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A little bit of theory...

Lorentz Force:

F=q(+vxB)

F=qvXB

F: force q: charge v: charge velocity B: magnetic field

Magnetic rigidity:

_ JK?%+2KE,
- p”

Br

K:Beamenergy c:speedoflight £ : Particle rest mass
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... a little bit more

Biot-Savart law

fH.dlzl
B

—2nr =1
Ho

1y,

B =
27r

r:radius B: magnetic field M, : vacuum magnetic permeability
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Units
SI units | Variable | Unit |

F Newtons (N)

q Coulombs (C)

B Teslas (T)

/ Amperes (A)

E Joules (J) — (eV) for beams
1T =10,000G

T.m
Uo = 41 X 10_77

Charge of 1 electron ~ 1.6, 101°C » 1eV=1.6,107")
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Magnitude of Magnetic Fields

Value Item
0.1-1.0pT [human brain magnetic field
24 uT strength of magnetic tape near tape head
31-58 uT strength of Earth's magnetic field at 0° latitude (on the equator)
0.5 mT the suggested exposure limit for cardiac pacemakers by American Conference of
) Governmental Industrial Hygienists (ACGIH)
5mT the strength of a typical refrigerator magnet
0.15T the magnetic field strength of a sunspot
1Tto2.4T |coil gap of a typical loudspeaker magnet
1.25T strength of a modern neodymium-iron-boron (Nd2Fe14B) rare earth magnet.
1.5Tto3 T [strength of medical magnetic resonance imaging systems in practice, experimentallyup to 8 T
9.4T modern high resolution research magnetic resonance imaging system
11.7T field strength of a 500 MHz NMR spectrometer
16T strength used to levitate a frog
36.2T strongest continuous magnetic field produced by non-superconductive resistive magnet
45T strongest continuous magnetic field yet produced in a laboratory (Florida State University's
National High Magnetic Field Laboratory in Tallahassee, USA)
100.75 T strongest (pulsed) magnetic field yet obtained non-destructively in a laboratory (National
’ High Magnetic Field Laboratory, Los Alamos National Laboratory, USA)
730 T strongest pulsed magnetic field yet obtained in a laboratory, destroying the used equipment,
but not the laboratory itself (Institute for Solid State Physics, Tokyo)
strongest (pulsed) magnetic field ever obtained (with explosives) in a laboratory (VNIIEF in
2.8 kT .
Sarov, Russia, 1998)
1to 100 MT |strength of a neutron star
0.1to 100 GT |strength of a magnetar
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Types of magnets

* Dipoles

e Quadrupoles
e Sextupoles

* Correctors

* Septa

e Kickers
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Optics analogy 1

i Lens
Prism
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Optics analogy 2

Dipole

wigh &5

Low energy

/ Quadrupole

Incoming beam

Desired focus

Low energy focus High energy focus
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Dipole

+ Current In Positive Pole + Current Out

B field

sy O

Negative Pole

The dipole magnet has two poles, a constant field and steers a particle beam.

Using the right hand rule, the positive dipole steer the rotating beam toward
the left.
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ALBA SR Combined Function Dipole
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Quadrupole

+ Current In

/////X///%

- Pole + Pole

pE—

O ‘ M_H ] ,ﬁ'lcﬁo? + Current Out

iy

The Quadrupole Magnet has four poles. The field varies linearly with the distance from
the magnet center. It focuses the beam along one plane while defocusing the beam

along the orthogonal plane. An F or focusing quadrupole focuses the particle beam
along the horizontal plane.

Ly
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Quadrupole

ALBA SR Quadrupole
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Sextupole

’ + Current In

ol

: PO[E} K )r (+ Pole ‘
gz + Bead 4
Xl T T L] [©
| T + Current Out
x| |71 < O

Qo
|

The Sextupole Magnet has six poles. The field varies quadratically with the distance
from the magnet center. It’s purpose is to affect the beam at the edges, much like an

optical lens which corrects chromatic aberration. An F sextupole will steer the particle
beam toward the center of the ring.

Note that the sextupole also steers along the 60 and 120 degree lines.
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Sextupole

ALBA SR Sextupole
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Correctors

SPEAR3 Corrector
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Current Carrying Septum

Bumped Beam

Force

- Pomz//
X ’»)(Ox X

/

Circulating Beam
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Eddy-Current Septum

Eddy Current Box

Bumped Beam

N

[ S

Force

+ Pole /

O X ,I/+1 x

BEEEEEREIEEEE]

- Pole \Flux

NOOUOMONNNNANNNNNN

(S S S
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Lambertson Septum

Bumped Beam

+ Current In

X

.

A

Circulating Beam

- Pole

+ Current Qut >

/
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Kicker magnets

Current Sheet Septum

-
.l

Bumped Beam

Injected
Beam
— \ -..___:_ ................. ——
— P — -—
Circulating Beam
Bump 1 Bump 4
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Magnetostriction

The forces on parallel currents is illustrated in the following figure. The force on
a charge moving with a given velocity through a magnetic field is expressed with
the lorentz force:

F=qvXB
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Magnetostriction

Currents with thesamecharge travelling in theamedirectionattract.
Currents withoppositecharge travelling in theamedirectionrepel.

Currents with thesamecharge travelling in theppositedirectionrepel.

Currents with theppositecharge travelling in theppositedirectionattract.
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Introduction to the Mathematical
Formulation

An understanding of magnets is not possible without understanding some
of the mathematics underpinning the theory of magnetic fields. The
development starts from Maxwell’s equation for the three-dimensional
magnetic fields in the presence of steady currents both in vacuum and in
permeable material.

For vacuum and in the absence of current sources, the magnetic fields
satisfy Laplace’s equation.

In the presence of current sources (in vacuum and with permeable
material) the magnetic fields satisfy Poisson’s equation. Although three
dimensional fields are introduced, most of the discussion is limited to two
dimensional fields.

— This restriction is not as limiting as one might imagine since it can be shown
that the line integral of the three dimensional magnetic fields, when the
domain of integration includes all regions where the fields are non-zero,
satisfy the two dimensional differential equations.
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Gauss’s law

Faraday’s law

Ampere’s law

Maxwell’s Equations

(in vacuum)
p
V.E = — #E_dAzﬁ
(0] go
V.B=0
#B.dA =0
0B 0B
VXE=—— Edl——ﬂEdA

OE
VXB:Mol‘l'.uogoE
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Gauss’s law

Faraday’s law

Ampere’s law

Maxwell’s Equations

(in media)

D.dA = Q;

<
tu
|

tQ:: L=

VXE = o8
-2 ng_dl ﬂ_dA

_ g 0D oD
VxH=]rt5 3@H.d1=1f+jﬁ.d,4
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Maxwell’s Steady State Magnet Equations

V.B=20
VXB =]

in the absence of sources

VXB=0
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The function of a complex variable

F=A+1iV

)74 av GV)
B=VXA= ]

B=_VV=_(la+]E+ka_Z

i j k

d ad 0

ax 9y 0z
A: Vector potential Ay A, A,
V' Scalar potential

VxB:Vx(VxA)zvy./A)—VzAzo — V24=0

0 (Coulomb gauge) A satisfies the Laplace equation!

V.B=V.(-VV)=-V’V=0 —— VPV =0

V also satisfies the Laplace equation!

The complex function F = A + iV must also satisfy the Laplace equation V2F = 0
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The Two-Dimensional Fields

VXB = ]

R =
[l
)
Q
SR
|
Q
Q
N [P
N—

xm o ~
|~
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Fields from the two-dimensional
Function of a complex variable

Z=x+1y
F(z)=A+1iV
B =B, — (B, = iF'(z)

Cauchy — Riemann:

dA _ av
dy  ox
d0A oV
dx 0dy

OF(z) 0A+idV

F2) ==, = 3x v iox
04 IV 0A , .0V
-+ ==t il
/ _ Ox 0x ' _ oy dy
F(Z)‘a_x+.a_y F(z)——a_x+ 3y
ox T 'ox dy = "0y
F,()_0A+.0V pripy - 04 Y
z) = tio (z) = l@‘l‘a—
. _ 0A 0V . 0A
B :Bx lBy_la—a B = lBy_@‘Fl—

_ av _ 0A

X 9x Yo ox

B _BA B — aVv

* oy Yy
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Solution to Laplace’s equation

(2D)
oo OF | O°F
dx*> = dy?
OF dFdz dF OF dFoz dF
dx  dzox  dz dy  dzdy dz.
?F 8 dF d’Fdz  d°F O°F _ 9 dF _dF oz_ dF

_l_

0x2  dxdz dzlox  dz? 6y2 % dz' ~ dz? dy  dz?
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Orthogonal Analog Model

The name of the method for picturing the field in a magnet is called the Orthb4oaéng
Model by Klaus Halbach. This concept is presented early in the lectu@dar to
facilitate visualization of the magnetic field and to aid in the vigatlon of thevector and
scalar potentials.

"Window Frame" Magnet

- Current + Current
 Flow Lines go from the + to - Coils. ///
* Flux Lines are ortho-normal to the Flow Lines. Flow Lines
. . . from + fa -

* |ron Surfaces are impervious to Flow Lines. Current

Flux Lines

Normal to

Flow Lines
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Orthogonal Analog Model

"""""""""

Flow Lines

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr



Current Carrying Septum

Bumped Beam

- Pole !¢ . .
(WX Circulating Beam
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Multipoles Expansion

Z=x+1y
F(z)=A+iV=Zan"
n=1

where nis the order of the multipole

The ideal pole contour can be computed using the scalar equipotential.

The field shape can be computed using the vector equipotential.

US Particle Accelerator School — Austin, TX — Winter 2016

34



Example 1: Dipole (n=1)

A + V= C]_Zl == Cl(x + ly)

I
x—C1
4
y_C1
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T—

Dipole (n=1)

y Flux Lines x =2
Pole Equipofenfial y =
/
A
V4

Scalar Equipotentials y = %
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Example 2: Quadrupole (n=2)

A+iV = Cyz% = Co(x + iy)? = Cp(x% — y% + i2xy)

A
2 a2 —
X y Cz
v
V=30,
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Quadrupole

2

Flux Lines x* - y? = % A=Variable

Pole Equipotential xy =V§°‘E

///
) N\~

‘_":////7//7
:://f//¢ /
”//Z//j P Scalar
— AL Equipotentials

o /}/ / // [ T~ V
| ///////////y XY =3¢

// /////’///ﬂ -
[ V=Variable
[ 1T
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Example 3: Sextupole (n=3)

* For the sextupole case, the function of a
complex variable is written in polar form.

— This case is presented to illustrate that both
polar and Cartesian coordinates can be used in
the computation.

z=x+iy=|z|le™ A= (:|Z|3 c0s34
- :C23 :C‘Z‘3ei39 3 .

3 B V =C|Z sin34
=C|4 (cos38+isin36)
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Vector Potentials

A 3
‘Z‘VectorPotentiaI - C CO 539

X\/ectorPotential Z‘ COSH = ( j cosf
yVectorPotentiaI Z‘ Slne (

Scalar Potentials

‘Z‘ SdlarPotetial (CSII’] 38)

XScaI arPotatial Z‘ COS&

Ca 3G

3
a =|Zsing = sin
yScaI arPotatial ‘ ( C S| ng
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Sextupole Equipotentials

1_3

|

A
C cos36

A=Variable

Flux Lines |z|

41

5

Equipofentials
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Real and Skew Magnets

Magnets are described as real when the magnetic fields are vertical along the
horizontal centerline :

Bx =0 and By # 0 for y=0
Real magnets are characterized by C = real.

Magnets are described as skew when the field are horizontal along the horizontal
centerline:

Bx # 0 and By = 0 for y=0

Skew magnets are characterized by C = imaginary.
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Dipole Example

Real

Skew

43
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Quadrupole Example

Real

Skew —
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ldeal pole shapes

04 av

Dipole
A
X =— V=—JBMy= B,y
C1
B, = B, Vix =0,y =h) = —B,h
h=half gap
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ldeal pole shapes

04 av

By“& Y dy

Quadrupole Sextupole
A

A 3
xt—y?=— — [,2 2 — [ "
C; 1z Xy <C3COS36>

B,=B'.x @y =0

| =

B,=B".x*@y=0
V=- f(B’.x)dy = — B'.xy = —B'.r%cos6fsinf

Vir=h0=m/4) = bR’ |z| = {x%2 +y? = !
r=ho=m/4)= 2 Vsin30
B'h?
——— = —B'xy
2
— — | Hyperbola!
y % yp
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Complex Extrapolation

e Using the concept of the magnetic potentials, the ideal
pole contour can be determined for a desired field.

e Combined Magnet Example

— The desired gradient magnet field requires a field at a
point and a linear gradient.

— Given:
= A central field and gradient.
= The magnet half gap, h, at the magnet axis.

— What is the ideal pole contour?
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The desired field is; By = B0 + B'Xx

The scalar potential oV
satisfies the relation; By — _a_y
Therefore; V = _.[(BO + B' X)dy =-B,y - B'Xxy

For (X, y) — (O, h) on the pole surface,
V e = —Byh = B'(0xh) = -B;h

Therefore, the equation

for the pole is, — Boy - B XYy = Vpo|e = —Boh
or solving for y, y = Boh
B, + B'x
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Hyperbola y = B,h with asymptote at, X = _&
B, + B'X B
é H bol i
.EE yperbola
o
ol
=
> |
" |
< I Magnet

ntour

J f—
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Section Summary

We learned about the different kinds of magnets and their functions.

F(z)=A+iV = Zan"
n=1

The ideal pole contour can be computed using the scalar equipotential.

The field shape can be computed using the vector equipotential.

_wv oA
X ox Yo ox
R
* 9y Y 9y
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Next...

e Multipoles
e Pole tip design

e Conformal mapping
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