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1D CSR Wakefield in Free Space

Wakefield due to CSR is given by

2 Jd i3
<

W(z) = 31/3p2/3 oz

For z>0. It vanishes when z<0 (force is on the particle ahead).
where p is the bending radius.

e Simplicity
e Universal
e |In form of derivative
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CSR Microbunching in Bunch Compressors

CSR limits further improvement of longitudinal emittance and limits peak
beam current below 3 kA

1D model results are in good agreement with data, as shown in the following
BC1 examples

3D model may be necessary at much higher peak current
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CSR Instability in Electron Storage Rings

G. Wustefeld at al. PAC10, p2508 (2010)
.- = Measured bursting threshold at ANKA
See M.Klein et al. PAC09, p4761 (2009)
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K. Bane, Y. Cai, and G. Stupakov, PRSTAB 13, 104402 (2010)
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Transverse Force in Curved Geometry

Equation of motion:

Lox 0 X S
=

x"+ [E, + B, B, - B,(1+ )B]
PP Cpoﬁs

= e [E, +ﬁ$(l+)‘w
Py, 1Y

Curvature terms 0

e Curvature terms are conceptually important

- E,E,B,B, and B, are the self-fields The curvilinear coordinate
* No epr|C|t dependence on the potentials

* Equations are derived from the Hamiltonian

by Courant-Synder
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* Space charge is suppressed by 1/y?
* |dentify radiated field with CSR
e Subject to retarded condition:

5/31/17

Lienard-Wiechert Formula

Space Charge Radiated Field
! ! |
. i— 3 e. nix(i-PB)xpB
E=€[ > — [)—’> 3 z]ret+(_)[ ( — /3)3 ﬁ]ret’
y*(I-n-p)' R c (d-n-p)R
B=iixE

tJ=t_£g
C
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Electrical and Magnetic Fields

_ ef3’[cos2a — 1+ )1+ x)sin2a - Bx]

E, o’ [k - B+ x)sin2al’
E ef3’ sin2al(1+ x)sin2a — BK]

il o[k - B+ x)sin2al’
B _ eB°k[(1+ x)sin2a — Bx]

y

o’ [k - BA+ x)sin2al’

where

K=£=\/X2+4(1+X)sin2a,
0

a=01/2,
X=x/p

* They are simplest expressions, especially in the denominator and chosen
to suppress the numerical noise near the singularity.
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Retarded Time and Longitudinal Position

Retarded Time:

, R
'=t——
C

Time of flight at position s:

C=v(t—-t)—(s—15")

It is the variable for the wake. The arc distance to the source particle at the time t.
We derive its relation to a.

§=a—§\/xz+4(1+x)sin2a

where§ =-//2pand /=7'-7 .
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Solutions of the Retarded Condition

Expanding up to the fourth-order of a of the retarded condition, we have
2 2 2 2.2

BB 65 SUE B
p 1+ x) B+ x) 4671+ x)

Numerical Analytical

Numerical solution is on mesh: 512x512 using Mathematica taking several hours.
The differences between the numeric and analytic solutions are at an order of 10°.

Here we have used y=500.
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Analytical Solution of the Retarded Condition

In general, we want to find the roots of the depressed quartic equation:
4 2
a +va +na+¢ =0

It has analytical solution discovered by Ferrari (1522-1565) by adding and subtracting
a term to make a difference of two perfect squares. To find the term, we need to
first find the roots of a third-order equation. A root m is given by,

m=—_+(€ +—)Q_1/3+Ql/3
3 3 36

where

R T

The solution of a:

. %(@+\/—2(m+v)—%) £ 520
%(—\/ﬂ+\/—2(m+v)+\/221m) E <0
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Longitudinal Field and Centrifugal Force

p*Es/ey® p*F./e%y?

1
3%¢ 2

* The scaling with respect to vy is different. Here we have used y=500.
* The centrifugal force is much hard to compute numerically because of the
cancellation between the electric and magnetic forces.
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Longitudinal Field and Centrifugal Force

3y3¢ 3y3¢

* The scaling with respect to y is different. Here we have used y=500.
* The centrifugal force is much hard to compute numerically because of
the cancellation between the electric and magnetic forces.
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A Longitudinal Potential W,

Differentiate the retarded condition,

§=a—g\/X2+4(1+X)sin2a

We have, B(l+ x)sin2a

\/Xz +4(1+ y)sin’ a

dE = (1- )dot

Combining it with the longitudinal electric field E,, we find

E d - e/a’z[cos22a—(1+X)][(1+).()sin§a—/3x] o
P K[K =B+ x)sin2c]

)
I+ yx
20°[K - B+ x)sin2a]

e3> (cos2o -

or
o 0w

N ag
where Y, (Sx) =

e’ (cos2a -

L)
X
20°[k = B(1+ x)sin2a]
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Transverse Force and Potential W,

Similarly,

(&)= 4(1+X)

/3 1 2 —4(1‘;‘X))_X2E(a

5 [2+2x+ x )F(c,
207 ey CHAFHAONE

+K “2B8°A+ )+ B A+ )2 +2x+ ) )cos2o - K/B(l+x)s1n2a[1 B’ (1+X)cos2a]
[K> - B°(1+ x) sin” 2]

——)]

where, Y,
F, oE Curvature term

and, P ef’[sin2a—(1+ x)Bx1[(1+ x)sin2a - Bk]
o’k -= B+ x)sin2al’

X

 The Transverse force is the Lorentz force and plus the curvature term

* The curvature term is necessary for the analytical expression

* F(o,k) and E(a, k) are the incomplete elliptic integrals of the first and second kind
* F,=0, so the particles stay in the plane if they are initially in the horizontal plane
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Longitudinal and Transverse Potentials

p*W /ey p*W, /e

* The scaling with respect to vy is different. Here we have used y=500.
* The “logarithmic” singularity is clearly seen in the transverse potential
along the line of x=0.
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Wakefields

From the equations of the motion, the changes of the momentum deviation
and kick are given by,

8 ="Now (2 50,
Y

x" = ﬂwx(z,x)
4

where r, is the classical electron radius, N, the bunch population, and the wakes,

Z_Z' ' IA Z" ‘ ' '

W= [N« >—b(az,’f Vazdy,

Z aA’b(z X )dZ'dX',
0z’

W, (z. 0= [[Y.( ;;',x—x')

with Y.=2pW /(ep?), Y,=2pW,/(eP)? and A, is the normalized distribution.

* These are additional changes when integrating through the bend.
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Gaussian Bunch Wakes
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Estimate of Emittance Growth

Increase of the projected emittance:

Ag, = %y[a’x <(Ax'-<Ax'>)" >,

From the longitudinal contribution a bending magnet:

5B NrL,
Agy =T75x107 = (—Leb)?,

y pro,
It leads to 38% increase of the emittance for the last dipole. From
the centrifugal force, we have

_(=3+243) B, ANLy
247 Y PO, ’

AY:

N

This gives 29% increase of the emittance.

The parameters for the last bend of BC2 in LCLS

-ma-n-r__-

Value 10,000 0.5um 10um 10° 0.5m
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Summary

The transverse force in the curveted coordinate is
essentially the Lorentz force but with a substitution of
the transverse magnetic field, B, ->(1+x/p)B, |

The curvature term play a key role for deriving the
point-charge wakefield explicitly in terms of the
incomplete elliptic integrals of the first and second
kind

Emittance growth due to the centrifugal force is at the

same level of the contribution through the energy
changes

A steady-state theory of the coherent synchrotron
radiation in two-dimensional free space is developed
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