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Physical Constants and Units 
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mc2 = 0.51

re =
e2

mc2
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! e =
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Dynamics of Relativistic Particles 
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in Uniform Magnetic Field 
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d(γm!v)
dt

=mγ d
!v
dt
= e
!v
c
×
!
B,

Assuming no velocity component in direction of B,  

mγ !v =mγ v
2

ρ
= evB / c

⇒
pc
e
= Bρ,

where ρ is the radius of the circular motion of the charged particle.  
This is the zeroth-order equation of circular accelerators. Bρ is called  
the magnetic rigidity.  

1.  Energy E=pc/β, so the higher energy the larger the ring. 
2.  Conversion: 1 GeV => 10/2.998 T-m. 
 
  LHC: 7 TeV => ρ=2.8 km and 27 km circumference, if B=8.36 T (p) 
 
 

Equation of motion 
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Hamiltonian of a Charged Particle in 
Electromagnetic field 
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The equation of motion is given by the Hamiltonian equation, 

Here we have (q1, q2,q3) = (x,y,s) and (p1,p2,p3) = (px,py,ps). They are a 
set of the first ordinary differential equations.  

the one in the equation 
of motion 



Hamiltonian Equation 
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Scaled with Design Momentum  
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Third Pair: Canonical Coordinate 
in Magnets 
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After scaling by p0, a choice of the third pair of canonical coordinate  
is given by 

The third pair of canonical coordinate can be derived 

dt
ds
=

∂H
∂(−E / p0 )

,

d(−E / p0 )
ds

= 0.

d(vt)
ds

=
∂H

∂(−p / p0 )
,

d(−p / p0 )
ds

= 0.
E=cp/β

dδ
ds

= 0,

dℓ
ds

= −
∂H
∂δ
,

where l=vt and δ=(p-p0)/p0.  



Hamiltonian Using the Path Length s as 
Independent Variable in Rectangular 

Coordinate 
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The scaled Hamiltonian is suitable of quadrupole, sextupole, octopole, 
and skew quadrupole magnets is given by 
 

H = −
eAs
cp0

− (1+δ)2 − px
2 − py

2 ,

where δ=(p-p0)/p0 and p0 is the reference momentum and As the component 
of the vector potential along the direction of propagation. For a storage 
ring, we choose cp0=eBρ as shown previously.  



Paraxial Approximation 
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HD = − (1+δ)2 − px
2 − py

2

= −(1+δ)[1− px
2

(1+δ)2
−

py
2

(1+δ)2
]1/2

≈ −(1+δ)[1− px
2

2(1+δ)2
−

py
2

2(1+δ)2
]

= −(1+δ)+
px
2 + py

2

2(1+δ)

paraxial approximation 

Used in this course 

The difference can be dealt with by symplectic integrators. 



Hamiltonian and Transfer Map for a Drift 
Use s as the independent variable, Hamiltonian in the paraxial  
approximation is given by 

x f = xi +
pxi
1+δ

L,

pxf = pxi,

y f = yi +
pyi
1+δ

L,

pyf = pyi,
δ f = δi,

ℓ f = ℓ i +
pxi
2 + pyi

2

2(1+δ)2
L,

Solving the Hamiltonian equation, we obtain the transfer map of the 
drift: 

Where Λ is the length of the draft, subscript “i‘” for the initial canonical 
coordinates and “f” for the final ones. One can show that it is indeed a  
symplectic map. 
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HD =
px
2 + py

2

2(1+δ)
,



Symplecticity 
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!M ⋅ J ⋅M = J

A 6x6 matrix M is symplectic if it satisfies 

where 

J =

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

They form a group. It needs 21 independent parameters. A map is  
symplectic if its Jacob is sympectic.  



Importance of Symplecticity 

       artificial   damping                or                      growth 
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Vector Potential of Magnets 
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As = −Re[
1
n
(bn + ian )(x + iy)

n

n=1
∑ ].

Ax=Ay=0 and the component of vector potential along the propagating axis a 

bn and an for normal and skew components respectively. For a quadrupole 
magnet, we have 

VQ (x, y) = −
As
Bρ

=
b2
2Bρ

(x2 − y2) = K1

2
(x2 − y2).

K1 > 0, it focuses in x and defocuses in y. For a sextupole magnet, we have 

VS (x, y) = −
As
Bρ

=
b3
3Bρ

(x3 − 3xy2) = K2

6
(x3 − 3xy2).

K1, K2 are the standard strengths for quadrupole and sextupole used in  
the program MAD. 



Hamiltonian and Transfer Map for  
a Focusing Quadrupole Magnet 

HQ =
1

2(1+δ)
(px

2 + py
2 )+ K1

2
(x2 − y2).

Use s as the independent variable, Hamiltonian in the paraxial  
approximation is given by 

x f = xi cos(κL)+
pxi

κ (1+δ)
sin(κL),

pxf = −κ (1+δ)xi sin(κL)+ pxi cos(κL),

yf = yi cosh(κL)+
pyi

κ (1+δ)
sinh(κL),

pyf =κ (1+δ)yi sinh(κL)+ pyi cosh(κL),
δ f = δi,
ℓ f = ℓ i +ΔQ(xi , pxi , yi , pyi ,δi ,ℓ i ),

Solving the Hamiltonian equation, we obtain the transfer map of a focusing 
quadrupole: 

where Λ is the length of the quadrupole,                      , the function ΔQ in  
the path length can be found in ref. Nucl. Inst. Meth. A645:168-174, 2011.  
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Hamiltonian of Sector Bending Magnet 

5/30/17 Yunhai Cai, SLAC 20 

Here we have assumed that the magnetic field B matches with the  
bending radius r, namely cp0=eBρ. The first term generates the dispersion  
and the second gives little focusing in the horizontal plane.  

HD =
x
ρ
+
x2

2ρ 2 − (1+
x
δ
) (1+δ)2 − px

2 − py
2 .

Similarly, the scaled Hamiltonian of a sector bending magnet can be  
derived using a curved coordinate system. Under the paraxial  
approximation, it is given by 

y 
x 

s Sign convention: 
 
s is the particle moving direction.  
For a positive charge e, By is also positive.   



Hamiltonian and Transfer Map for  
a Sector Bending Magnet 

Use s as the independent variable, Hamiltonian in the paraxial  
approximation is given by 

x f = xi cos(κL)+
pxi

κ (1+δi )
sin(κL)+ ρδi (1− cos(κL)),

pxf = −κ (1+δ)xi sin(κL)+ pxi cos(κL)+κ (1+δi )ρδi sin(κL),

yf = yi +
pyi

(1+δi )
L,

pyf = pyi
δ f = δi,

ℓ f = ℓ i + L(1−
1
β0
)+ΔD(xi , pxi , yi , pyi ,δi ,ρ,L),

Solving the Hamiltonian equation, we obtain the transfer map of a sector bend: 

where L is the length of the quadrupole,                      ,   the function ΔD in  
the path length can be found ref. Nucl. Inst. Meth. A645:168-174, 2011.  
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PEP-II Magnets 

IV. DIPOLE DESIGN

The arc dipoles in the LER are connected in two series
power supply strings.  Thus, they share, with the majority
of the quadrupoles connected in series strings, very
stringent magnet to magnet reproducibility requirements.
Therefore, the manufacturing plan, developed by LBL and
IHEP, includes careful shuffling of the steel and
laminations required for the large number of magnets to
ensure the distribution of any variations in iron magnetic
properties and any systematic variation in laminations due
to die wear.  Detailed design of the PEP-II LER dipole,
including summary of two and three dimensional
magnetostatic calculations, electrical parameters and water
flow and cooling calculations are included in reference [4].

A. Yoke design
An "H-type" geometry (Fig. 3) was selected for the

yoke so that a simple pancake coil can be utilized.  The
pole width was selected and the shape of the rectangular
bumps at the edges of the pole was optimized in order to
satisfy the field quality requirements for the magnet in the
central two-dimensional region of the magnet.  The pole
edges were slightly tapered in order to minimize iron
saturation at the pole root when operating at the high end of
the required excitation range.

Figure 3:  Dipole Layout.

Since the dipoles are relatively short, the variation of
the fringe field at the end of the magnet is expected to
dominate the line-integral field uniformity.  Field
distribution studies were made using Amperes© [5] (a
three-dimensional magnetostatic code using the boundary
element method) in order to estimate the shape of the
chamfer (Fig. 4) which will satisfy the field-integral
uniformity requirement for the dipole.

Figure 4:  Dipole Chamfer.

B. Coil design
The dipole coil has thirty-four turns of 0.715 inch

square hollow aluminum conductor in order to satisfy
power supply and power distribution constraints.  The 34
turns are enclosed in a cross section sized for 36
conductors.  Two turns were lost due to "soft" crossovers
which allowed easy transitions between coil rows and
layers.

34 Turn per pole aluminum coil - 1 water circuit
Resistance 10.97 mΩ
Current @ 3.1 GeV 563 A
Field @ 3.1 GeV 0.75 T
Water Flow @ 130 psi 0.933 gpm
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III. QUADRUPOLE DESIGN

The majority of the quadrupoles are divided among
two families which are connected in two long power supply
strings.  Other quadrupoles control the dispersion, the tune,
and shape the beam in the wiggler and interaction regions
of the lattice and are connected in short power supply
strings.  Because of these varied applications, and since the
LER lattice is designed to operate over a range of energies
(2.4 to 3.5 GeV) a common magnet design was needed to
satisfy a wide range of excitation.  Detailed design of the
PEP-II LER quadrupoles, including a summary of two-
dimensional magnetostatic calculations, electrical
parameters and water flow and cooling calculations, is
included in reference [1].

A. Yoke design
A yoke design (Fig. 2) was chosen and analyzed to

satisfy the demanding field-quality requirements for the
quadrupoles over a wide range of excitation.  This same
yoke design is shared among all the quadrupoles in the
LER except for selected magnets in the interaction region.

Figure 2:  Quadrupole Layout with 15 turn per pole Coil.

The pole tip design is a scaled version of the optimized
pole originally developed for the ALS (scaled from 32.5
mm to 50 mm pole radius).  The original pole shape was
shared among the ALS booster, storage ring, and beam
transport quadrupoles and was developed with the goal of
reducing the multipole errors allowed by the four-fold
rotational symmetry (n=6, 10, 14, 18,...) to values ≤ 1x10-4
of the fundamental when measured at the pole radius.  With
this high quality for the two-dimensional field, the chamfer
developed to minimize the multipoles due to the three
dimensional fringe fields can be used for any magnet,

independent of its magnetic length.  This allowed us to
scale both the chamfer and the pole shape for the PEP-II
LER quadrupoles from the ALS design with full confidence
that the field quality for the line integral of the magnet will
meet the same good-field quality as achieved for the ALS.

The yoke is made in two pieces rather than four pieces
to enhance its rigidity and simplify magnet assembly.  This
made it possible to reduce the potential assembly errors and
the resulting random multipole errors.  The advantages of
this approach were first exploited during the fabrication of
the PEP Insertion quadrupoles in 1979[2].  The ease of
precisely shimming the halves of the two piece magnet
with respect to each other allows the cancellation of
selected multipole errors[3].

B. Coil design
The two piece yoke design constrained the coil

geometry.  To install the coil, its width could be no wider
than the space between adjacent poles.  Reduction of the
quadrupole power required reducing the current density by
increasing the coil height.  This resulted in a rather tall and
narrow coil cross section and limited, somewhat, the choice
of conductors that could be used to satisfy power supply
and power distribution constraints.  Moreover, since many
of the old PEP magnets with aluminum coils are used in the
High Energy Ring (HER), a further requirement for the
LER magnet coils was to use aluminum conductor so that
the water-cooling system could be shared.

The arc quadrupoles connected in long strings have
coils with 15 turns per pole wound with 0.5 inch hollow
square aluminum conductor.  Other quadrupoles connected
in short strings have 58 turn per pole coils wound with
0.25-inch hollow square conductor.  All but a few of the
58-turn coils are made using aluminum conductor.  The few
magnets which utilize copper conductor are located in the
interaction region of the PEP-II ring.  These require higher
currents and take advantage of the local water system
provided in that area for other copper and stainless steel
accelerator components.  The 58-turn coil magnet water
cooling circuits are arranged in a variety of different
configurations, depending on the power dissipation for the
particular magnet application.  Parameters for two of the
coil configurations are listed below.

58 Turn per pole aluminum coil: 1 circuit
Resistance 279.2 mΩ
Maximum Current 46 A
Maximum Gradient 2.68 T/m
Water Flow @ 130 psi 0.075gpm

58 Turn per pole aluminum coil: 4 circuits
Resistance 279.2 mΩ
Maximum Current 139 A
Maximum Gradient 8.10 T/m
Water Flow @ 130 psi 0.682 gpm

1323

Low Energy Ring 
§  Positron energy 3.1 GeV 
§  Beam current 3 A 
§  900 cell 

Dipole, 0.75 T 

Quadrupole, 4.5 T/m 

Courtesy of T. Henderson, 1996 
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Parameterization of Periodic Map  
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Courant-Synder Parameters 
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One-turn matrix:                                        Rotation matrix: 

where Ax
-1 is a transformations from the physical to the normalized 

coordinates: 

There are related by a similarity transformation: 

Mx = AxRxAx
−1

All these matrices are symplectic. However, the transformation matrix Ax  
is  not quite unique because of the commuting property of the rotational  
matrices. 
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µx = 2πν x

betatron tune 



Linear Normal Form 
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The one-turn matrix can be  
diagonalized in terms of blocks: 

where A=AηAβ and  

In particular, 

λ =M65 + (βxηpx
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Visualization of Normal Form 

5/30/17 Yunhai Cai, SLAC 27 

R12 

physical ring 

normalized ring 

M12 

1 

2 

F12 (Ψ12) 

A1
-1 

A2 

x[m] 

px 

Tune is an invariance. 
But beta function changes 
from position to position. 

phase space 

xn [ m ]

pxn [ m ]



Sextupoles 
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VS (x, y) =
K2

6
[(x +ηxδ)

3 − 3(x +ηxδ)y
2 ]

=
K2

6
[x3 − 3xy2 ]+ K2ηxδ

2
(x2 − y2 )+...

Quadrupoles introduce chromaticity. To correct the chromaticity, we have 
to introduce sextupoles. The sextupole potential relative to a dispersive 
orbit, ηxδ is given by, 

K2=K1/ ηx 

For local chromatic correction of a quadrupole, one should set, 

Price to pay         A chromatic quadrupole 

Large dispersion at sextupole position helps to reduce the nonlinearity. 



Conversion between  
(δ,l) and (E/p0,t) 
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If there is a RF cavity in the system, it is easier to use E/p0 and t as 
the third pair of canonical variable.  On the other hand, it is easier to  
use (δ,l) in magnets as we have shown. So the conversion is necessary.  

E
p0
= c2(1+δ)2 +m2c4 / p0

2 ,

γ =
E
mc2

,

β = 1−1 / γ 2 ,

t = ℓ
cβ
.

From (δ,l) to (E/p0,t):                          From (E/p0,t) to (δ,l) : 

γ =
E
mc2

,

β = 1−1 / γ 2 ,

δ =
E 2 −m2c4

cp0
−1,

ℓ = cβt.

As  long as there is no RF system in between, it is an inverse operation. 



Conversion between  
(δ,l) and (E/p0,t) 
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If there is a RF cavity in the system, it is easier to use E/p0 and t as 
the third pair of canonical variable.  On the other hand, it is easier to  
use (δ,l) in magnets as we have shown. So the conversion is necessary.  

From (δ,l) to (E/p0,t):                          From (E/p0,t) to (δ,l) : 

where u=E/p0. It is easy to show that they are symplectic transfermations. 

u = mc
2

p0
1+ ( p0

mc
)2 (1+δ)2 ,

t = mℓ
(1+δ)p0

1+ ( p0
mc
)2 (1+δ)2 ,

δ =
mc
p0

( up0
mc2

)2 −1−1,

ℓ = mc
3t

up0
( up0
mc2

)2 −1,



Energy Gain in RF Cavity 
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f0 = c / C,
fRF = hf0,
ωRF = 2π fRF,
Ef = Ei + eVRF sin(ωRF (−ti )+ϕs ).

With a proper choice of the RF cavity, we obtain 

dE
dt

= e!v ⋅
!
E,

⇒ dE = eEzdz,

⇒ΔE = eEz dz ' = eVRF (−t)∫ .

From  

Energy gain: 

Arrival time (minus of time of flight) 

Clearly, it is a symplectic system. 



RF Cavity and Synchrotron 
Oscillation 
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RF Bucket   

βn+1
2 δn+1 = βn

2δn +
eVRF
E0

sin(kRFzn +ϕs )

zn+1 = zn −ηCδn+1

⎧

⎨
⎪

⎩
⎪

For a single RF in a ring, every turn  
we have  

η=αp-1/γ2, is the “slip factor” and a 
the momentum compaction factor. 
Expand small z,  

υs =
hη
2π

eVRF
β 2E0

cosϕs ,

Synchrotron tune is given by 

where ωs=νsω0. 

!δ = eVRFkRF
β 2T0E0

cosϕsz

!z = −ηC
T0

δ

⎧

⎨

⎪
⎪

⎩

⎪
⎪



LHC Superconducting Dipoles 

[ ] [ ]

Courtesy of D. Leroy, CERN 

B: 8.36 T 
T: 1.9 K 
L: 14.2 m 
A: 56 mm 



Luminosity 

•  Bunch luminosity 

 
    where Rg is a geometrical reduction from the 
hourglass effect and crossing angle. It is also a 
good indicator for dynamical effects at high bunch 
charge. 
 

•  Total luminosity: 

Lb = frev
Nb
2

4πσ xσ y

Rg

bbLnL =
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Beam-Beam Limit 
•  For round beams , the beam-beam parameter is given by 

 
And the luminosity can be re-written as 

 
     
      
where IA=17045 A. We should expect twice of the luminosity increase 
from an energy doubler. A smaller β* and larger ξ is also helpful. 
Taking an example of the LHC running at E0=4 TeV in June 2012, we 
have I=0.37A, ξ=0.0075, Rg=0.82, β*=0.6 m and the luminosity is 
6.59x1033 cm-2s-1.  
 
So what is the beam-beam parameter at 14 TeV of the beam energy? 

2

*

4πγσ
β

ξ bpNr=

g
Ape

R
Irr
cIL *β
γξ

=

35 Yunhai Cai, SLAC 5/30/17 



LHC Cell to Double its Energy,  
with 600 Phase Advance 
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What are the optimal parameters? 
Cell length? phase advance? 



Dispersion Suppressor 
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Interaction Region 
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β*=0.4 m  



b3 in the main LHC dipoles, and injection 
energy at 450 GeV 

Courtesy of S. Izquierdo Bermudez, E. Todesco, D. Tommasini  



Dynamic Aperture at Injection 

short-term  

long-term 

LHC Lattice functions                                Dynamic Aperture      

•  What is the best injection energy? 
•  What is the necessary field quality? 
•  What kind of corrector package? 
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Summary 
1.  Hamiltonian is fundamental for the beam 

dynamics in storage rings, including the 
linear optics. 

2.  To make the particle motion stable, we 
use harmonic oscillators in all three 
dimensions. In the longitudinal plane, the 
RF bucket makes its stability extremely 
robust. That why we can focus on the 
transverse dynamics. 
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