Lecture 10:

Coherent Synchrotron Radiation

Yunhai Cai
SLAC National Accelerator Laboratory

June 15, 2017

USPAS June 2017, Lisle, IL, USA
1D CSR Wakefield in Free Space

Wakefield due to CSR is given by

\[W(z) = \frac{2}{3^{1/3}} \frac{\partial}{\partial z} \rho^{2/3} z^{-1/3} \]

For \(z > 0 \). It vanishes when \(z < 0 \) (force is on the particle ahead).

where \(\rho \) is the bending radius.

- Simplicity
- Universal
- In form of derivative
CSR Microbunching in Bunch Compressors

- CSR limits further improvement of longitudinal emittance and limits peak beam current below 3 kA
- 1D model results are in good agreement with data, as shown in the following BC1 examples
- 3D model may be necessary at much higher peak current

![Graph of CSR energy loss after BC1 measured with BPM](image1)

![Graph of horizontal emittance after BC1 vs. RF phase](image2)

Courtesy of Yuantao Ding
CSR Instability in Electron Storage Rings

Measured bursting threshold at ANKA
See M. Klein *et al*. PAC09, p4761 (2009)

Figure 1: MLS THz signals at the bursting threshold. Vertical axis: applied rf-voltage amplitude, horizontal axis: frequency of the detected THz signals. The colour indicates the THz signal intensity.

Scaling law for bunched beam:

\[
\sigma_z^{7/3} = \frac{c^2 Z_0}{8\pi^2} \xi^{th} (\chi) I_b^{th} \rho^{1/3} \left/ (V_{rf} \cos \phi_s f_{rf} f_{rev}) \right., \quad \xi^{th} (\chi) = 0.5 + 0.34 \chi, \quad \text{and} \quad \chi = \sigma_z \rho^{1/2}/h^{3/2}
\]

K. Bane, Y. Cai, and G. Stupakov, PRSTAB 13, 104402 (2010)
Transverse Force in Curved Geometry

Equation of motion:

\[x'' + \frac{x}{\rho^2} = \frac{\delta}{\rho} + \frac{e}{c p_0 \beta_s} [E_x + \beta_y B_s - \beta_s (1 + \frac{x}{\rho}) B_y], \]
\[y'' = \frac{e}{c p_0 \beta_s} [E_y + \beta_s (1 + \frac{x}{\rho}) B_x - \beta_x B_y] \]

- Curvature terms are conceptually important
- \(E_x, E_y, B_x, B_y, \) and \(B_s \) are the self-fields
- No explicit dependence on the potentials
- Equations are derived from the Hamiltonian by Courant-Synder
Lienard-Wiechert Formula

Space Charge

Radiated Field

\[\vec{E} = e\left[\frac{\vec{n} - \vec{\beta}}{\gamma^2(1 - \vec{n} \cdot \vec{\beta})^3 R^2}\right]_{\text{ret}} + \left(\frac{e}{c}\right)\left[\frac{\vec{n} \times (\vec{n} - \vec{\beta}) \times \vec{\beta}}{(1 - \vec{n} \cdot \vec{\beta})^3 R}\right]_{\text{ret}}, \]

\[\vec{B} = \vec{n} \times \vec{E} \]

- Space charge is suppressed by \(1/\gamma^2\)
- Identify radiated field with CSR
- Subject to retarded condition:

\[t' = t - \frac{R}{c} \]
Electrical and Magnetic Fields

\[E_s = \frac{e\beta^2 [\cos 2\alpha - (1 + \chi)][(1 + \chi)\sin 2\alpha - \beta\kappa]}{\rho^2 [\kappa - \beta(1 + \chi)\sin 2\alpha]^3} \]

\[E_x = \frac{e\beta^2 \sin 2\alpha[(1 + \chi)\sin 2\alpha - \beta\kappa]}{\rho^2 [\kappa - \beta(1 + \chi)\sin 2\alpha]^3} \]

\[B_y = \frac{e\beta^2 \kappa[(1 + \chi)\sin 2\alpha - \beta\kappa]}{\rho^2 [\kappa - \beta(1 + \chi)\sin 2\alpha]^3} \]

where

\[\kappa = \frac{R}{\rho} = \sqrt{\chi^2 + 4(1 + \chi)\sin^2 \alpha}, \]

\[\alpha = \theta / 2, \]

\[\chi = x / \rho \]

- They are simplest expressions, especially in the denominator and chosen to suppress the numerical noise near the singularity.
Retarded Time and Longitudinal Position

Retarded Time:

\[t' = t - \frac{R}{c} \]

Time of flight at position \(s \):

\[\ell = v(t - t') - (s - s') \]

It is the variable for the wake. The arc distance to the source particle at the time \(t \). We derive its relation to \(\alpha \).

\[\xi = \alpha - \frac{\beta}{2} \sqrt{x^2 + 4(1 + x)\sin^2 \alpha} \]

where \(\xi = -\ell/2\rho \) and \(\ell = z' - z \).
Solutions of the Retarded Condition

Expanding up to the fourth-order of α of the retarded condition, we have

$$\alpha^4 + \frac{3(1 - \beta^2 - \beta^2 \chi)}{\beta^2 (1 + \chi)} \alpha^2 - \frac{6\xi}{\beta^2 (1 + \chi)} \alpha + \frac{3(4\xi^2 - \beta^2 \chi^2)}{4\beta^2 (1 + \chi)} = 0$$

Numerical solution is on mesh: 512x512 using Mathematica taking several hours. The differences between the numeric and analytic solutions are at an order of 10^{-6}. Here we have used $\gamma=500$.

Yunhai Cai, SLAC 5/31/17
Analytical Solution of the Retarded Condition

In general, we want to find the roots of the depressed quartic equation:

\[\alpha^4 + \nu \alpha^2 + \eta \alpha + \zeta = 0 \]

It has analytical solution discovered by Ferrari (1522-1565) by adding and subtracting a term to make a difference of two perfect squares. To find the term, we need to first find the roots of a third-order equation. A root \(m \) is given by,

\[
m = -\frac{\nu}{3} + \left(\frac{\xi}{3} + \frac{\nu^2}{36} \right) \Omega^{-1/3} + \Omega^{1/3}
\]

where

\[
\Omega = \frac{\eta^2}{16} - \frac{\xi \nu}{6} + \frac{\nu^3}{216} + \sqrt{\left(\frac{\eta^2}{16} - \frac{\xi \nu}{6} + \frac{\nu^3}{216} \right)^2 - \left(\frac{\xi}{3} + \frac{\nu^2}{36} \right)^3}
\]

The solution of \(\alpha \):

\[
\alpha = \begin{cases}
\frac{1}{2} \left(\sqrt{2m + \sqrt{-2(m + \nu) - \frac{2\eta}{\sqrt{2m}}} \right) & \xi \geq 0 \\
\frac{1}{2} \left(-\sqrt{2m + \sqrt{-2(m + \nu) + \frac{2\eta}{\sqrt{2m}}} \right) & \xi < 0
\end{cases}
\]
The scaling with respect to γ is different. Here we have used $\gamma=500$.

The centrifugal force is much hard to compute numerically because of the cancellation between the electric and magnetic forces.
The scaling with respect to γ is different. Here we have used $\gamma=500$.
The centrifugal force is much hard to compute numerically because of the cancellation between the electric and magnetic forces.
A Longitudinal Potential Ψ_s

Differentiate the retarded condition,

$$\xi = \alpha - \frac{\beta}{2} \sqrt{\chi^2 + 4(1 + \chi)\sin^2 \alpha}$$

We have,

$$d\xi = (1 - \frac{\beta(1 + \chi)\sin 2\alpha}{\sqrt{\chi^2 + 4(1 + \chi)\sin^2 \alpha}})d\alpha$$

Combining it with the longitudinal electric field E_s, we find

$$E_s d\xi = \frac{e\beta^2[\cos 2\alpha - (1 + \chi)][(1 + \chi)\sin 2\alpha - \beta \kappa]}{\rho^2 \kappa [\kappa - \beta(1 + \chi)\sin 2\alpha]^2} d\alpha$$

or

$$E_s = \frac{\partial \psi_s}{\partial \xi}$$

where

$$\psi_s(\xi, \chi) = \frac{e\beta^2(\cos 2\alpha - \frac{1}{1 + \chi})}{2\rho^2 [\kappa - \beta(1 + \chi)\sin 2\alpha]}$$
Transverse Force and Potential Ψ_x

Similarly,

$$\psi_x(\xi, \chi) = \frac{e^2 \beta^2}{2 \rho^2} \left\{ \frac{1}{|\chi| (1 + \chi)} \left[(2 + 2 \chi + \chi^2) F(\alpha, \frac{-4(1 + \chi)}{\chi^2}) - \chi^2 E(\alpha, \frac{-4(1 + \chi)}{\chi^2}) \right] \right. $$

$$ + \left. \frac{\kappa^2 - 2 \beta^2 (1 + \chi)^2 + \beta^2 (1 + \chi)(2 + 2 \chi + \chi^2) \cos 2\alpha - \kappa \beta (1 + \chi) \sin 2\alpha [1 - \beta^2 (1 + \chi) \cos 2\alpha]}{[\kappa^2 - \beta^2 (1 + \chi)^2 \sin^2 2\alpha]} \right\},$$

where,

$$F_x = \frac{\partial \psi_x}{\partial \xi}$$

Curvature term

and,

$$F_x = \frac{e \beta^2 [\sin 2\alpha - (1 + \chi) \beta \kappa] [(1 + \chi) \sin 2\alpha - \beta \kappa]}{\rho^2 [\kappa - \beta (1 + \chi) \sin 2\alpha]^3}$$

• The Transverse force is the Lorentz force and plus the curvature term
• The curvature term is necessary for the analytical expression
• $F(\alpha, k)$ and $E(\alpha, k)$ are the incomplete elliptic integrals of the first and second kind
• $F_y = 0$, so the particles stay in the plane if they are initially in the horizontal plane
The scaling with respect to γ is different. Here we have used $\gamma=500$.

The “logarithmic” singularity is clearly seen in the transverse potential along the line of $\chi=0$.
Wakefields

From the equations of the motion, the changes of the momentum deviation and kick are given by,

\[\delta' = \frac{r_e N_b}{\gamma} W_s(z, \chi), \]
\[\chi'' = \frac{r_e N_b}{\gamma} W_x(z, \chi) \]

where \(r_e \) is the classical electron radius, \(N_b \) the bunch population, and the wakes,

\[W_s(z, \chi) = \int \int Y_s \left(\frac{z - z'}{2\rho}, \chi - \chi' \right) \frac{\partial \lambda_b(z', \chi')}{\partial z'} dz' d\chi', \]
\[W_x(z, \chi) = \int \int Y_x \left(\frac{z - z'}{2\rho}, \chi - \chi' \right) \frac{\partial \lambda_b(z', \chi')}{\partial z'} dz' d\chi', \]

with \(Y_s = 2\rho \Psi_s/(e\beta^2) \), \(Y_x = 2\rho \Psi_x/(e\beta)^2 \) and \(\lambda_b \) is the normalized distribution.

• These are additional changes when integrating through the bend.
\[\rho = 1 \text{ m}, \; \gamma = 500, \; \sigma_x = \sigma_z = 10 \mu \text{m}, \; \Lambda = \frac{11}{24} \gamma E - 4 + \ln\left(\frac{2 \rho^2}{\sigma_x^2}\right) + \frac{13}{24} \ln\left(\frac{\sigma_z^2}{2 \rho^2}\right) \]
Estimate of Emittance Growth

Increase of the projected emittance:

\[
\Delta \varepsilon_N = \frac{1}{2} \gamma \beta_x < (\Delta x' - <\Delta x'>)^2 > ,
\]

From the longitudinal contribution a bending magnet:

\[
\Delta \varepsilon_N = 7.5 \times 10^{-3} \frac{\beta_x}{\gamma} \left(\frac{N_b r_e L_B^2}{\rho^2} \right)^2 ,
\]

It leads to 38\% increase of the emittance for the last dipole. From the centrifugal force, we have

\[
\Delta \varepsilon_N = \frac{(-3 + 2\sqrt{3})}{24\pi} \frac{\beta_x}{\gamma} \left(\frac{\Lambda N_b r_e L_B}{\rho \sigma_z} \right)^2 ,
\]

This gives 29\% increase of the emittance.

The parameters for the last bend of BC2 in LCLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>γ</th>
<th>ε_N</th>
<th>σ_z</th>
<th>N_b</th>
<th>β_x</th>
<th>ρ</th>
<th>L_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>10,000</td>
<td>0.5 μm</td>
<td>10 μm</td>
<td>10^9</td>
<td>5 m</td>
<td>5 m</td>
<td>0.5 m</td>
</tr>
</tbody>
</table>
Summary

• The transverse force in the curvated coordinate is essentially the Lorentz force but with a substitution of the transverse magnetic field, $B_{x,y} \rightarrow (1+x/\rho)B_{x,y}$

• The curvature term play a key role for deriving the point-charge wakefield explicitly in terms of the incomplete elliptic integrals of the first and second kind

• Emittance growth due to the centrifugal force is at the same level of the contribution through the energy changes

• A steady-state theory of the coherent synchrotron radiation in two-dimensional free space is developed
References

1D theory:

2D and beyond:
3) G.V. Stupakov, “Effect of centrifugal transverse wakefield for microbunch in bend,” SLAC-PUB-8028, Revised March 2006
6) Ohmi’s talk in theory club, SLAC 2016
Acknowledgements

• Many discussions with K. Ohmi who visited SLAC recently
• Helpfully discussions with my colleagues: Karl Bane, Robert Warnock, Gennady Stupakov
• Benefited from several talks in the theory club by Gennady Stupakov
• Yuantao Ding for providing LCLS parameters