBh, QFh :

With exact parameters, Maple keeps everything exact:

simplify cosmux FODO
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13 #K 20

#
2

The trackFunction is a function acting on a 6-element Vector (particle vector or pv). It can be 

converted to an expression by specifying the elements of pv explicitly, which allows to unapply 

later in terms of pv and using the modified function as a map for tracking. It is then possible to 

convert all constants in the map to floating-point numbers and do other simplifications like series 

expansion and truncation. This is of advantage if tracking or other analysis is to be performed on the

trackFunction of a larger structure and in many cases required to obtain a result in a reasonable 

amount of time.

FODO:-TF pv
1
, pv

2
, pv

3
, pv

4
, pv

5
, pv

6
: # a long expression, still exact

In order to make tracking possible, we reduce the entries in FODO:-TF to floating-point numbers:

`~`
evalf

FODO:-TF pv
1
, pv

2
, pv

3
, pv

4
, pv

5
, pv

6

0.111725124208604 pv
1
C 9.26108868488540 pv

2
C 7.56530082140020 pv

6

K0.106630821733977 pv
1
C 0.111725124208597 pv

2
C 0.908158347416860 pv

6

0.523809523809524 pv
3
C 6.42857142857143 pv

4

K0.112874779541446 pv
3
C 0.523809523809524 pv

4

K0.908158347416850 pv
1
K 7.56530082140017 pv

2
K 3.62039421017390 pv

6
C pv

5

pv
6

And then unapply to make it into a function again. This is then our map:

Map := unapply (5.2.2), pv

Map := pv/rtable 1 ..6, 1 = 0.111725124208604 pv
1
C 9.26108868488540 pv

2

C 7.56530082140020 pv
6
, 2 = K0.106630821733977 pv

1
C 0.111725124208597 pv

2

C 0.908158347416860 pv
6
, 3 = 0.523809523809524 pv

3
C 6.42857142857143 pv

4
, 4

= K0.112874779541446 pv
3
C 0.523809523809524 pv

4
, 5 =

K0.908158347416850 pv
1
K 7.56530082140017 pv

2
K 3.62039421017390 pv

6

C pv
5
, 6 = pv

6
, datatype = anything, subtype = Vector

column
, storage = rectangular,

order = Fortran_order

Now we can setup for a tracking loop:

nturns d 100 :

coords := 0.001, 0, 0, 0.0001, 0, 0 :

pvV := Array 0 ..nturns :

xv := Vector nturns C 1, datatype = float :

pvV
0
d coords : xv

1
:= coords

1
:
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And track:

for turn to nturns do

   pvV
turn

:= `~`
evalf

Map pvV
turn K 1

;

   xv
turn C 1

:= pvV
turn1

   end do:

plots:-listplot xv

10 20 30 40 50 60 70 80 90 100
K0.0010

K0.0005

0

0.0005

0.0010

Installation
The Lattice package is distributed as a zipped archive containing the following files:

Lattice.mla      Maple library file, needs to be placed in a directory included in Maple's libname 

data structure. 

                              At present this file is generated using Maple 2015.

Lattice.mpl      Text file with the source of the Lattice package (code in Maple syntax). 

Lattice.mw     A small Maple notebook run once to install the Lattice package.

Lattice.help    The Help database for Lattice (new style Help facility for Maple 18 and newer).

Lattice.hdb      The Help database for Lattice (old style Help facility for Maple 17 and older).
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(4.5.2)(4.5.2)

(4.8.2)(4.8.2)

• • 

(5.2.1)(5.2.1)

The Lattice Package Users Guide.mw (this file). 

The Lattice Package Users Guide.pdf (pdf of this file). 

In order to install Lattice, the user should decide where the library file should go. This could be a 

directory within the Maple installation directory tree, or a directory in the users home directory. Then 

pre-pend this path to the entries already in libname: libname:="/Path/to/directory",

libname: The path is absolute.

The quick way to install is to then copy Lattice.mla to this directory. This is sufficient if a user 

does not plan to modify the package.

In order to be able to install modified versions, open Lattice.mw. Edit the path to Lattice.mpl in

the first command (read(…)) to point to where Lattice.mpl is located (absolute path), which can 

be anywhere. Execute the file (!!! button). If no error is generated, Lattice.mla is generated and 

installed. Save the edited version of Lattice.mw for future use.

The Help database files go into the same directory as Lattice.mla. 

Finally, test your installation with restart;with(Lattice); If all is well, the Lattice package 

will print an informational message during loading even when terminating the with command with a 

colon (:). Search for Lattice (with capital L) in Help to verify the Help database is installed properly.

Known Issues and Limitations as of Version 1.0.2, 10-Feb-2016
built.

Bends, Quadrupoles and Drifts are implemented to first order only, even in their tracking function.

Sextupoles are implemented as thin elements.

The RfCavity element is not properly debugged and should be considered experimental.

The Solenoid element is not properly debugged and should be considered experimental.

Keeping track of Eref is spotty and should be considered experimental.

The Foil scatters particles upon tracking but does not model energy loss. The ! matrix for the beam is 

not recalculated upon passing through the foil.

Subs will only accept a sequence of replacement equations, not a list. On occasion, Subs has failed to 

recurse into sublines but in sufficiently inconsistent and rare cases that I have not been able to uncover 

the underlying issue.

The nux and nuy functions do not correctly track the integer part of the tunes even if given an

ExpandedLine as argument.

In older versions of Maple (specifically in Maple 15), the output from Lattice elements or BeamLines 

can confuse the Standard GUI and lead to lost output and output lines printing on top of each other. 
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2. 2. 

This effect (which is a Maple problem, not a problem of the Lattice package) is mitigated by setting the 

typeset level to standard in Maple versions earlier than 16. In Maple 2015 this problem has not been 

observed. Note that there is no automatic way to change this setting back.

When calculating the tracking function (map) of a beam line, execution time rises steeply with the 

number of elements in a beam line. Do not attempt to find the tracking function of a full machine in the 

straightforward way as it most likely will not work and lock up Maple. This problem can be mitigated 

by using evalf to convert the coefficients into floating point format thereby greatly speeding up the 

calculations. See Example 2.

The Track operation works reasonably well for a single pass of many particles. For multi-turn 

operation, create the map and track by applying this map to the particle vector to avoid unreasonably 

long computing times. See Example 2.

The linkage to the Help files and their formatting is not always correct. Starting from the top Lattice 

help page usually works, however. The change of format of the Help database has not been of help to 

this project. The Help pages need more examples.

The Lattice package is compatible with Maple versions 15 and later (tested up to Maple 2015).
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