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Introduction

The Lattice package is a Maple package to design and analyze charged-particle beam lines and circular 

machines. It employs a beam-line description using the standard elements (dipoles, quadrupoles and so 

on) and retains the algebraic power of Maple. Beam-line elements are described using the equations 

governing the particle motion in algebraic form. In this way it is possible to compute expressions 

(rather than numbers) for beam-line parameters like Twiss functions, dispersion and such, for beam 

lines or rings, and to perform analysis on these expressions using the full power of Maple. The user 

can—within the limits of Maple's capabilities and of memory limitations—demonstrate analytically that 

certain characteristics can in fact be obtained using a given beam line, or not, as the case may be. 

Numeric calculations are possible as well to find values for magnet settings, track particle coordinates, 

generate lattice plots etc. 

The Lattice package takes a hybrid approach to the computations for a beam line. First-order analysis is

done by using 6x6 TRANSPORT[1] matrices. Thus most algorithms and examples found in the 

literature can be modeled essentially unchanged with the Lattice package. For particle tracking and 

modeling of nonlinear elements a tracking function (map) is included for each element. The tracking 

function of a beam line is computed by composition of the tracking functions for each element of the 

beam line and no truncation is done. This ensures accurate and symplectic tracking as long as the 

tracking function for each element is symplectic. A beam can be defined for use in tracking, including 

its first-order defining ! matrix[2]. Plotting commands are provided to allow for simple plotting of 

lattice functions and phase-space portraits. Output in a format suitable for input to MAD8[3] can be 

generated.

Since the full power of Maple is available to the user, the package does not have special matching or 

fitting routines but rather relies on the extensive capabilities of the Maple programming language to 

facilitate such operations. Likewise, operations like series expansion to a desired order can be 

performed using the series, taylor and mtaylor functions of Maple. 

The coordinates the Lattice package uses are positions and angles in the beam-following Frenet-Serret 

coordinate system, i.e. a particle's coordinates in 6-d phase space are described by <x,x',y,y',l,dp>. 

These are not canonical in the Hamiltonian sense. 

The Lattice package implements the commonly used methods to model beam lines and circular 

machines. Common beam line elements are available: Drift, Quad, Bend, Sextupole, RfCavity as 

well as Solenoid, GKick, Foil, Wire. These elements are implemented as Maple Records, which are 
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instantiated upon calling the respective element type procedures that return the Record implementing the

element.

Beam lines are built using the DefineLine procedure which returns a Record implementing a whole 

beam line. For certain calculations one may desire each element instantiated separately; this can be done 

using the ExpandLine procedure which returns a Maple Vector of the elements of the beam line.

The individual parameters of each element or beam line are available using the standard Maple :- 

("member of") operator. This allows quick extraction e.g. of the first-order TRANSPORT matrix R to 

perform operations on using Maple's LinearAlgebra package or other specialized operations. In certain 

cases it is also possible to replace the value of parameters in a given element, although this requires care

to avoid an element record having inconsistent parameters and a better mechanism is provided by the

Subs operation. The parameters available for each element are described in the next section.

Procedures are available for computing the matched Twiss functions and dispersion: twiss returns a 

maple Vector with the 6 Twiss functions, dispersion returns a Vector with the 4 dispersion functions. 

Functions for the individual quantities also exist: betax, alphax, gammax and their vertical 

counterparts as well as etax...etapy.

Tunes and cosines of the phase advance are computed by cosmux, cosmuy and nux, nuy.

Twiss functions and dispersion can be propagated through a lattice using TwissTran and EtaTran.

Particle tracking is supported by providing a function DefineBeam that sets up the data structure for a 

particle beam, which is characterized by its ! matrix and can have particles, as well as the Track 

procedure that actually performs the tracking. Due to speed limitations this is not practical for large-

scale multi-turn tracking studies (e.g. to find the dynamic aperture of a ring) but rather for exploratory 

limited studies. However, it is possible to extract and convert the tracking function to a numeric 

polynomial map the evaluation of which is actually quite efficient. Using mtaylor, this map can be 

limited to a desired order for further increase in tracking speed.

Lattice function plot structures can be generated using the LatticePlot procedure and put on the screen 

using plots:-display.

Beam distribution and phase-space ellipse plot structures are generated with BeamPlot.

Synchrotron-radiation integrals are computed by the functions I1, I2, I3, I4x and I5x. These act on

ExpandedLines.

The procedure Subs can be used to substitute variables on elements and beam lines of the Lattice 

package. It changes all occurrences of a variable in the given element or beam line. It recursively 

changes any sublines as well. Note that this is preferable to changing members of the element record as 

Subs ensures that all occurrences of a variable are changed and the element record remains consistent.

The symplectic 6x6 Matrix J is defined in Lattice and can be used together with VectorCalculus:-

Jacobian to check symplecticity of an operation or element or beam-line map.

Output for the lattice program MAD8 can be produced using Mad8Form.

Most of the accelerator physics formulae used in Lattice are from Ref. [4]. Units used in Lattice are 

meter, radian, MeV, MV, Tesla unless otherwise noted.

The Lattice package is compatible with Maple versions 15 and later.
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Implementation details
The machine elements are represented by Maple Records. Each element has a somewhat different set of

parameters stored in its record, but a number of parameters are common to all elements:

l - the length of the element. This length is understood to be the path length unless otherwise noted. 

Procedures like DefineLine or ExpandLine keep track and recalculate the length as appropriate.

R - the first-order 6x6 R matrix. This is used for first-order calculations like twiss and dispersion. 

For elements with only higher-order terms, R implements a drift of the equivalent length. Some 

elements 0 length will have R=IdentityMatrix.

TF - the trackFunction or map. This function describes the passage of particles through the element 

and can include to higher than first order. It is implemented with the Maple arrow operator. TF 

always acts on the column Vector with the 6 particle coordinates, <x,xp,y,yp,l,dp>. Elements like

Foil and Collimator can add random values to the beam coordinates.

kind - This is a name denoting the kind of the element. In general it is the same as the name of the 

constructor (Drift, Quad etc.).

Eref - a reference energy. Not always assigned a value. Used if elements change the average energy 

of a beam, like synchrotron radiation in a bend.

A general note: Record elements in Maple and therefore in the Elements of Lattice can be changed. 

However, the parameter values of the elements in Lattice are interdependent; this interdependence gets 

lost if only one parameter value gets changed by assignment. As a result such assignments lead to 

erroneous results unless great care is taken. The Subs procedure is provided to allow change of 

parameter values that will maintain consistency across all parameters of an element. Subs also allows to

change parameters in BeamLines in a correct and consistent manner.

Lattice defines a number of types that are used to restrict the operation of the procedures in Lattice to its

own types. In a few instances this is used to overload Maple operations. The types defined in Lattice 

are:

Element - An element like a Drift, Quad etc. Any BeamLine is also an Element. An ExpandedLine 

is a Vector of Elements.

BeamLine - A BeamLine is a concatenation of several Elements. A BeamLine is distinct from a mere

Element type by having  a parameter BL, which is assigned the list of Elements making up the

BeamLine. The other parameters of a BeamLine are the combination of the parameters from the

Elements of the BeamLine, i.e. the length l is the total length, the R Matrix is the total R matrix and 

the trackFunction TF is the total trackFunction.

ExpandedLine - a Vector of Elements. In general, the components of this Vector are Elements and 

not BeamLines. Sublines are expanded in the ExpandLine procedure. The Elements of an

ExpandedLine have the following parameters:

s - the total distance from the beginning of the exit of the element

R - the R matrix of this element (not cumulative)

TF - the trackFunction of this element (not cumulative)

kind - the kind of this element

Eact - the actual beam energy at the exit of this element. (this allows evaluations of e.g. the energy

sawtooth of an electron storage ring)

any other parameter the present element has.

Machine - A BeamLine with the addition of a Title. Certain operations (like Mad8Form) require a

Machine as argument.
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Initialization

As usual with Maple packages, the package file Lattice.mla has to be placed in a directory (folder) 

where Maple can find it; the same is true for the help database Lattice.help (or Lattice .hdb for Maple 

versions before 18). The correct locations depend on the operating system used (Windows vs Mac OS 

X vs Linux) and the specific setup of the user. Loading Lattice using the with command will produce a 

confirmatory message even with its output suppressed.

restart

"Maple Initialization loaded..."

with Lattice

"Lattice.mw, Version 1.0.2, 10-Feb-2016"

`.`, BeamPlot, Bend, DefineBeam, DefineElement, DefineLine, DefineMachine, Drift,

Edefault, ElnamT, EtaTran, ExpandLine, Foil, GKick, H, Hx, HxTran, Hy, I1, I2, I3, I4x,

I5x, J, LatticePlot, LumpLine, Mad8Form, Quad, QuadOld, RfCavity, SRotate, ST,

Sextupole, Solenoid, Subs, Track, Tunes, TwissTran, Wire, `^`, alphax, alphaxT, alphay,

alphayT, betax, betaxT, betay, betayT, cosmux, cosmuy, dET, dispersion, etapx, etapxT,

etapy, etapyT, etax, etaxT, etay, etayT, gammax, gammay, nux, nuy, sinmux, sinmuy, twiss,

twissx, twissy

Element Details

In this section the individual machine elements provided by Lattice are described by example. An 

explicit listing of the tracking function is obtained by calling element:-TF(<x,xp,y,yp,dl,dp>) with 

unassigned names in the coordinate vector. Note that the name l is used for the length of the element 

and should not be used for the path-length difference in the particle vector.

Drift
drift d Drift len

Record l = len, kind = Drift, dE = 0, Eref = 0, R =

1 len 0 0 0 0

0 1 0 0 0 0

0 0 1 len 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, TF
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= trackFunction

drift:-TF x, xp, y, yp, dl, dp

xC len xp

xp

yC len yp

yp

dl

dp

len - length [m]

This element implements a field-free drift region. The track function presently is to first order only i.

e. neglects the path-length change with angle. 

Bend
dipole d Bend len, theta, n, E ref ;

Record l = len, a = !, E1 = 0, E2 = 0, n = n, Eref = E
ref

, kind = Bend, " =
len

!
, dE = E

/K
177

4000000
 

E
4
 ?:-a ?:-a

?:-l #
, R = cos 1K n  ! , 
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(4.2.1)(4.2.1)

(4.2.2)(4.2.2)

sin 1K n  !  len

1K n  !
, 0, 0, 0, 

len 1K cos 1K n  !

! 1K n
, 

K
1K n  ! sin 1K n  !

len
, cos 1K n  ! , 0, 0, 0, 

sin 1K n  !

1K n
, 

0, 0, cos n  ! , 
sin n  !  len

n  !
, 0, 0 , 

0, 0, K
n  ! sin n  !

len
, cos n  ! , 0, 0 , 

K
sin 1K n  !

1K n
, K

len 1K cos 1K n  !

! 1K n
, 0, 0, 1, 

len 1K n  !K sin 1K n  !

! 1K n
3 / 2

, 

0, 0, 0, 0, 0, 1 , TF = trackFunction

dipole:-TF x, xp, y, yp, dl, dp

cos 1K n  !  xC
sin 1K n  !  len xp

1K n  !
C

len 1K cos 1K n  !  dp

! 1K n
, 

K
1K n  ! sin 1K n  !  x

len
C cos 1K n  !  xpC

sin 1K n  !  dp

1K n
, 

cos n  !  yC
sin n  !  len yp

n  !
, 

K
n  ! sin n  !  y

len
C cos n  !  yp , 

K
sin 1K n  !  x

1K n
K

len 1K cos 1K n  !  xp

! 1K n
C dl

C
len 1K n  !K sin 1K n  !  dp

! 1K n
3 / 2

, 

dp

len - the length [m]

theta - the bending angle [rad]

n - (optional) the field index, defaults to 0

E[ref] - (optional) the reference energy [MeV], defaults to 0
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The Bend element implements a sector dipole magnet. The field index n allows to implement a 

gradient magnet. Edge focusing is taken into account.

The transfer function at present is first-order only and does not include and higher-order 

aberrations.

Quad

quadrupole d Quad len, k1l ;

Record l = len, k1l = k1l, ns = 0, Eref = 0, dE = 0, kind = Quad, R = cos len  k1l , 

sin len  k1l  len

k1l
, 0, 0, 0, 0 , 

K
k1l  sin len  k1l

len
, cos len  k1l , 0, 0, 0, 0 , 

0, 0, cosh len k1l , 
sinh len k1l  len

k1l
, 0, 0 , 

0, 0, 
k1l  sinh len  k1l

len
, cosh len  k1l , 0, 0 , 

0, 0, 0, 0, 1, 0 , 

0, 0, 0, 0, 0, 1 , TF = trackFunction

quadrupole:-TF x, xp, y, yp, dl, dp

cos len  k1l  xC
sin len  k1l  len  xp

k1l

K
k1l  sin len  k1l  x

len
C cos len  k1l  xp

cosh len k1l  yC
sinh len k1l  len  yp

k1l

k1l  sinh len  k1l  y

len
C cosh len  k1l  yp

dl

dp

len - the length [m]

k1l - the integrated focusing strength [1/m]
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The Quadrupole element implements a thick quadrupole. The focusing strength is the integrated 

strength k1*len. This allows to model a thin quadrupole by setting the length to 0 when calling

Quad(). Modifying the length to 0 in a subsequent Subs operation, however, will lead to a divide-

by-zero error and is to be avoided.

The trackFunction at present is to first order only and does not contain any chromatic or third-order 

aberrations. Chromaticity can be modelled by calling Quad with k1l being a function of dp (the 6th 

coordinate) of the particle.

Sextupole

sext d Sextupole len, k2l

Record l = len, k2l = k2l, Eref = 0, kind = Sextupole, dE = 0, R =

1 len 0 0 0 0

0 1 0 0 0 0

0 0 1 len 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

,

TF = trackFunction

sext:-TF x, xp, y, yp, l, dp

xC
1

2
 len xpC

1

2
 len xpC k2l yC

1

2
 len yp

2

K xC
1

2
 len xp

2

xpC k2l yC
1

2
 len yp

2

K xC
1

2
 len xp

2

yC
1

2
 len ypC

1

2
 len ypC 2 k2l xC

1

2
 len xp  yC

1

2
 len yp

ypC 2 k2l xC
1

2
 len xp  yC

1

2
 len yp

l

dp

len - the length [m]

k2l - the integrated sextupole strength [1/m^2]

The Sextupole element implements a thin sextupole with a pure quadratic field. The length is made 
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(4.1.1)(4.1.1)

(4.5.1)(4.5.1)

(4.2.1)(4.2.1)

up by drift sections of half the element length up-and downstream of the thin sextupole element. The

R matrix of the sextupole is that of a drift section.

The trackFunction implements a pure sextupolar field plus the first-order drift.

Sextupoles with more realistic behavior can be modelled using several sextupole-slices.

Solenoid
This element is not yet properly debugged. Use at your own risk!

sol d Solenoid len, ks

Record l = len, a = a1, Eref = Er, kind = Solenoid, dE = E/0 , R = cos ks len
2
, 

sin ks len  cos ks len

ks
, sin ks len  cos ks len , 

sin ks len
2

ks
, 0, 0 , 

Kks sin ks len  cos ks len , cos ks len
2
, Kks sin ks len

2
, sin ks len  cos ks len , 

0, 0 , 

Ksin ks len  cos ks len , K
sin ks len

2

ks
, cos ks len

2
, 

sin ks len  cos ks len

ks
, 0, 

0 , 

ks sin ks len
2
, Ksin ks len  cos ks len , Kks sin ks len  cos ks len , cos ks len

2
, 

0, 0 , 

0, 0, 0, 0, 1, 0 , 

0, 0, 0, 0, 0, 1 , TF = trackFunction

sol:-TF x, xp, y, yp, l, dp

cos ks len
2
 xC

sin ks len  cos ks len  xp

ks
C sin ks len  cos ks len  y

C
sin ks len

2
 yp

ks
, 

Kks sin ks len  cos ks len  xC cos ks len
2
 xpK ks sin ks len

2
 y

C sin ks len  cos ks len  yp , 

Ksin ks len  cos ks len  xK
sin ks len

2
 xp

ks
C cos ks len

2
 y
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(4.1.1)(4.1.1)

(4.6.1)(4.6.1)

(4.2.1)(4.2.1)

C
sin ks len  cos ks len  yp

ks
, 

ks sin ks len
2
 xK sin ks len  cos ks len  xpK ks sin ks len  cos ks len  y

C cos ks len
2
 yp , 

l , 

dp

len - the length [m]

ks - the solenoid strength [1/m]

The Solenoid element implements a solenoid without fringe fields. The strength ks is not integrated.

The trackFunction implements the first-order equations only.

RfCavity

This element is not yet properly debugged. Use at your own risk!

cav d RfCavity len, freq, V0, phi

Record l = len, kind = RfCavity, R =

1 len 0 0 0 0

0 1 0 0 0 0

0 0 1 len 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, TF = trackFunction, Eref, dE

= E/Vcav sphi

cav:-TF x, xp, y, yp, l, dp
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(4.2.1)(4.2.1)

xC len xp

xp

yC len yp

yp

l

dpC

V0 sin $C
1

299792458
 

l freq #

BeamBetar

BeamEnergy

len - the length [m]

freq - the rf frequency [Hz]

V0 - the peak rf voltage [MV]

phi - the synchronous angle [rad]

The RfCavity element implements a single-cell rf cavity. The R matrix is that of the equivalent drift 

section. 

The trackFunction adds the longitudinal energy change to the 6th coordinate of the particle. No 

change in path length due to the kick is calculated.

GKick
corr d GKick dx, dxp, dy, dyp, dl, ddp

Record l = 0, kind = GKick, R =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, dx = dx, dxp = dxp, dy = dy, dyp

= dyp, dl = dl, ddp = ddp, dE = 0, Eref = 0, TF = trackFunction

corr:-TF x, xp, y, yp, l, dp
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(4.1.1)(4.1.1)

(4.7.2)(4.7.2)

(4.2.1)(4.2.1)

xC dx

xpC dxp

yC dy

ypC dyp

lC dl

dpC ddp

dx - horizontal offset [m]

dxp - horizontal angle kick [rad]

dy - vertical offset [m]

dyp - vertical angular kick [rad]

dl - longitudinal offset [m]

ddp - energy kick [1]

The GKick element implements a general kick. It can be used to model orbit correctors but also 

misalignments. No energy dependence of the kick is present. The element has zero length and the R 

Matrix is the IdentityMatrix.

The trackFunction adds the specified deflections and offsets to the particle coordinates.

Wire
w d Wire len, i, xs, ys, Eref

Record l = len, k1 = K
0.149896271779928 mu_0 i xs

2
K ys

2

# xs
2
C ys

2 2
 Eref

, kind = Wire, R = 1.

C
0.0749481358899640 mu_0 i xs

2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

, 
1

2
 len

C
1

2
 len 

0.0749481358899640 mu_0 i xs
2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

C 1 , 0., 0., 0., 0. , 

0.149896271779928 mu_0 i xs
2
K ys

2
 len

# xs
2
C ys

2 2
 Eref

, 1.

C
0.0749481358899640 mu_0 i xs

2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

, 0., 0., 0., 0. , 

0., 0., 1.K
0.0749481358899640 mu_0 i xs

2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

, 
1

2
 lenC

1

2
 len 1

K
0.0749481358899640 mu_0 i xs

2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

, 0., 0. , 

0., 0., K
0.149896271779928 mu_0 i xs

2
K ys

2
 len

# xs
2
C ys

2 2
 Eref

, 1.
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(4.8.1)(4.8.1)

(4.5.2)(4.5.2)

(4.6.2)(4.6.2)

(4.1.1)(4.1.1)

(4.7.2)(4.7.2)

(4.2.1)(4.2.1)

K
0.0749481358899640 mu_0 i xs

2
K ys

2
 len

2

# xs
2
C ys

2 2
 Eref

, 0., 0. , 

0., 0., 0., 0., 1., 0. , 

0., 0., 0., 0., 0., 1. , Eref = Eref, TF = trackFunction

w:-TF x, xp, y, yp, l, dp

x , 

xpC
1

Eref
0.299792543559857 K

1

2
 

xs mu_0 i

# xs
2
C ys

2

C
1

2
 

mu_0 i

#
K

2 xs
2
 mu_0 i

# xs
2
C ys

2
 x

xs
2
C ys

2
K

xs mu_0 i ys y

# xs
2
C ys

2 2

C
1

2
 

xs mu_0 i

# xs
2
C ys

2
K

2 mu_0 i xs
2
K ys

2
 xs

# xs
2
C ys

2 2
 x

2

xs
2
C ys

2

C
1

2
 

K
4 ys mu_0 i xs

2

# xs
2
C ys

2 2
K

2 mu_0 i xs
2
K ys

2
 ys

# xs
2
C ys

2 2
 y x

xs
2
C ys

2

C
1

2
 

xs mu_0 i

# xs
2
C ys

2
K

4 ys
2
 mu_0 i xs

# xs
2
C ys

2 2
 y

2

xs
2
C ys

2

C
1

2
 

mu_0 i xs
2
K ys

2

# xs
2
C ys

2 2
K

2 mu_0 i xs
3
K 3 ys

2
 xs  xs

# xs
2
C ys

2 3
 x

3

xs
2
C ys

2

C
1

2
 

1

xs
2
C ys

2

2 ys mu_0 i xs

# xs
2
C ys

2 2
K

2 mu_0 i 6 ys xs
2
K 2 ys

3
 xs

# xs
2
C ys

2 3
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(4.8.2)(4.8.2)

(4.8.1)(4.8.1)

(4.5.2)(4.5.2)

(4.6.2)(4.6.2)

(4.1.1)(4.1.1)

(4.7.2)(4.7.2)

(4.2.1)(4.2.1)

K
2 mu_0 i xs

3
K 3 ys

2
 xs  ys

# xs
2
C ys

2 3
 y x

2

C
1

2
 

1

xs
2
C ys

2

mu_0 i xs
2
K ys

2

# xs
2
C ys

2 2
K

2 mu_0 i Kxs
3
C 3 ys

2
 xs  xs

# xs
2
C ys

2 3

K
2 mu_0 i 6 ys xs

2
K 2 ys

3
 ys

# xs
2
C ys

2 3
 y

2
 x

C
1

2
 

2 ys mu_0 i xs

# xs
2
C ys

2 2
K

2 mu_0 i Kxs
3
C 3 ys

2
 xs  ys

# xs
2
C ys

2 3
 y

3

xs
2
C ys

2
 len , 

y , 

ypC
1

Eref
0.299792543559857 K

1

2
 

ys mu_0 i

# xs
2
C ys

2
K

ys mu_0 i xs x

# xs
2
C ys

2 2

C
1

2
 

mu_0 i

#
K

2 ys
2
 mu_0 i

# xs
2
C ys

2
 y

xs
2
C ys

2

C
1

2
 

ys mu_0 i

# xs
2
C ys

2
K

4 ys mu_0 i xs
2

# xs
2
C ys

2 2
 x

2

xs
2
C ys

2

C
1

2
 

K
2 mu_0 i Kxs

2
C ys

2
 xs

# xs
2
C ys

2 2
K

4 ys
2
 mu_0 i xs

# xs
2
C ys

2 2
 y x

xs
2
C ys

2

C
1

2
 

ys mu_0 i

# xs
2
C ys

2
K

2 mu_0 i Kxs
2
C ys

2
 ys

# xs
2
C ys

2 2
 y

2

xs
2
C ys

2
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(4.8.1)(4.8.1)

(4.5.2)(4.5.2)

(4.6.2)(4.6.2)

(4.1.1)(4.1.1)

(4.7.2)(4.7.2)

(4.2.1)(4.2.1)

C
1

2
 

2 ys mu_0 i xs

# xs
2
C ys

2 2
K

2 mu_0 i 3 ys xs
2
K ys

3
 xs

# xs
2
C ys

2 3
 x

3

xs
2
C ys

2

C
1

2
 

1

xs
2
C ys

2

mu_0 i Kxs
2
C ys

2

# xs
2
C ys

2 2
K

2 mu_0 i K2 xs
3
C 6 ys

2
 xs  xs

# xs
2
C ys

2 3

K
2 mu_0 i 3 ys xs

2
K ys

3
 ys

# xs
2
C ys

2 3
 y x

2
C

1

2
 

1

xs
2
C ys

2

2 ys mu_0 i xs

# xs
2
C ys

2 2

K
2 mu_0 i K3 ys xs

2
C ys

3
 xs

# xs
2
C ys

2 3
K

2 mu_0 i K2 xs
3
C 6 ys

2
 xs  ys

# xs
2
C ys

2 3
 y

2
 x

C
1

2
 

mu_0 i Kxs
2
C ys

2

# xs
2
C ys

2 2
K

2 mu_0 i K3 ys xs
2
C ys

3
 ys

# xs
2
C ys

2 3
 y

3

xs
2
C ys

2
 len , 

l , 

dp

len - the length of the wire [m]

i - the excitation current [A]

xs - the horizontal distance to the central orbit [m]

ys - the vertical distance of the wire to the central orbit [m]

Eref - the beam energy [GeV]. Note: the energy has to be given for the kick to be computable. 

The Wire element implements a current-carrying wire parallel to the beam orbit. Primary use is for 

beam-beam compensation. The model used is a 1/r drop in field of the wire (i.e. the wire is long 

compared to the distance from the beam). No end fields are considered. The R Matrix models the 

first-order kick (gradient) on the beam axis due to the wire. 

The trackFunction implements the full nonlinear kick due to the wire, but without end effects.

Foil
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Foils only work with numerical input data, so the following produces an error when trying to access

the trackFunction:

window d Foil len, X0, Eref

"Rms scattering angle is ",

13.6 
len

X0
 1C 0.038 ln

len

X0

Eref

Record l = len, kind = Foil, R =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, Eref = Eref, dE = 0, TF

= trackFunction

window:-TF x, xp, y, yp, ldp

Error, (in Statistics:-Sample) unable to evaluate 13.6*
(len/X0)^(1/2)*(1+0.38e-1*ln(len/X0))/Eref to floating-point

len - length of the foil [m]

X0 - radiation length of the material [m]

Eref - reference energy [MeV]. Used for the scattering calculation

The Foil element implements a scattering foil, e.g. a window in a beam line. As such items are 

invariably thin, the R Matrix is the unit matrix independent of length. Note that there is no energy 

loss calculated in the foil.

The trackFunction implements a Gaussian random-number generator and assigns angular kicks in 

both direction to the particle coordinates. The rms scattering angle is calculated using the PDG 

formula[5] and is printed when the Foil constructor is called. 

Examples
Since the various functions are documented in the Help facility, this guide will introduce the use of

Lattice by means of an example.

We reload Lattice as usual in Maple using with:

restart;
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(4.5.2)(4.5.2)

(4.1.1)(4.1.1)

(4.7.2)(4.7.2)

(5.1.1)(5.1.1)

(4.8.1)(4.8.1)

(4.6.2)(4.6.2)
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(4.2.1)(4.2.1)

(5.1)(5.1)

with Lattice :

"Maple Initialization loaded..."

"Lattice.mw, Version 1.0.2, 10-Feb-2016"

Example 1: Thin-lens FODO Lattice
Build a simple thin-lens FODO lattice and derive some formulae for its parameters.

The elements are defined thus:

QFh d Quad 0,
kf

2
:

QDh d Quad 0,
kd

2
:

DRh d Drift
lcell

4
:

Build the beam line from these elements. This can be done in stages:

FOD d DefineLine QFh, DRh, DRh, QDh :

 DOF d DefineLine QDh, DRh, DRh, QFh :

FODO d DefineLine FOD, DOF :

Note that DefineLine works in a left-to-right fashion, like a beam-line definition in MAD, unlike 

matrix multiplication.

Find the cosine of the phase advance " as function of the quadrupole strengths kf and kd:

cos mux = simplify cosmux FODO ;

cos mux = K
1

2
 kd lcellC

1

8
 kd lcell

2
 kfC 1K

1

2
 lcell kf

cos muy = simplify cosmuy FODO

cos muy = 1C
1

2
 lcell kfC

1

2
 kd lcellC

1

8
 kd lcell

2
 kf

which can be solved for the quad strengths in terms of the cosines in order to get the FODO cell 

parameters independent of the quadrupole strengths.

convert~ solve (5.1.1), (5.1.2) , kf, kd , radical

kf =
1

lcell

1

2
 cos muy K

1

2
 cos mux

C
1

2
 cos muy

2
K 2 cos muy  cos mux C cos mux

2
K 16 cos muy

C 32K 16 cos mux
1/2

, kd = 4 
3

2
 cos mux K 2C

1

2
 cos muy
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(4.6.2)(4.6.2)

(5.1.3)(5.1.3)

(4.2.1)(4.2.1)

(5.1.6)(5.1.6)

C
1

2
 cos muy

2
K 2 cos muy  cos mux C cos mux

2
K 16 cos muy

C 32K 16 cos mux
1/2

lcell K4C
1

2
 cos muy K

1

2
 cos mux

C
1

2
 cos muy

2
K 2 cos muy  cos mux C cos mux

2
K 16 cos muy

C 32K 16 cos mux
1/2

Make the two phase advances equal for further simplification:

subs mux = µ, muy = µ, (5.1.3)

kf =
1

2
 

K32 cos µ C 32

lcell
, kd =

4 2 cos µ K 2C
1

2
 K32 cos µ C 32

lcell K4C
1

2
 K32 cos µ C 32

and put this back into the cell:

cell d Subs (5.1.4) 1 , (5.1.4) 2 , FODO : 

#` `Note: Subs does not accept a list of replacement equations.

Compute the lattice functions for this cell:

tw d twiss cell :

simplify~ tw  assuming 0 ! mu, mu ! Pi;

K
lcell cos µ C 1

K2C K2 cos µ C 2  sin µ

0

K2 cos µ C K2 cos µ C 2  cos µ C 2K K2 cos µ C 2

lcell sin µ

lcell cos µ K 3C 2 K2 cos µ C 2

K2C K2 cos µ C 2  sin µ

0

K
2 cos µ K 2C K2 cos µ C 2  cos µ K K2 cos µ C 2

sin µ  lcell

Plot this for a cell length of 6 m

plot subs lcell = 6, (5.1.6) 1 , (5.1.6) 4 , mu = 0 ..Pi, view = default, 0 ..60 , labels = 'mu',

typeset 'beta x ', ", ",'beta y ' ;



The Lattice Package Users Guide

19

(4.8.2)(4.8.2)

(4.8.1)(4.8.1)

(4.5.2)(4.5.2)

(4.6.2)(4.6.2)

(4.1.1)(4.1.1)

(5.1.3)(5.1.3)
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µ

#

8

#

4

3 #

8

#

2

5 #

8

3 #

4

7 #

8

%
x, 
%

y

0

10

20

30

40

50

60

To plot the lattice functions specify values for the variables:

cell_numeric d Subs lcell = 6, mu =
Pi

2
, cell :

twiss_numeric d evalf~ twiss cell_numeric ;

10.2426406871193

1.00000000000000 10
-15

0.0976310729378179

1.75735931288072

K1.50000000000000 10
-15

0.569035593728850

latticePlot d LatticePlot cell_numeric, twiss_numeric, 0, 0, 0, 0 :

plots:-display latticePlot, labels = typeset "Distance  (m)" , typeset beta x , beta y , eta x ,

"  (m)"
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(4.5.2)(4.5.2)
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(4.7.2)(4.7.2)

(4.8.1)(4.8.1)

(4.6.2)(4.6.2)

(5.1.3)(5.1.3)

(4.2.1)(4.2.1)

(5.1.9)(5.1.9)

Distance  (m)

0 1 2 3 4 5 6

%
x%

y&
x  

(m
)

0

2

4

6

8

10

A phase-space plot can be created by defining a beam and using BeamPlot. To make the plot more 

interesting, create some particles. Note that this does not involve actual tracking.

Beam d DefineBeam Electron, 1, 1EK6, 1EK6, twiss_numeric, 0, 0, 0, 1000 : 

Beam:-Sigma

0.0000102426406871193, K1.00000000000000 10
-21

, 0, 0, 0, 0 , 

K1.00000000000000 10
-21

, 9.76310729378179 10
-8

, 0, 0, 0, 0 , 

0, 0, 0.00000175735931288072, 1.50000000000000 10
-21

, 0, 0 , 

0, 0, 1.50000000000000 10
-21

, 5.69035593728850 10
-7

, 0, 0 , 

0, 0, 0, 0, 1, 0 , 

0, 0, 0, 0, 0, 0

BeamPlot Beam

PLOT ... PLOT ...

PLOT ... PLOT ...

plots:-display %
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K0.00060 0.0006
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 (
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K0.0015
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0

0.0005

0.0010

0.0015

Note that in this version of Lattice the bottom two plots are only produced when particles exist in 

the beam.

In order to see the phase space at the center of the cell, track the beam through the half-cell (FOD):

half_cell d Subs lcell = 6, mu =
Pi

2
, Subs (5.1.4) 1 , (5.1.4) 2 , FOD :

Beam_D d Track half_cell, Beam :

plots:-display BeamPlot Beam_D 2 ;
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The result is as expected.

Tracks can be plotted by converting the line to an ExpandedLine and tracking that. 

cell_e d ExpandLine cell_numeric, cell_numeric : # use 2 cells to make the plot more interesting

BeamVector d Track cell_e, Beam : #` here Track will create a Vector with Beam elements

. The first element is at the entrance so there are one more beam elements than elements 

in the beam line.

 s d 0, seq cell_e i :-s, i = 1 ..numelems cell_e : 

#` `get the distances from the line, but need to pre-pend 0

plots:-display seq plot s, seq BeamVector i :-Coordinates j 1 , i = 1 ..numelems s , j

= 1 ..100 ,

                      labels = typeset "Distance  (m)" , typeset 'x ', "  (m)"  
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Note that the plotting uses two nested seqs: the inner one gets one track and plots it vs s; the outer 

one plots each trace. The plots:-display function puts all traces onto one graph.

Example 2: Multi-turn Tracking Example
This example demonstrates how a Lattice model can be used for multi-turn tracking by making a 

floating-point map out of the trackFunction.

The elements of a ring

QFh := Quad 0, 27
K1

:

QDh := Quad 0, K14
K1

:

HBh := Bend 5 2
K1

, # 8
K1

, 0 :

FODO := DefineLine QFh, HBh, HBh, QDh, QDh, HBh, HBh, QFh :

With exact parameters, Maple keeps everything exact:

simplify cosmux FODO
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10

189
 

13 #K 20

#
2

The trackFunction is a function acting on a 6-element Vector (particle vector or pv). It can be 

converted to an expression by specifying the elements of pv explicitly, which allows to unapply 

later in terms of pv and using the modified function as a map for tracking. It is then possible to 

convert all constants in the map to floating-point numbers and do other simplifications like series 

expansion and truncation. This is of advantage if tracking or other analysis is to be performed on the

trackFunction of a larger structure and in many cases required to obtain a result in a reasonable 

amount of time.

FODO:-TF pv
1
, pv

2
, pv

3
, pv

4
, pv

5
, pv

6
: # a long expression, still exact

In order to make tracking possible, we reduce the entries in FODO:-TF to floating-point numbers:

`~`
evalf

FODO:-TF pv
1
, pv

2
, pv

3
, pv

4
, pv

5
, pv

6

0.111725124208604 pv
1
C 9.26108868488540 pv

2
C 7.56530082140020 pv

6

K0.106630821733977 pv
1
C 0.111725124208597 pv

2
C 0.908158347416860 pv

6

0.523809523809524 pv
3
C 6.42857142857143 pv

4

K0.112874779541446 pv
3
C 0.523809523809524 pv

4

K0.908158347416850 pv
1
K 7.56530082140017 pv

2
K 3.62039421017390 pv

6
C pv

5

pv
6

And then unapply to make it into a function again. This is then our map:

Map := unapply (5.2.2), pv

Map := pv/rtable 1 ..6, 1 = 0.111725124208604 pv
1
C 9.26108868488540 pv

2

C 7.56530082140020 pv
6
, 2 = K0.106630821733977 pv

1
C 0.111725124208597 pv

2

C 0.908158347416860 pv
6
, 3 = 0.523809523809524 pv

3
C 6.42857142857143 pv

4
, 4

= K0.112874779541446 pv
3
C 0.523809523809524 pv

4
, 5 =

K0.908158347416850 pv
1
K 7.56530082140017 pv

2
K 3.62039421017390 pv

6

C pv
5
, 6 = pv

6
, datatype = anything, subtype = Vector

column
, storage = rectangular,

order = Fortran_order

Now we can setup for a tracking loop:

nturns d 100 :

coords := 0.001, 0, 0, 0.0001, 0, 0 :

pvV := Array 0 ..nturns :

xv := Vector nturns C 1, datatype = float :

pvV
0

d coords : xv
1

:= coords
1

:
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And track:

for turn to nturns do

   pvV
turn

:= `~`
evalf

Map pvV
turn K 1

;

   xv
turn C 1

:= pvV
turn1

   end do:

plots:-listplot xv

10 20 30 40 50 60 70 80 90 100
K0.0010

K0.0005

0

0.0005

0.0010

Installation
The Lattice package is distributed as a zipped archive containing the following files:

Lattice.mla      Maple library file, needs to be placed in a directory included in Maple's libname 

data structure. 

                              At present this file is generated using Maple 2015.

Lattice.mpl      Text file with the source of the Lattice package (code in Maple syntax). 

Lattice.mw     A small Maple notebook run once to install the Lattice package.

Lattice.help    The Help database for Lattice (new style Help facility for Maple 18 and newer).

Lattice.hdb      The Help database for Lattice (old style Help facility for Maple 17 and older).
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(5.2.1)(5.2.1)

(4.5.2)(4.5.2)

• • 

• • 

(4.1.1)(4.1.1)

(4.7.2)(4.7.2)

(4.8.1)(4.8.1)

(4.6.2)(4.6.2)

(5.1.3)(5.1.3)

(4.2.1)(4.2.1)

The Lattice Package Users Guide.mw (this file). 

The Lattice Package Users Guide.pdf (pdf of this file). 

In order to install Lattice, the user should decide where the library file should go. This could be a 

directory within the Maple installation directory tree, or a directory in the users home directory. Then 

pre-pend this path to the entries already in libname: libname:="/Path/to/directory",

libname: The path is absolute.

The quick way to install is to then copy Lattice.mla to this directory. This is sufficient if a user 

does not plan to modify the package.

In order to be able to install modified versions, open Lattice.mw. Edit the path to Lattice.mpl in

the first command (read(…)) to point to where Lattice.mpl is located (absolute path), which can 

be anywhere. Execute the file (!!! button). If no error is generated, Lattice.mla is generated and 

installed. Save the edited version of Lattice.mw for future use.

The Help database files go into the same directory as Lattice.mla. 

Finally, test your installation with restart;with(Lattice); If all is well, the Lattice package 

will print an informational message during loading even when terminating the with command with a 

colon (:). Search for Lattice (with capital L) in Help to verify the Help database is installed properly.

Known Issues and Limitations as of Version 1.0.2, 10-Feb-2016
built.

Bends, Quadrupoles and Drifts are implemented to first order only, even in their tracking function.

Sextupoles are implemented as thin elements.

The RfCavity element is not properly debugged and should be considered experimental.

The Solenoid element is not properly debugged and should be considered experimental.

Keeping track of Eref is spotty and should be considered experimental.

The Foil scatters particles upon tracking but does not model energy loss. The ! matrix for the beam is 

not recalculated upon passing through the foil.

Subs will only accept a sequence of replacement equations, not a list. On occasion, Subs has failed to 

recurse into sublines but in sufficiently inconsistent and rare cases that I have not been able to uncover 

the underlying issue.

The nux and nuy functions do not correctly track the integer part of the tunes even if given an

ExpandedLine as argument.

In older versions of Maple (specifically in Maple 15), the output from Lattice elements or BeamLines 

can confuse the Standard GUI and lead to lost output and output lines printing on top of each other. 
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4. 4. 

(4.8.2)(4.8.2)

(5.2.1)(5.2.1)

(4.5.2)(4.5.2)

• • 

(4.1.1)(4.1.1)

(4.7.2)(4.7.2)

2. 2. 

1. 1. 

(4.8.1)(4.8.1)

3. 3. 

5. 5. 

(4.6.2)(4.6.2)

(5.1.3)(5.1.3)

(4.2.1)(4.2.1)

This effect (which is a Maple problem, not a problem of the Lattice package) is mitigated by setting the 

typeset level to standard in Maple versions earlier than 16. In Maple 2015 this problem has not been 

observed. Note that there is no automatic way to change this setting back.

When calculating the tracking function (map) of a beam line, execution time rises steeply with the 

number of elements in a beam line. Do not attempt to find the tracking function of a full machine in the 

straightforward way as it most likely will not work and lock up Maple. This problem can be mitigated 

by using evalf to convert the coefficients into floating point format thereby greatly speeding up the 

calculations. See Example 2.

The Track operation works reasonably well for a single pass of many particles. For multi-turn 

operation, create the map and track by applying this map to the particle vector to avoid unreasonably 

long computing times. See Example 2.

The linkage to the Help files and their formatting is not always correct. Starting from the top Lattice 

help page usually works, however. The change of format of the Help database has not been of help to 

this project. The Help pages need more examples.

The Lattice package is compatible with Maple versions 15 and later (tested up to Maple 2015).
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